
Proceedings of the 1996 Winter Simulation Conferenre
ed. J. M. ClJarnes, D. J. Morrice, D. T. Brunner, and J. J. S\vain

A PARALLEL GPSS BASED ON THE PARASOL SIMULATION SYSTEM

Felipe Knop
Edward Mascarenhas

Vernon Rego

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907-1398, U.S.A.

ABSTRACT

Much of the research in parallel discrete-event simulation
(PDES) has resulted in new experimental simulation lan
guages or toolkits. Meanwhile, the simulation community
continues to use existing (serial) commercial tools which
are reportedly more powerful and flexible from a mod
eler's point of view. A possible way to increase the impact
of PDES in the simulation community is to make existing
simulation packages execute in parallel. Towards this end,
we present a parallelization of the GPSS simulation lan
guage. We implement parallel GPSS as a GPSS-to-C++
translator and execute the transfonned code wi th the help
of the ParaSol parallel simulation system. The mapping
from GPSS to ParaSol is simple because, unlike other par
al1el simulation systems, ParaSol is transaction oriented.
On the other hand, because GPSS was not designed with
parallelism in mind, there are GPSS constructs that can
behave poorly in a parallel environment. We present de
tails on the mapping, some of the challenges we faced in
this task, and key sol utions that we adopted to enhance
parallelism.

1 INTRODUCTION

It has been said that research in paral1el discrete-event
simulation (POES) has not made an impact on the simu
lation community (Fujimoto 1993). A possible reason for
this is that extant POES systems typically sacrifice model
implementation effort for the promise of speedup. Appli
cation programmers are forced to use explicit message ex
change constructs, lookahead infonnation, and even state
saving/restoration procedures. Meanwhile, the simulation
community continues to use existing (serial) commercial
tools, which are reportedly more powerful and flexible
from the modeler's point of view.

In this paper we describe a project to parallelize the
GPSS simulation language (Bobillier et a1. 1976). GPSS
was chosen because of its widespread use and potentially
large base of existing simulation programs. Since GPSS
was not developed with parallel execution in mind, it offers
a good test of the suitability of current POES work for the
parallelization of sequential simulation languages.

SOl

This work is based on the ParaSol project, aimed at
developing a parallel simulation system based on mobile
threads (Mascarenhas et al. 1995). ParaSol's main design
goals are ease of use - to minimize user-visible complex
ities of parallel simulation - and flexibility - to maximize
the system's use across different application domains. We
implement parallel GPSS as a GPSS-to-C++ translator and
execute the transfonned program using ParaSol. The map
ping from GPSS to ParaSol is simplified because both are
transaction oriented. But though, at first glance, both sys
tems appear to have many similarities, there are dramatic
differences as well. Because GPSS was not designed to
run on a parallel machine, it has features that can make
it behave poorly in a parallel environment. We present
details on the mapping, some challenges that we faced
in parallelizing GPSS, and some key solutions that we
adopted in the implementation.

The remainder of the paper is organized as follows.
Section 2 contains a review of related work on parallelizing
sequential simulation languages. Sections 3 and 4 present
overviews of ParaSol and GPSS, respectively. In section 5
we describe the most important aspects of the mapping
from GPSS to ParaSol. In Section 6 we point out some
problems caused by the sequential nature of GPSS, and
in Section 7 we describe our solutions to these problems.
Perfonnance experiments are presented in Section 8. We
conclude in Section 9.

2 RELATED WORK

Today's popular (sequential) simulation languages were
not designed for parallel execution and, as a result, are
difficult to parallelize. It should come as no surprise,
therefore, that research in POES systems invariably results
in new simulation languages or toolkits. For examples of
such systems see Bagrodia (1991), BoyanTech (1995),
and Gomes et al. (1995). Typically, these systems offer an
application interface consisting of a set of logical processes
that exchange timestamped messages with one another,
using either language constructs or function calls.

