
Proceedings of the 1996 Winter Simulation ConfeTence
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. S\vaill

STEPS TOWARDS A BETTER INTERNAL GPSS MECHANISM

Ingolf Stahl

Stockholm School of Economics
Box 6501

S-113 83 Stockholm, Sweden

ABSTRACT

This paper presents the internal procedures used by the
micro-GPSS system. They are quite different from those
used by standard GPSS, like GPSS/H. Instead of the
Future and Current Events Chain, five different lists are
used. The advantages of this approach is that queue
statistics, both in front of servers and due to WAIT
conditions, can be obtained in a far simpler manner, that
programs with long waiting lines are executed more
efficiently and that, in the case of equal priority, the
transaction having waited the longest time in front of a
server will always be the first to be served.

1. INTRODUCTION

Recent papers by T. Schriber and D. Brunner (1994 and
1995) have stressed the importance of understanding the
internal procedures used by the software of discrete
event simulation for implementing the fundamental
management of entities, involving such things as
scheduling events and handling waiting lines. In these
papers, the approaches taken in this regard by GPSSIH,
SIMAN and ProModel are compared, with a focus on the
two first languages.

A fundamental difference can be seen comparing
GPSSIH and SIMAN. Both systems have their
comparative advantages and disadvantages. As regards
GPSSIH, a problem is that all events in a waiting stage
are handled on one single list. This has, in the case of
many waiting transactions, the disadvantage of a more
cumbersome search procedure. This is only partially
hidden by the efficient compilation done by the GPSSIH
system. Another disadvantage is that the measuring of
waiting line statistics requires separate pairs of blocks,
QUEUE-DEPART.

Against this background, this paper wants to bring to
attention that another GPSS version, micro-GPSS (mG).
ever since its first beginning in the 1970s has used a

817

completely different mechanism than the standard
approach used by the ffiM GPSS versions, by GPSS/PC
and by GPSS/H. While these Standard GPSS (SG)
versions use only two standard lists, or chains, for
handling events and waiting lists, called the Current
Events Chain (CEC) and the Future Events Chain
(FEC), mG uses for these purposes five different types of
lists.

2. SOME DIFFERENCES IN SYNTAX

In order to help the novice to micro-GPSS understand
the presentation of the five different types of lists, we
shall first present some of the fundamental differences in
syntax between mG and SG. mG uses only 22 block
types, five of which do not exist in SG, namely ARRlVE,
GOTO, IF, LET and WAITIF. (See also Stahl 1996b for
more details.)

ARRlVE replaces QUEUE and has (almost) the same
syntax; GOTO replaces TRANSFER but with a simpler
syntax; LET replaces ASSIGN and SAVEVALUE (and
BLET in GPSSIH)~ IF replaces TEST and GATE blocks
with an address, while WAITIF replaces TEST and
GATE blocks without an address.

In contrast to TEST. IF works with a "straight logic",
namely that we proceed to the address in the C operand,
if the stated condition is true (not false as in SG).

WAITIF works in a similar way: we wait, prior to the
WAITIF block, if. and as long as, the stated condition is
true. The WAITIF condition can concern either a name
in the A operand and a server status code in the B
operand, or SNAs or constants in the A and B operands.
The server status code in the B operand involves the
letters EFNU~ namely U (in Use) or N (Not in Use) for
facilities~ E (Empty), NE (Not Empty), F (Full) and NF
(Not Full) for storages. In the SNA case there is an SNA
in at least one of the two operands.

818

3. THE FIVE MICRO-GPSS LISTS

The micro-GPSS processor works ,vith the following five
different types of lists:

1. QLs, Queue lists, one for each server, i.e. facility
or storage, handling the waiting lines in front of these
servers.

2. WELs, i.e. W AITIF EFNU Lists, where EFNU
represents the server status codes E, F, NE, NF, NU, U,
mentioned above. These lists contain the transactions
waiting in front of a WAITIF block with server status
code. The correspondence between such WE-lists and
WAITIF blocks is discussed below in section 10.

