
PToceedings of the 1996 Winter' Sim,ulation ConfeTenre
ed. J. lVI. Charnes, D. J. Morrice, D. T. Brunner, and J. J. S',vaill

ELIMINATING CANCELING EDGES FROM THE SIMULATION GRAPH MODEL METHODOLOGY

Ricki G. Ingalls

Manufacturing Strategy Group
Corporate Operations

Compaq Computer Corporation
20555 SH 249

Houston, TX 77070

Douglas J. Morrice

MSIS Department
The University of Texas at Austin

Austin, TX 78712
End to End Simulation Department

Schlumberger Austin Research
Austin, TX 78720

Andrew B. Whinston

MSIS Department
The University of Texas at Austin

Austin, IX 78712

ABSTRACT

Event Graphs and Simulation Graph Models provide a
powerful and general modeling framework for discrete
event simulation. Within this framework it has been
shown that an event cancellation construct in the form
of a canceling edge is a modeling convenience rather
than a necessary modeling tool. As a result, very little
work on the formal development of Event Graphs and
Simulation Graph Models directly considers the
canceling edge construct. However, to the simulation
practitioner the modeling convenience and functionality
provided by canceling edges is important. This is clearly
demonstrated by the presence of event canceling edges
in SIGMA, the commercial software implementation of
Event Graphs. This paper proposes an extension of the
Event Graph methodology that will completely
eliminate canceling edges without loosing the
functionality that canceling edges provide. Since this
extension is formally developed within the Simulation
Graph Model framework, it provides a general approach
to handling event cancellation.

1 INTRODUCTION

Event Graphs (EGs) have included event cancellation
constructs in the form of event canceling edges since
their introduction (Schruben 1983). Subsequent papers
also include the canceling edge construct (Sargent 1988,
Som and Sargent 1989). After EGs were formalized and
extended into Simulation Graphs (SGs) and Simulation
Graph Models (SGMs), it was shown theoretically that
event canceling edges were a modeling convenience but
not a necessary modeling tool (Yticesan 1989, Y iicesan
and Schruben 1992). As a result, very little of the
formal development work on EGs and SGMs directly
addresses the issue of event cancellation. Recently,
Savage and Schruben (1995) demonstrated that it is
practically possible to model without event canceling
edges.

One might conclude that event canceling edges, in
particular, and event cancellation, in general, should be
eliminated from the EG methodology. However,
simulation practitioners clearly find the modeling
convenience and functionality provided by event
canceling edges, beneficial. This is demonstrated by the
fact that the commercial software implementation of
EGs, SIGMA (Schruben 1995, page 75) includes the
event canceling edge construct.

Since event canceling has some benefit in terms of
modeling convenience this paper does not advocate its
elimination altogether. Instead, the event canceling edge
construct is eliminated and replaced by a more general
event canceling construct in the form of an edge
execution condition. Essentially, the edge execution
condition is tested at the moment the event is scheduled
to be executed. If the condition is true, the event is
executed; if the condition is false the event is discarded
without execution. The edge execution condition retains
the functionality and modeling convenience of
canceling edge.

This paper extends EGs to include the edge
execution condition. In addition, this construct is
formally developed within the SG framework to provide
an extension to SGMs. Its generality is demonstrated
within this framework. The complete simulation
execution sequence of the SGM extension is provided in
algorithmic form. The results are demonstrated on an
example from Savage and Schruben (1995).
The remainder of the paper is organized as follows.
Section 2 provides a description of EGs and SGMs.
Section 3 introduces the new EG construct that
includes an edge execution condition, extends SGMs to
include this new construct, and provides the algorithm
that demonstrates the complete simulation execution
sequence. Section 4 demonstrates the methodology on
an example from Savage and Schruben (1995). The
example is described using the canceling edge
approach, the approach developed by Savage and
Schruben (1995), and the approach developed in this



826 Ingalls, i\Iorricc, and ,,,rhinston

2 ORIGINAL IMPLEMENTATION

B(j)A

Figure 3: Vertex Parameters and Edge
Attributes on a Scheduling Edge

Yticesan and Schruben (1992) and Schruben and
Yiicesan (1993) extend EGs to SGs and SGMs. This
extension provides a formal graph theoretic framework
for EGs. Within this framework, Yiicesan (1989) shows
that canceling edges and parameterization are modeling
conveniences and do not augment the modeling
capabilities of these graphs. As a result, very little of
the formal development in SGs has focused directly on
the canceling construct.