Tsai and Fujimoto (1993) describe a framework for par
allelizing simulation languages. In this framework, a com-

802 J{nup, 1\IasCaTcnhas. and Rego

mon layer implements a set of basic primitives that can be
used to build compilers for existing languages. The com
mon layer maintains two abstractions, state variables and
unprocessed events, and standard operations that can be
applied to these. For example, variables can be created,
destroyed, read, and modified, and events can be sched
uled, examined, and deleted. The parallel implementation
of the shared variables and their operations is achieved
through the use of space tinle nlenzory, allowing variables
to be accessed by entities that execute at different points
in simulation time. The parallel implementation of the
event list is obtained with mechanisms similar to those
found in Time Warp. As a case study, the paper presents
an implementation of the SIMSCRIPT 11.5 language for
a shared-memory environment. It is unclear whether the
approach can be used to parallelize transaction-oriented
languages such as GPSS for architectures that do not sup
port shared-memory multiprocessing.

Nicol and Heidelberger (1994) describe a different ap
proach. Here, the goal is to parallelize simulation tools
with little or no modification, because these tools are gen
erally large and complex. The idea is to use an existing
tool to define sub-models that will run on different pro
cessors, with tool extensions defining interfaces between
sub-models. The extensions incorporate all required com
munication and synchronization. Despite the apparent
simplification, this implies that a sequential application
will have to undergo some modification in order for it to
run in parallel. In implementing tool extensions, no infor
mation about the sub-models is assumed, except that which
is provided explicitly by the sub-model. This constrains
parallel models in that they are forced to run under a con
servative synchronization mechanism. The computation
and dissemination of lookahead infonnation - sometimes
beneficial in conservative mechanisms - is encapsulated
in the extensions. The proposed approach is applied to
produce a library which extends the CSIM simulation sys
tem (Schwetman 1986). To enable extensions, without
requiring significant changes, a tool will generally require
features that may not be present in other simulation tools.

3 ParaSol OVERVIEW

ParaSol is a parallel simulation system based on the
(acti ve-transaction) process- interaction paradigm. Instead
of using timestanlped messages for communication and
synchronization anlong logical processes (LPs), as done in
existing systems, ParaSol reI ies on transactions that trans
parently migrate between LPs, to obtain a more powerful
effect. Indeed, this transparency leads to greatly simpli
fied model development for many sinlulation problems,
and \vas an important design consideration.

ParaSol presents a programming environment that of
fers transactions - dynamic, computational units with
some pri vate data - and a set of global objects. Both
transactions and objects are distributed among the physi
cal processors hosting a simulation. Transactions, which

Application Layer

r Domain II Domain 21· ..
Kernel Layer

Threads ICommunication
System System

Figure 1: ParaSol's Layered Architecture

are dynamically created and destroyed, usually spend their
time either perfonning local computations or accessing ob
jects. To access an object located at a remote process, a
transaction nzigrates to the process where the object is
located, thus enhancing locality. A transaction causes
simulation time to pass when it executes a hold command
(analogous to the ADVANCE block in GPSS).

ParaSol's architecture is shown in Figure 1. The kernel
provides basic services, and the domain libraries support
higher level services geared towards specific application
domains. The kernel insulates the upper layers from most
parallel simulation details, including transaction manage
ment, migration, communication, rollback, etc. The ker
nel is supported from below by the Ariadne threads system
(Mascarenhas and Rego 1996) and a suitable communica
tions subsystem, e.g., PVM (Sunderam 1990). Support for
migratable threads is provided by the Ariadne system.

The kernel programming interface is represented by
public methods of class PSol, the main simulation class
in ParaSol's C++ interface. An explanation of some of
the kernel primitives will help clarify the description of
the mapping from GPSS to ParaSol.

A transaction's execution environment consists of the
local variables of the function currently being executed,
and the local variables of all functions in its calling chain.
Transactions are directly supported by the kernel layer
through the use of threads. They are dynamically created
with method trCrea te () . As in other process-oriented
simulation languages, simulation time progresses when
transactions execute trHold (double time), a prim
itive analogous to hold () in CSIM. If the simulation
time is t before trHold (x) is executed, it will be t + J~

after this primi ti ve is executed. Other transactions may
execute between time t and time t + x.

Transactions are suspended and resumed with primitives

int trSuspend(void)
int trResume(int tid, double delta_t)

If a transaction is to be suspended, layers above the kernel
are responsible for storing the transaction's id, so that it
can be used when the transaction is resumed.