3. One WSL, i.e. one W AITIF SNA List, where all
transactions~ waiting in front of a WAITIF block with an
SNA in at least one operand, are placed.

4. One FEL, i.e. Future Events List, ,,,here all events
that are to be executed at a time later than the present
clock time are placed.

5. One REL, i.e. Ready Event List where all events
that are ready to be executed at the present clock time
are placed. All transactions on this list have earlier been
on one of the other four lists.

The REL and the FEL are to some extent part of the
same list, but we shall for pedagogical reasons first treat
them as completely separate lists and in section 11
discuss the actual implementation.

On the QLs, the WELs and the WSL the transactions
will as a main rule be sorted primarily on basis of
priority, and in the case of equal priority on the basis of
time of "true" entry into the list. In certain cases,
transactions having just left a list will be put back at the
front of the list, implying a "dummy" entry. The
transactions on the FEL are on the other hand primarily
sorted according to event time and only in the case of
equal event times on the basis of priority.

On the REL, where all event times refer to the
present simulation clock time, all transactions are
primarily sorted according to priority. At equal priority,
the following applies: The transactions just moved
from the FEL are generally put last in each priority
group. The remaining transactions are in each priority
group sorted according to the entry time into the QL,
WEL or WSL from which they have just been removed.
Thus, in each priority group on the REL, the
transactions brought in from these three types of lists
will (almost) always be ahead of the transactions brought
in from the FEL (with "entry time" = present clock time~

see also section 11). The sorting according to priority is
done in descending order, i.e. the transactions ,vith a
higher priority number are placed close to the front of
the list, while the sorting according to time is done in
ascending order, i.e. the lower times are closer to the
front.

Stahl

4. PHASES OF PROGRAM EXECUTION

The Initialization Phase is identical to that of GPSSIH
(Schriber and Brunner 1994). Here the simulation clock
is set to 0 and the initial GENERATE events are placed
on the FEL. We here detennine as an attribute of the
transaction its NB (next block), in this case the block
following the actual GENERATE block. This phase
finally involves the placement of all events taking place
at time 0 on the REL.

In the Entity Movement Phase all events on the
REL are executed and brought through as many blocks
as possible. In the process some events might be brought
from a QL, a WEL or the WSL onto the REL. This EMP
is described in detail in section 5. As will be discussed
there, this phase continues until all events on the REL
have been executed and the REL is empty, after which
we move to the clock update phase.

The Clock Update Phase: If the FEL is empty, we
go to the End Phase. If the FEL is not empty, we do the
following: We remove the first item from the FEL and
advance the clock to this time. We move this event to the
REL, as well as all other events on the FEL that have
this clock time as their move time, in such a way that
they keep the same order as on the FEL. We then go
back to the EMP.

In the End Phase all standard reports are printed and
control is passed to a superloop in which the simulation
program is possibly restarted.

5. THE ENTITY MOVEMENT PHASE

The EMP is subdivided into four steps:
Step 0: We remove the transaction at the front of the

REL.
Step 1: We determine the event connected with the

NB of this transaction and execute this event. We
distinguish between the follo\ving types of events:

a GENERATE. An IAT is sampled and a new
GENERATE event is put on the FEL to happen at the
move time T= clock time + lAT. The event is put on the
FEL, in its priority class, as the last event among the
events to happen at time T. We next go to step 2, i.e. to
proceed to the next block.

b. ADVANCE. The transaction is moved to the FEL
with the move time set to the time of exit from the
ADVANCE block. It is placed on the FEL according to
the same rule as for GENERATE under point a. above.
We next go to step 3, since this transaction cannot move
further ahead.

c. An LRR event (i.e. LEAVE, RELEASE or
RETURN) will carry out (i) the QR scheme (Queue
Remove scheme) described in section 6, which will move

Steps To\\rard a Better Internal GPSS i\Iechanislll S19

one transaction, or, in the case of LEAVE, possibly
several transactions, from the QL to the REL; (ii) the
WER scheme, described in section 8, to see if we shall
move transactions from one or several WELs and finally
(iii) we go to step 2.