The basic construct in the modified event graph
framework is shown in Figure 4. As before, the nodes
labeled A and B represent events and the edge specifies
that there is a relationship between the two events.
However, the construct is now interpreted as follows: "if
condition (i) is true at the instant event A occurs, then
event B will be scheduled to occur t time units later.
Event B will be executed t time units later with the state
variables in array n set equal to the values in array k if
condition U) is true t time units later." This simple
modification is the basis for eliminating canceling edges
in the simulation graph methodology.

3 THE EDGE EXECUTION CONDITION

basic constructs in Figures 1 and 2. Parameterization is
accomplished through vertex parameters and edge
attributes. A vertex parameter list is a string of state
variables associated with a particular vertex. An edge
attribute list is a string of expressions associated with a
particular edge. These lists are used in scheduling or
canceling specific instances of events. Using these
parameters is analogous to passing values in subroutines
in high-level programming languages. For example,
Figure 3 provides an extension of Figure 1. The
construct in Figure 3 is interpreted as follows: "if
condition (i) it true at the install t event A occurs, then
event BU) will be scheduled to occur t time units later
with parameter string j, equal to k" (Schruben 1995,
page 79).

B
(i)

t .. ~..A

Figure 1: Scheduling Edge

Figure 2 depicts a second basic construct in EGs
referred to as a canceling edge. The canceling edge has
the following interpretation: "if condition (i) is true at
the instant event A occurs, then the currently scheduled
event B will be canceled t time units later" (Schruben
1983). In most instances, t equals zero for the canceling
edge (Schruben 1995, page 76). The canceling edge is
used to delete scheduled transactions that execute the
vertex that is at the head of the edge. The canceling
edge was added to the event graph framework to handle
disruptions such as machine breakdowns.

Figure 2: Canceling Edge

In the event graph, it is also possible to
parameterize the event vertices and thus extend the

Figure 1 depicts the basic EG construct. This construct
is called a scheduling edge. The nodes labeled A and B
represent events. The edge specifies that there is a
relationship between the two events. More specifically,
the construct can be interpreted as follows "if condition
(1) is true at the instant event A occurs, then event B
will be scheduled to occur t time units later" (Schruben
1983). The quantity t may assume the value zero, in
which case B happens at the same instant as A. Note
that it is possible (and often necessary) to specify an
edge with no condition. The scheduling edge schedules
the event vertex at the head of the edge in accordance
with the time specification with the edge

paper. Section 5 provides a preliminary run -time
comparison of computation effort required by the three
approaches on the example provided in Section 4.
Section 6 contains some concluding remarks.



EliIninating C~anceling Edges

Figure 4: Scheduling Edge with an Execution
Condition

3.1 Simulation Graphs Extension

Using the notation ofYiicesan and Schruben (1992) and
Schruben and Yiicesan (1993), let
G=(V(G),E(G)'V'G) be a directed graph where V(G)

is the set of vertices and E(G) is the set of edges. G

can be a multi-arc graph, meaning that more than one
edge can connect the same two vertices flowing in the
same direction. Vertices and edges can have functions
and attributes assigned to them.

The function that is assigned to the vertices is:
(i) J" ={tv: v E V(G)}, the set of state transitions

functions associated with vertex v.
The functions assigned to the arcs are:

(i) C = (C~:e E E(G)}, the set of scheduling edge

conditions.
(ii) X =(X~:e E E(G)}, the set of execution edge

conditions.
(iii) rr =(te: e E E(G)} , the set of edge delay times, and

(iv) r =(r ~:e E E(G)} , the set of event execution

priorities.
With the modifications described above, the Simulation
Graph Model (SGM) is now defined as
l ={!F,CIX,Xr/G}.

In contrast to Schruben and Yiicesan (1993), there
are no canceling edges in the graph. Instead, the set X,

which is evaluated at the time that the event comes off
the calendar to be executed, replaces the function of the
canceling edge. If the condition Xv is true, then the

vertex associated with the event notice is executed. If
Xv is false, then the event notice is discarded. This

implementation provides a precise way for canceling
scheduled events in the methodology and in practice.