In ParaSol the tenn logical process (LP) - slightly
twisted in relation to the definition used in other systems
describes the static (albeit still active) part of the simula
tion model. While transactions migrate from LP to LP, LPs
themselves remain largely static. Each logical process in
ParaSol consists of a single thread - the HLP thread" - and
objects hosted by the LP. An LP is created and bound to

A Parallel GPSS Based on the ParaSol SiInulation S'.,~stenl 8U:3

5 GPSS-ParaSol MAPPING

Figure 2: Example of GPSS Program

At a first glance, GPSS appears readily amenable to execu
tion support from ParaSol. We implement the language as
a GPSS-to-C++ translator, where the transfonned program
invokes primitives from the ParaSol kernel and a ""GPSS
domain" library.

Entities in GPSS are mapped as follows. Static entities
such as facilities, queues, storages, and even savevalues
are implemented as ParaSol global objects. As an ex
ample, the GPSS facility object, similar but not identi
cal to the Facility object in ParaSol's queueing domain,
presents the outside world with methods such as sei ze ()
and release (), which implement the behavior of the
SEIZE and RELEASE blocks, respectively. Other meth-

A small example of a GPSS program is given in Figure 2.
This example (taken from Bobillier et al. (1976) models
a barber shop: a barber, represented by facility BARB, can
serve only one customer at a time. Customers, represented
by transactions, enter the shop and wait for service if the
barber is busy. Customers are served in order of arri val. A
GPSS queue-an entity that helps in generating queueing
statistics-called WAIT is used to represent the waiting
room. The START block sets the tennination counter,
indicating how many transactions must tenninate for the
simulation to finish. The transactions are created by the
GENERATE block, with the time between creations given
by function "ARRIV".

At the heart of the GPSS simulator we find transaction
chains containing all transactions in the system. The fu
ture events chain (FEC), actually a simulation calendar,
contains the list of transactions scheduled for execution
at a future time, in general those that have entered an
ADVANCE block. The current events chain (CEC) con
tains transactions due to execute at the current time, but
also contains those that are blocked, waiting for conditions
such as the release of a facility. The CEC is organized as
a priority queue, with transactions having higher priority
coming first. Among transactions with the same priority,
a FIFO ordering is adopted. The CEC is always scanned
completely in each simulation cycle, from beginning to
end, before it receives new transactions from the FEC.
The transactions in the CEC chain are executed until they
enter ADVANCE or become blocked for some reason. Cer
tain events, such as the release of a facility or storage, force
the simulation engine to rescan the whole CEC, since some
transactions on the CEC may have become ready to exe
cute once again.

FN$ARRIV
WAIT
BARB
WAIT
FN$SERV
BARB
1
10

GENERATE
QUEUE
SEIZE
DEPART
ADVANCE
RELEASE
TERMINATE
START

4 GPSS OVERVIEW

one specific (UNIX) process at the start of the simulation,
using primitive bindLP () .

Transactions (threads) migrate from one LP to another,
using primitive trMigrate (int LPid). Migrations
occur instantaneously in terms ofsimulated time~ if a delay
is required it can be added by invoking trHold () .

To make a C++ object usable as a ParaSol global ob
ject, two kernel primitives are invoked on its behalf. The
first registers the object for state saving, causing methods
save () and restore () to be called when the system
is saving or restoring state (in this instance the kernel
does not insulate the layers above from parallel simulation
functions). The second primitive registers the object as a
global object, allowing transactions throughout the system
to locate the position (LP number) of the object. Global
objects have one "original" copy, located at some process,
and several proxies. In general there is one proxy at each
of the other processes. When a transaction accesses a
proxy's method, a check is made within the method to de
tennine if the object is an original or a proxy. If the object
is a proxy, the transaction migrates to the appropriate LP
where the same method is invoked on the original object.

Like ParaSol, GPSS adopts an active-transaction process
interaction world view. A GPSS program consists of a
sequence of "blocks" that represents the flow of transac
tions through the system. Transactions, which are created
by the GENERATE block, progress from one block to the
next unless routed to another block by a TRANSFER block.