d. An EPS event (i.e. ENTER, PREEMPT or
SEIZE). We carry out the SE scheme (see section 7) to
see if the transaction may enter the block. If it cannot
enter, we move the transaction into the QL of the server.
If the transaction has just come from this QL, i.e. the
transaction's 1M (Just Moved)-switch is on, we move it
to the front of the QL; else it is put as the last member of
its priority group on the QL. We next go to step 3. If it
can enter, we carry out the WER scheme, described in
section 8, to see if we shall move transactions from one
or several WELs. We finally go to step 2.

e. A WAITIF EFNU event, i.e. a WAITIF block in
server mode. We here check whether or not the EFNU
condition is true. If it is true, the transaction is moved to
the WEL connected with the actual block (see section 10
below). If the transaction has just come from a WEL, i.e.
the lM-switch is on, it goes to the front of the WEL. If
the 1M-switch is off, the transaction is placed as the last
member of its priority group on the WEL. We finally go
to step 3. If the EFNU condition is not true, i.e. the
transaction does not have to wait, we remove the first
transaction on the corresponding WEL, if this WEL is
not empty, and move it to the REL. We finally proceed
to step 2.

f. A WAITIF SNA event, i.e. a WAITIF block with
an SNA. We here check whether the \vaiting condition is
true. If this condition is true, the transaction is moved to
the WSL. If the transaction has just come from the WSL,
i.e. the 1M-switch is on, it goes back to the WSL, to be
placed on basis of original entry tinle into the WSL. If
the 1M-switch is off, the transaction is placed as the last
member of its priority group on the WSL. We finally go
to step 3. If the waiting condition is not true, we remove
the first transaction on the WSL, unless WSL is empty,
and move it to the REL. We finally proceed to step 2.

g. An ASSEMBLE event. A special process is
carried out. We go to step 2 or step 3 depending on
whether the transaction can proceed or is stopped.

h. A SPLIT event. A number of copies, detennined
by the A operand, of the transaction are put on the REL,
with the NB determined by the B operand. The original
transaction goes to step 2.

i. GOTO and IF without D operand. Since a new NB
is detennined on the basis of the address in the operands
we go directly to step 2b (skipping 2a where a new NB is
determined).

j. TERMINATE. We decrease the TC (Termination
Counter) by the A operand value. If the TC becomes ~O,

we go to the End Phase. Othenvise ,ve go to step 3.
k. PRIORITY. We change the transaction priority

and go to step 3 to put the transaction on the REL.
possibly in a new priority class. Another transaction on
the REL might now have a higher priority.

1. All other events will be executed without having
any effect on lists or the Next Block. We here proceed to
step 2.

Step 2: The transaction can proceed forwards to
another block at this clock time. We have three substeps:
2a. We increase NB by l~ 2b. We carry out the WS
scheme (WAITIF SNA scheme) described in section 9,
thereby possibly moving transactions from the WSL to
the REL and 2c. We go back to step 1.

Step 3: We carry out the WS scheme. If REL is
empty, we go to the CUP (Clock Update Phase). If REL
is not empty, we remove the first event from the REL,
establish its NB and go to step 1 with this event.

6. THE QR SCHEME

The QR (Queue Remove) scheme moves one or several
transactions from the QL to the REL. The processor tests
if there are any events on the QL associated with the
server referred to in the LRR block. If the QL is not
empty, we distinguish between two cases of action:

a. The case of either a RELEASE-RETURN block or
of a LEAVE block when there is not any B>1 in the
program. implying that the transaction freeing the server
allows room for exactly one other transaction. In this
case we remove the first transaction on the QL and move
it to the REL, placing it, in its priority group, on the
basis of the time of entry into the QL.

b. The case of LEAVE in a program where there is
some B>1. We here have two subcases:

(i) The LEAVE block has B=1. We start the search
in the QL from the front for the first transaction that has
an ENTER with B= 1. This transaction is then removed
from the QL and moved to the REL, in the same way as
under 6a.