Although Schruben and Yticesan (1993)
specifically detail the function of canceling edges in
their terminology, their canceling edge step is not
straightforward. The function of canceling edges is to
search for and remove one or more already scheduled
event notices from the event calendar, l. The edge
execution edge conditions permits the same
functionality, i.e., the ability to not execute an event

A B(n)

notice already scheduled on the calendar, without
requiring a search of the events calendar. The edge
execution approach does require some extra overhead
associated with carrying more information on the event
calendar and perhaps the need for additional state
variables. However, in many instances, the overhead
can be justified if it eliminates a costly search
procedure.

3.2 Simulation Graph Execution Sequence

As with the framework in Schruben and Yticesan
(1993), this framework also needs additional
mechanisms to facilitate the execution of the model.
The symbol r will be used to represent the global
simulation clock and /" the event calendar. However,
our definition of /, will be different from the one
specified in Schruben and Yiicesan (1993). Our
definition of /, is an ordered set,

J.. ={(til r l' vllellal ),(f2, Y2' V2 ,e2I a2)",,) where t i

represents the execution time, Yi represents the

execution priority, Vi is the vertex to be executed, e j is

the index of the edge that is being scheduled, and ai are

the values of the edge attributes. Each (f,y,v,e,a) is an

event notice. It is important to note that Schruben and
Yticesan (1993) did not include the values of the edge
attributes as part of the even t notices. Edge attributes
are included here since the parameter passing
mechanism is intended to pass the values of the
variables and not the references.

We also define the following sets:
(i) Sv: the set of state variables that can be changed at

vertex v. (Since S is the set of all state variables,
Sv c S).

(ii) p... : the set of state variables in the parameter list

of vertex v .
(iii) <I> ~ : the set of state variables involved in the

scheduling conditions on edge e .
(iv) t} ~ : the set of state variables involved in the

execution conditions on edge e .
(v) Ae : the set of state variables used to determine the

values of a~ on edge e.

In addition to these sets, there is one conditional
statemen t, OJ, which is evaluated to determine if the
simulation should stop. With these definitions, the
execution of the Simulation Graph model is carried out
as follows.

Initialize (Run Initialization)
Step 1. Initialize the global simulation clock. r f- 0 .



828 Ingalls. ~\ Iorrice. and \lThinston

Step 2. Insert one or more event notices into the event
calendar: For simplicity, we will assume that each of
these event notices could be executed at time
O. I = l u {(0,r 1 ' VI' eI ! a} ), (0,r 2 ! V2 ,e2 ' a2 ), .•• } .

Execute (execution of the model implementation)
~. Remove the [lIst event notice from £.
I =I \{tlt =(t}1 YI'vl ,e1l al )} • Event notice t is

removed from the calendar. This implies
t, = t}, Y, =YI' V, =v1,e, =e1, and a, = a}.

Step 2. If the execution edge condition,
X~I (t)e.,ac) =FALSE, then go to Step 1 of execute.

Step 3. Update the simulation clock. r ~ tc •

Step 4. Assign the attributes to the parameters of the
vertex. Pv ~ ac ' If Y is the i/h state variable in the,
vertex parameter list, i.e. (P\,}i =Y, then Y ~ (a')i .

Step 5. Evaluate the state change. Sv, ~ fv. (S) .

Step 6. Schedule further events. For each edge, e~,

emanating from v" if C~ (<I> ~ ) =TRUE then evaluate
~ ~

Ae and assign the attribute value of the new event
r

notice, k, ak ~ A~. Generate the inter-event time,
~

tk = f(t er ) , and schedule the event notice where

l =l u {(r + t k , r ell ' Vj ,e~ ,ak )} .

Step 7. Terminate the execution of the simulation if any
of the following conditions is satisfied:

(i) r exceeds Ts/op '

(ii) The simulation stopping condition, (j), evaluates

TRUE.
(iii) £ is empty.
Otherwise, go to Step 1 of Execute.

4 EXAMPLE

Savage and Schruben (1995) present an example in
which they demonstrate a procedure to model canceling
edges out of EGs. The same example will be used to
demonstrate the edge execution condition approach.

The example is one of a single server system that
has two types of customers. Of the two types of
customers, customer type 1, has the highest priority. If
a type 2 customer is being served when a type 1
customer arrives, the type 2 customer is preempted by
the type 1 customer and will wait until all type 1
customers have been served. Figure 5 shows how this
system can be modeled with a canceling edge (Savage
and Scbruben 1995).

4.1 With a Canceling Edge

For this system, the state variables are:
Ql and Q2 The number of customers in each queue.
S Server Status: 1 = available, 0 =busy, -1

=preempted

S==O&PR==O

Q1=Q1-1
S=S-l
PR=l
TS=t I

RTIME=FTIME-CLK
FTIME=FTIME+TS

S=S-1
Ql=Q1-1
PR=1
TS=t 1

FTIME=CLK+TS

S=S-1
Q2=Q2-1
PR=O
TS=t,

FTIME=CLK+TS

Figure 5: Single Server Preemptive System with a Canceling Edge (Savage and Schruben 1995)



Elinlinating C~ancelingEdges S2D

PR

TS
FTIME

If =1, then a priority customer is being
served.
The length of time for service.
The finishing time of service (if not
preempted).

RTIME The remaining time in the service.
In this system, each type of customer has its own

arrival distribution, ai. When a type 1 customer enters
the system (ENTl), if there is a server available, the
customer starts his service (STl) and then finishes his
service (LVI) after TS time has elapsed. When a type 2
customer enters the system (ENT2) and a server is
available, then the type 2 customer starts his service
(ST2) and is scheduled to finish his service TS time
units later. However, if a type 1 customer enters the
system while the server is busy with a type 2 customer,
the type 1 customer preempts (PRE) the type 2 customer
by taking the type 2 customer off of the future events list
if the event the type 2 customer is scheduled to execute
is LV2. The type 1 customer then is served for TS time
units and then finishes his service (LV1). At the same
time, the type 2 customer is scheduled to finish his
service TS+RTI:rvIE units later. When a type 1 customer
finishes service, one of three things can occur. First, if
a type 2 customer was preempted (S==O) and there is
another type 1 customer in the queue (Ql>O), then the
type 2 customer that was previously preempted is
preempted again and service is given to the new type 1

customer. Second, if there are new type 1 customers in
the queue (Ql>O) and there was not a previous
preemption (S==1), then the service is given to the next
type 1 customer in the queue. Third, if there are no type
1 customers (Ql==O) and there are type 2 customers
(Q2>0) and the server is available (S==I), then the
service is given to the fITst type 2 customer in the queue.

4.2 Without a Canceling Edge

Figure 6 contains the Savage and Schruben (1995)
mcxlel without canceling edges. They eliminate
canceling edges by putting a check event (CHK) in the
mcxlel that will not allow a type 2 customer to leave the
system (LV2) until no type 1 customers are in the
system (S==O). The check event is processed whenever
a type 1 customer is scheduled to leave the system. The
actual execution of this mcxlel as intended is
problematic due to the number of zero-time events and
the lack of priorities on the arcs. Regardless, this
method of eliminating the canceling edge should work
with minor modifications.

There are three basic problems with this solution.
The fITst is that the modeler, and not the methodology,
is responsible for eliminating the canceling edge. In
many instance, this could be a challenging modeling
exercise by itself. The second problem is that there is
additional overhead in terms of scheduling the check
event. The third problem is more philosophical, but one

S==O&PR==O

Ql=Ql-1
S=S-1
PR=l
TS=t 1
FTIME=FTIME+TS

S=S-1
Ql=Ql-l
PR=1
TS=t 1
FTIME=CLK+TS

5=S-1
Q2=Q2-1
PR=O
TS=t 2

FTIME=CLK+TS

Figure 6: Single Server Preemptive System without a Canceling Edge (Savage and Schruben, 1995)



830 Ingalls. i\Iorrice, and lVhinstoIl

of the strengths of even t graphs is that the even ts in the
model usually correspond to events that occur in the
actual system being modeled. A check event never
actually occurs in the physical system.