(ii) The LEAVE block has a B> 1. We start a search
in the QL, from the front, determining for each
transaction on the list, which all involve ENTER events,
a value Be of the B operand of this ENTER block. If
B=Be, the same action takes place as under (i) and we
are finished with the QR scheme. If B<Be, we continue
to the next transaction. If B>Be, we decrease B by Be
and move the transaction from the QL to the REL, but
continue to the next transaction with this procedure,
until we reach the last transaction on the QL or until
B=O.

820

7. THE SE SCHEME

The SE (Server Entry) scheme deals with an EPS block.
In the case of SEIZE, the transaction .nay enter if the
facility is idle. In the case of ENTER the transaction
may enter if the free capacity of the server ~ B. In the
case of PREEMPT, the transaction may enter if the
facility is idle. It may also enter if the facility is busy by
a SEIZE block, or, in the case of PREErvtPT A,PR, by a
transaction with a lower priority. In the latter two cases
we carry out a special pre-emption activity. It is outside
the scope of this paper to discuss this activity.

In all of these three cases, if a transaction can enter
the server, it proceeds to the nex1 block. If it cannot
enter, its behavior depends on if it has come to the REL
from the FEL or from a QL. In the FEL case the
transaction is put on the QL as the last member of its
priority group. In the QL case it is put back at the front
on the QL, i.e. at the position it just held.

8. THE WER SCHEME

The WER (WE list Remove) scheme \vill possibly move
a transaction from one or several WELs to the REL. A
certain server is connected \vith each LLR or EPS block.
With each server there is, in tum, a connection to one or
several WELs (this association is discussed further in
section 10 below). Having established the server of the
block, we nex1 look through all WELs associated with
this server. For each such WEL there is in tum
associated a specific WAITIF condition. If this WAITIF
condition is fulfilled, no action \vill be taken (i.e. waiting
will continue). If the WAITIF condition is no longer
true, we will remove the first transaction of the WEL
and move it to the REL, where it is placed on the basis of
the start wait time in this WEL.

9. THE WS SCHEME

The WS (WAITIF SNA) scheme is carried out, if there
is at least one WAITIF SNA block in the program. We
first check whether or not the WSL is empty. If the WSL
is empty, we proceed to the next task. If the WSL is not
empty, we start from the front and go back\vards through
the \vhole list. For each transaction \ve check \vhether or
not the wait condition still holds. If it still holds we
proceed to the nex1 transaction. If the \vait condition
does not hold, we remove this transaction from the WSL
and put it in its priority group on the REL, placing it
here on the basis of time of entry into the WSL. In this
way we continue until all transactions on the WSL have
been examined.

Stfihl

10. WELS AND WAITIF EFNU BLOCKS

When discussing the relationship between WELs and
WAITIF EFNU blocks, we shall distinguish between the
following three cases as regards the A operand of the
WAITIF block:

a. The A operand is a name. All blocks that have the
same server name and the same one of the six status
codes (E, F, NE, NF, NU or U) share the same WEL.
Transactions having to wait at this WEL will, if they
have the same priority, be sorted according to when they
started to wait due to this specific condition.

b. The A operand is a parameter referring to a
facility. We allow in this case both for the case of Pj=U
and Pj=NU, for a certain number, n, of integer values of
the parameter Pj, thus allowing for n WELs of 1=U, .. ,
n=U, and for n WELs of I=NU, .. , n=NU. Every block
WAITIF Pj=U will then refer to the first mentioned n
lists and every block WAITIF Pj=NU will refer to the
second mentioned n lists.

c. The A operand is a parameter referring to a
storage. Since this kind of usage is rare, we allow in this
case only for one single WEL. The first WAITIF
condition referring to E, F, NF or NE in the program
will use a number of WELs and every WAITIF block
with a parameter in the A operand and the same status
code in the B operand will refer to these WELs. If there
then, later in the program, is another WAITIF with a
parameter in the A operand, but another status code in
the B operand, then this WAITIF EFNU block will
internally be treated as a WAITIF SNA block and the
transactions waiting at this block will be waiting on the
WSL.

This can be exemplified as follows: Assume we first
have a block WAITIF PI ==E and later a block WAlTIF
P3==F. Then the transactions waiting before the first
block will do that on a number of WELs, for 1=E, 2=E,
etc. The transactions waiting in front of the other block
will be waiting on the WSL as long as R(P3) =0, i.e. as
long as the remaining free capacity of the storage
referred to by P3 is O.

11. IMPLEMENTATION OF REL AND FEL

The REL and FEL together constitute an EL, Events
List, with all transactions on the REL at the front of the
EL and all transactions on the FEL at the end of the EL.
Each transaction on this EL has a pointer to the
preceding member and a pointer to the succeeding
member, except that the first member has no predecessor
and the last member no successor. We have one list
pointer to the first member and one to the last member
on this EL. We also have a special R5'L pointer, the

Steps To"\\rard a Better Internal C;PS'S' l\Icclnil]jslll

RELL (REL Last) pointer, pointing at the last member
of the REL. The successor of this member is thus the
first member of the FEL. The movement of all events
taking place at the new simulation clock value in the
CUP can now be done in a very simple fashion. We just
have to establish, starting with the successor to the old
RELL pointer, the last new member on the REL and
then change the RELL pointer to point at this
transaction.

When we bring in a new transaction from a QL, a
WEL or the WSL to the REL, we will start to move it
from the back of the REL, i.e. from the transaction at
which the RELL pointer points. We will put it in front of
any transaction with a lower priority and, in the case of
equal priority, with a lower waiting time, i.e. with a
higher entry time into the original QL, WEL or WSL.
Since the transactions which in the CUP were brought in
from the FEL all have 0 waiting times, the new
transaction will, in the case of equal priority, be put in
front of these FEL transactions, provided it has a waiting
time >0.

An advantage with the joint approach is that all
removals from this EL will take place from the front and
can be done by the same procedure. When we remove
the first transaction from the REL, the front of REL is of
course the front of the EL. When \ve remove the first
transaction from the FEL, the REL is empty and we
hence remove the front transaction from the EL.

12. COMPARING WITH THE SG APPROACH

In Stahl (1996a) we show that, except for four
specific differences, to be mentioned below~ the
procedure presented above for mG will result in the same
execution results as that of SG. We there compare the
mG approach with the SG approach as presented by
Schriber, in 1974 for GPSS/360 and in 1990 for
GPSSIH.

We shall here only mention the following: The
Initialization Phases are equivalent, with the only
difference being that the events put on the FEC in SG
are put on the FEL in mG. Likewise the CUPs are very
similar. In both cases, we update the clock to the event
time of the first transaction on the FELIFEC and move
all events happening at this updated clock time from the
FEL/FEC to the REL/ CEC, before proceeding to the
E1v1P. One, in reality unimportant difference~ to be called
difference 1, is that execution stops \vith a normal
report in mG, when the FEL is empty, while it stops with
an error report in SG. The End Phase is also similar, in
that all standard reports are printed, but the actual
reports vary in format.

All the obvious differences happen in the EMF. One
difference between mG and most SG versions (GPSSIH
and GPSSN, but not GPSS/PC) deals with when the
arrival of, for example, customer 2 at a GENERATE
block is put on the FEC/FEL. In SG this is done when
customer 1 is moved out of the GENERATE block, but
in mG this is done when customer 1 moves into the
GENERATE block. This difference, difference 2, will
matter greatly if the GENERATE block is follo\ved
immediately by, for example, SEIZE. In GPSSIH, the
introduction of an ADVANCE block with no operands
between GENERATE and SEIZE would then make a big
difference. In mG such an ADVANCE block would in
this case not matter.

Such an ADVANCE block without any operand, will
in other cases lead to another difference. Let us look at
the following simple program in SG (GPSSIH). (For the
corresponding mG code, see Stahl 1996a).