4.3. With Execution Conditions

The model with execution conditions, as they are
outlined in this paper, is very straightforward. Figure 7
shows the model as it would be with execution
conditions.

In this system, the state variables are:
QI and Q2 The number of customers in each queue
S Server status
P The number of preemptions that have

occurred
T The type of customer being serviced
ST The starting time in the service
RT The remaining time in the service

In this system, each type of customer has its own
arrival distribution, ai. When a type 1 customer enters
the system (ENTl), if there is a server available (S==l),
the customer starts his service (STI) and then finishes
his service (LVI) after t1 time bas elapsed. When a type
2 customer enters the system (ENT2) and a server is
available (S== I), then the type 2 customer starts his
service (ST2) and is scheduled to finish his service TS
time units later. When the event is scheduled, the

number of preemptions that have occurred (P) is stored
in attribute I (A(I». When the event is scheduled to
occur, if there have been no more preemptions
(P==A(l», then the type 2 customer leaves the system
(LV2). However, if a type I customer enters the system
while the server is busy (5==0) with a type 2 customer
(T==2), the type I customer preempts (STIP) the type 2
customer by incrementing P, the number of preemptions
and storing the remaining service time for the type 2
customer (RT). This will not allow the type 2 customer
to finish because P>A(I). In any case, when a type I
customer finishes his service (LV I), then one of three
things can occur. First, if there is a type I customer in
the queue, then a new type I service is started. Second,
if there is no one in the type I queue (QI==O) and a
type 2 customer has been preempted (RT>O), then the
type 2 customer is restarted with completion scheduled
for RT time units later. Again, the leave event (LV2)
for the type 2 customer will only be executed if his is
not preempted (P==A(I». Third, if there is no one in
the type I queue (QI==O) and no one has been
preempted (RT==O) and there is a type 2 customer
waiting, then a new type 2 customer starts service
(ST2).

5 RUN-TIME CONSIDERATIONS

In order to determine which of the three approaches is

T=2
S=O
Q2=Q2-1
RT=t 2
ST=CLK

Figure 7: Single Server Preemptive System with Execution Conditions



Eliminating C1anceling Edges

more efficient, consider the run-time complexity of each
of the three models. First, we define complexity as the
number of times that an event is schedule or canceled
since the management of the calendar is easily the most
time consuming aspect of any discrete-event simulation.

To best gauge the run-time, let us pick a state that
will be revisited, and thus could be called a cycle, in the
simulation. Let us assume that the simulation is about
to execute an ST2 event. If the simulation is about to
execute an ST2 event, we know that there are no type 1
customers in the system. The complex part of this
simulation is when type 1 customers preempt type 2
customers. Let us assume that n type 1 customers and m
type 2 customers will enter the system before the next
ST2 event is executed. Under these conditions, we can
calculate the number of events that will executed
between ST2 events. The different calculations on the
number of events for each type of model are in Figure 8.
Events Scheduled or Number of
Canceled Occurrences
With Canceling Edge
ST2 1
ENT2 m
ENTl,PRE,2*LV2,LVI n
LV2 1
TOTAL 5n+m+2
Without Canceling Edge
ST2,CHK 1
ENT2 m
ENTl,PRE,LVl,CHK n
LV2 1
TOTAL 4n+m+3
With Execution Conditions (Worst Case)
ST2 1
ENT2 m
STIP,LVl,RST2 n
LV2 1
TOTAL 3n+m+2

With Execution Conditions (Best Case)
ST2 1
ENT2 m
STIP 1
LVI n
STI n-l
RST2,LV2 1
TOTAL 2n+m+3

Figure 8: Complexity Calculations for Different
Canceling Edge Elimination Methods

Assuming that scheduling events is the most time
consuming task in a simulation, then the model with
execution conditions should be able to outperform

equivalent models that use either canceling edges or the
approach suggest by Savage and Schruben (1995). At
this point it is difficult to make a more definitive
statement but these preliminary results look promising.
A more thorough analysis of the computational
requirements of these methods is the subject of ongoing
research.

6 CONCLUSION

The implementation of execution conditions in the
simulation graph methodology provides a standard,
complete methodology for modeling interrupts. The
implementation of execution conditions should be
straightforward in any simulation software and be very
useful for the simulation practitioner.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support of the
CBAlGSB Faculty Research Committee of the College
of Business Administration of the University of Texas at
Austin. The second author gratefully acknowledges
additional support from the End to End Simulation
Department at Schlumberger Austin Research.