SIMULATE
NUM GENERATE 20

ASSIGN 1,N$NUM
BEGIN ADVANCE

SEIZE RIDE
ADVANCE 20
RELEASE RIDE
TRANSFER .S"BEGIN
TERMINATE
GENERATE 101
TERMINATE 1
START 1
END

Program example 1

The result of this program will be different in SG and
mG. The first customer \vill in SG repeat his ride
immediately, while in mG the second customer will
immediately get a ride. The reason for this is that in mG,
entry into the (BEGIN) ADVANCE block will always
cause the transaction to be placed on the FEL and the
next transaction to be taken from the REL or FEL.
ADVANCE without an A operand hence does the same
thing as BUFFER or YIELD in GPSSIH.

This is difference 3. It should be noted that if we add
an A operand, e.g. 0.00001, to the ADVANCE block the
results will be identical in mG and SG, with the second
customer immediately getting a ride. Likewise, if we
replace (BEGIN) ADVANCE with, for example, a
simple assignment (ASSIGN VAL,O,XL in SG: LET
X$VAL=O in mG), SG and mG will also yield identical
results, now with the just released first customer getting
his second ride right away.

822

13. FIFO IN WAITING LINES IN MG, BUT FIFO
ON THE CEC IN SG

In mG, the transactions blocked by an EPS-block
referring to a specific server are~ as noted, all put on a
specific QL, where those transactions that have the same
priority are sorted according to their time of entry into
this QL. For the simple case of a facility. \vhere all
entries are made with SEIZE, and of storages, where all
entries are made with ENTER with B=I~ \ve will then
always remove the first transaction from the QL. This
implies, in the case of equal priority for all transactions,
a straight FIFO-discipline as regards the waiting line in
front of a server. A transaction will in this case never go
ahead of another transaction that has \vaited a longer
time in front of this specific senrer.

This FIFO discipline with regard to the server might,
however. be violated in SG. This constitutes difference
4. This is due to the fact that the transactions on the
CEC are never resorted \vhile they remain on the CEC,
except for the above mentioned case \"ith PRIORITY.
The only other way they can be resorted is by moving
them to the FEC~ e.g. to be have an exit from an
ADVANCE A block scheduled~ and then return at the
exit from this block. Once they return from the FEC~

they are put at the end of their respective priority group.
Let us as an example assume that a transaction,

customer 1, at time 20. is first blocked trying to seize
one facility, FACA, and upon being unblocked from this
facility at time 25. immediately tries to seize another
facility. FACB, which at this time is busy. Another
transaction, customer 2~ will at time 23, immediately
when generated, try to seize facility FACB. \vhich is
busy already at this time.

In SG, customer 1 remains \vaiting for facility B on
the position determined by having COOle to the CEC at
time 20. Customer 2, who is transferred from FEC at
time 23 to seize FACB B directly, \vithout having to first
use facility A, is then placed on the CEC behind
customer 2. Since facility B was busy also at time 23~

customer 2 starts waiting for facility B earlier than
customer 1. However, when facility B becomes free, e.g.
at time 30, the rescan starts from the beginning of the
CEC and hence customer 1 gets the chance to move first
to seize facility B that has now become idle, in spite of
the fact that customer 2 has been ,,'aiting in front of
facility B for a longer time.

In mG. customer 2 will be placed on the QL of FACB
at time 23 and customer 1 on this QL at time 25.
Customer 1 is hence placed behind customer 2 on this
QL. When FACB becomes free at time 30~ customer 2,
\vho has \vaited the longest will be served.

The mG approach appears as more intuitively
appealing, since it implies that the person having \\'aited

Stahl

the longest time among those with equal priority in front
of a specific server will always be served first. That some
servers are needed jointly under some, but not all,
circumstances does not immediately imply that there is a
joint waiting line. It also appears easier to learn that
each server has its own waiting line, with FIFO
discipline in case of equal priority. To understand the
SG approach one must really understand the CEC
approach.

It is furthermore easier to understand the idea of how
to get a joint waiting line in mG than of how to get
separate waiting lines in SG. To get a joint waiting line
in mG in the example above, one just puts a block
PRIORITY A, with A>O, implying a higher priority,
between SEIZE FACA and SEIZE FACB. To get
separate waiting lines in front of FACA and FACB in
GPSSIH, one could also include a block PRIORITY A
between SEIZE FACA and SEIZE FACB, but with A=O,
i.e. implying unchanged priority. Why this is so also
requires good understanding of the CEC mechanism.

The problem that \vaiting in SG is bound to the CEC
and not the waiting lines is perhaps even more clear in
program example 2~ presented below in its GPSSIH
form.

SIMULATE
EXHIB STORAGE 5

GENERATE 10
TEST GE Cl,100
ASSIGN 1,Cl
ENTER EXHIB
ADVANCE 120
LEAVE EXHIB
TERMINATE
GENERATE 10
ASSIGN 2,C1
ENTER EXHIB
ADVANCE 120
LEAVE EXHIB
TERMINATE
GENERATE 400
TERMINATE 1
START 1
END

Program example 2

We here have two kinds of visitors coming to an
exhibition; invited guests and ordinary visitors. The
ordinary visitors are allowed into exhibition building
only after 100 minutes. We assume that all visitors stay
for two hours. There can only be five visitors at a time in
the small exhibition room, talking to the artist. Visitors
of each type arrive 10 minutes apart. When a visitor
enters the exhibition room, we save, in PI for ordinary
visitors and P2 for invited guests, the time that he started
to wait at the entrance of the exhibition room.

Steps Tov.rard a Better Internal CPSS' Aiechanisll1

ACKNOWLEDGEMENTS

The ideas behind this paper, as well as the development
of micro-GPSS, have been greatly influenced by Tom
Schriber, not only through his publications, listed in the
references, but also through his comments, by voice,
mail and Email.

Although GPSS/H is very efficient when skipping all
transactions for which the Scan Indicator is on, the
computer still has to investigate, in the ErvtP, every
single transaction on the CEC, e.g. at RELEASE, to
check the status of the Scan Indicator. In mG it is
enough to remove the very first transaction from the QL
of SAL. When used by a compiling system, focused on
optimization, the separate QL approach should be faster
also in the case of much shorter waiting lines. For better
speed, one would in GPSS/H in this case have to use a
more complicated and less-easy-to-leam LINKIUNLINK
construction, allowing for a non-standard road to the
more efficient approach with separate QLs.

Against this background we shall finally argue that
the approach with separate QLs for each server, and
separate WELs for most blocks of the WAIT type, should
be made standard in future languages of the GPSS-type.

Program example 3

32000
1
1

SUL

XL$MAX,2000
1.8,0.6
QSAL,XLMAX,BYE
SAL
SAL
SAL
25,5
SAL

1,0.6",1
SUL
Q$SUL,4,BYTT
SAL
SUL
1,0.5
SAL

SIMULATE
INITIAL
GENERATE
TEST NE
QUEUE
SEIZE
DEPART
ADVANCE
RELEASE
TERMINATE
GENERATE
QUEUE
TEST NE
PREEMPT
DEPART
ADVANCE
RETURN
TERMINATE
DEPART
TERMINATE
GENERATE
TERMINATE
START
END

BYTT

BYE

In the SG case, an ordinary visitor who started to
wait at the exhibition room at time 100 is allowed to go
into the room before an invited guest who arrived and
started waiting at time 60. In the corresponding program
in mG this will not happen, but the people waiting at the
exhibition room enter this in strict first come-first served
order.

There are two other substantial advantages of the mG
approach besides the strict adherence to the FIFO
principle dealt with in section 13. The first and most
important one is the easy way in which gathering of
queue statistics can be coded.