REFERENCES

Sargent, R. G. 1988. Event Graph Modeling for
Simulation with an Application to Flexible
Manufacturing Systems. Management Science 34
(10): 1231-1251.

Savage, E. L. and L. W. Schruben. 1995. Eliminating
Event Cancellation in Discrete Event Simulation.
In Proceedings of the 1995 Winter Simulation
Conference, ed. C. Alexopoulis, K. Kang, W. R.
Lilegdon, and D. Goldsman, 744-750. Institute of
Electrical and Electronics Engineers, Piscataway,
New Jersey.

Schruben, L.W. 1983. Simulation Modeling with Event
Graphs. Conlmunications of the ACM, 26(11): 957
963.

Schruben, L. W. 1995. Graphical Sinlulation Modeling
and Analysis Using Signw for Windows.
Danvers, Massachusetts: Boyd & Fraser Publishing
Company.

Schruben, L. W. and E. Yticesan. 1993. Modeling
Paradigms for Discrete Event Simulation.
Operations Research Letters 13: 265-275.

Som, T. K. and R. G. Sargent. 1989. Formal
Development of Event Graphs as an Aid to
Structured and Efficient Simulation Programs.
ORSA Journal on COlnputing 1 (2):107-125.

Yticesan, E. 1989. Simulation Graphs: A Mathematical
Framework for The Design and Analysis of



832 Ingalls, l\Jorrice, and ~V"hinston

Discrete Event Simulations. Ph.D. Dissertation,
School of Operations Research and Industrial
Engineering, Cornell University, Ithaca, New York.

Yticesan E. and L. W. Schruben. 1992. Structural and
Behavioral Equivalence of Simulation Mcxlels.
ACM Transactions on Modeling and Computer
Simulation 2 (1): 82-103.

AUTHOR BIOGRAPHIES

RICKI G. INGALLS is the Manager of Business
Analysis in the Manufacturing Strategy Group at
Compaq Computer Corporation in Houston, Texas. He
has been involved in the application and development of
operational modeling tools and techniques in the
electronics industry for over 12 years. He has a B.S. in
Mathematics from East Texas Baptist College, a M.S. in
Industrial Engineering from Texas A&M University
and is currently a Management Science Ph.D. candidate
at the University of Texas at Austin. Prior to re-joining
Compaq, he was on the technical staff of the
Operational Modeling Group at SEMATECH, Manager
of the Operations Analysis Group at Compaq, a
consultant with the Electronics Automation Application
Center of General Electric Co. and an Industrial
Engineer with Motorola, Inc. His research interests
include simulation methodologies, qualitative
simulation, and simulation applications. He is a
member of the Society for Computer Simulation.

DOUGLAS J. MORRICE is an Associate Professor in
the Department of Management Science and
Information Systems at The University of Texas at
Austin. He is currently on sabbatical leave in the End to
End Simulation Department at Schlumberger Austin
Research in Austin, Texas. Dr. Morrice received his
undergraduate degree in Operations Research at
Carleton University in Ottawa, Canada. He holds an
M.S. and a Ph.D. in Operations Research and
Industrial Engineering from Cornell University. His
research interests include discrete event and qualitative
simulation modeling and the statistical design and
analysis of large scale simulation experiments. Dr.
Morrice is a member of the The Institute for Operations
Research and Management Science (InfORMS) and the
Council of Logistics Management. He served as the
Secretary for the InfORMS College on Simulation
(1994-1996) and is Co-Editor of the Proceedings of the
1996 Winter Silnulation Conference.

ANDREW B. WHINSTON is a professor of both
business and computer science at the University of
Texas at Austin, where he is also a fellow of the IC2

Institute and director of the Center for Information
Services Management, and holds the Hugh Roy Cullen
Centennial Chair in Business Administration. His
research deals with decision support systems theory,
distributed AI, organization mcxleling and qualitative
mcxleling. He received his Ph.D. in management from
Carnegie Mellon University, Pittsburgh, PA, and is a
member of the Institute of Management Science.