The gathering of queue statistics referring to a
facility SERV would in SG require three blocks:
QUEUE SERV, SEIZE SERVand DEPART SERVo In
mG it is enough to write SEIZE SERV,Q. The same Q
as B operand (or possibly C operand) can also be used in
connection with ENTER.

We can now in rnicro-GPSS obtain queue statistics in
a simplified fashion also in connection with aWAIT
condition by giving the name of the queue as a C
operand of WAITIF. Thus, the gathering of statistics in
front of a GATE, which in SG would require e.g. the
three blocks QUEUE QSTUD, GATE SNE STOCK and
DEPART QSTUD, can in mG be handled by one single
block WAITIF STOCK=E,QSTUD.

The saving in number of blocks is substantial. As an
example, we have rewritten all programs in Schriber's
famous "red book" from 1974 using mG. In many cases
we have with the 22 blocks of mG been forced to use
several blocks to replace a non-existing SG block, e.g.
LOOP. Yet for the 29 programs presented in the book~

the average number of blocks used is virtually the sam~
(18.6 in SG and 18.8 in mG). This is mainly due to the
fact that we have saved on average 1.24 blocks per
program thanks to this simplified queue statistics
gathering, based on separate QLs.

The other advantage is that the program execution of
mG is in principle more efficient than that of SG. This is
quite clear when comparing mG with SG systems such
as. GPSSIPC. It is less easily evident when comparing
WIth GPSSIH, which is a compiled system and focused
on rapid execution. Yet there are examples when mG,
although interpretative and not so well coded for
optimization, will execute faster than GPSS/H. This
refers to cases with very long waiting lines, like in
program example 3, presented here in GPSS/H.

14. OTHER ADVANTAGES OF THE MG
APPROACH

824

REFERENCES

Schribec T. 1. 1974. Sitnulation Using GPSS. Wiley,
N.Y.

Schriber, T. 1. 1990. An Introduction to Sill1u/ation
with GPSS Using GPSSIH, Wiley, N.Y.

Schriber, T. 1. 1995. How Discrete-Event Simulation
Software Works. In EurosilJl '95 Sil1lulation
Congress, ed. F. Breitenecker and I. Husinsky, 17
28. Elsevier, Amsterdam.

Schriber. T. 1. and D. T. Brunner. 1994. Inside
Simulation Software: How It works and Why It
Matters.In Proceedings of the 199../ Winter
Simulation Conference, ed. 1.Tew, S. Manivanna, D.
Sadowski, and A. Seila, 45-54. SCS, La Jolla.

Schriber, T. 1. and D. T. Brunner. 1995. Inside
Simulation Soft\vare: How It \vorks and Why It
Matters. In Proceedings of the 1995 ~Vinter

Sinlulation Conference, ed. C. Alexopoulos, K.Kang,
W. Lilegdon and D. Goldsman. 451-456.
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

Stahl, I. 1990. Introduction to Si111ulation lvith GPSS:
On the PC, lvfacintosh and r<4-\~ Prentice Hall
International, Hemel Hempstead, U.K., 1990.

Stahl, I. 1995. Simulation A/ade Si111ple 'with 111icro
GPSS: A Short Tutorial liJith Seven Lessons.
Stockholm School of Economics, Stockholm.

Stahl, I. 1996a. Steps TouJards a Better Internal GPSS
AlechaniSln , EFI Working Papec Stockholm School
of Economics, Stockholm.

Stahl, I. 1996b. Teaching the Fundamentals of
Simulation in a Very Short Time. In this volume.

AUTHOR BIOGRAPHY

INGOLF STAHL is Professor at the Stockholm School
of Economics, Stockholm, and has a chair in Computer
Based Applications of Economic Theory. He \vas visiting
Professor, Hofstra University, N.Y.. 1983-1985 and
leader of research project on inter-active simulation at
the International Institute for Applied Systems Analysis,
Vienna, 1979-1982. He has taught GPSS for twenty
years at universities and colleges in S,veden and the
USA. He has on the basis of this experience led the
development of the micro-GPSS system. He is also
consultant in simulation to Swedish banks and industry.

Stalll