A large number of permanent entities are provided to
facilitate modeling. For example, Facilities are FIFO
single-server queues. Block SEIZE is used by a trans
action to "seize" a facility's server. Seizing an already
seized facility forces a transaction to block until the facil
ity is released. A transaction holding a facility releases it
using RELEASE. Storages are similar to facilities but may
hold more than one transaction at a time.

Transactions have access to local (per transaction) vari
ables called "parameters" and global (system-wide) vari
ables called "savevalues". There is also support for com
putational entities such as random number generators.
Time advances through the execution of the ADVANCE
block, which suspends the invoking transaction for a user
specified amount of simulated time (only integer numbers
allowed). Transactions finish their execution by entering
the TERMINATE block. At each such block, a global ter
mination counter is decremented by some given amount.
When the counter reaches 0, the simulation is terminated.

Some powerful features make GPSS useful in manu
facturing applications. For example, the SPLIT, MATCH,
GATHER, and ASSEMBLE blocks allow transactions to
split into two or more transactions and later rejoin, effec
tively enabling the modeling of machine parts that split
and take different paths.

804 Knop..AJascarenhas, and Rego

6 ISSUES INVOLVED IN PARALLELIZING GPSS

Figure 3: Transactions and GPSS Objects

ATHREAD generateBlk5(void)
{

LP#2

methodo Invocation

v::~::r rytn IJ
"Real" facilityLP#I

The main obstacle in parallelizing GPSS is the many in
stances where the language definition, and its natural se-

int intTrnp;
gpssP->advance(8) ;
for (; ;) {

pSolP->trCreate(transactionThread,
<stk S2> ...);

intTmp = uniform_AB(40,60);
if(intTmp > 0)

gpssP->advance(intTmp);

A GPSS program may have several GENERATE blocks,
with each possibly specifying a different rate of cre
ation for transactions. For each GENERATE block in the
program, the translator creates a generate thread. Fig
ure 4 shows an example of code executed by a gener
ate thread. The example corresponds to the sequence
GENERATE 5 a, 10 , 8, which is supposed to create new
transactions with inter-creation time unifonnly distributed
between 50-10 and 50+ 10 time units, with the first one cre
ated at time 8. In the figure, method advance () is noth
ing but a wrapper around trHold () . The reason for not
having trHold () itself in the code is explained in Sec
tion 7.4. The generate threads, one for each GENERATE
block, are created at the beginning of the simulation.

Tennination requires the use of a centralized
GPSS_Termination global object. Threads execut
ing the TERMINATE block migrate to the LP holding
the GPSS_Termination object, using the same mech
anism as in GPSS_Facili ty. There, the termination
counter, which is a member of the tennination object, is
decremented~ when it gets to 0 all processes are informed
about the tennination. When TERMINATE's operand is 0,
the tennination counter need not be decremented. As an
optimization for this situation, the thread does not migrate
to the tennination object's location, since there is no need
for it to access the tenni nation object.

Figure 4: ParaSol Code Created for Block GENERATE
50,10,8If the transaction is "refused" by the SEIZE block be

cause the facility is already in use, then the corresponding
thread is placed in a queue inside the GPSS facility object.
In terms of the domain-kernel interface, the queue is noth
ing more than a list of thread ids. The thread is suspended
with the kernel's trSuspend () primitive. To resume
the thread, it suffices to call the kernel's trResume ()
primitive with the thread id as parameter. When resumed
(by another thread executing the RELEASE block), the
thread eventually returns from sei ze (), now owning
the facility.

Parallel execution of GPSS is achieved by first dis
tributing the global objects among different LPs and then
placing these LPs in distinct processes, as illustrated in
Figure 3. This figure shows a transaction that executes
a method at a proxy facility at LP #1. This forces it to
migrate to LP #2 and access the same method at the real
facility. The number of LPs used in the program is de
tennined at compile time. This number gives an upper
bound on the maximum parallelism possible. The assign
ment of LPs to processors is done at run time, based on
the number of processors available: each processor may
host more than one LP. When a thread accesses a remote
object, the thread nligrates to the LP where the object is
located, as explained in Section 3. For example, inside
GPSS_Facility: :seize() (and also in many of the
GPSS domain library methods), there is a test to detennine
whether the facility is remote. If it is, the thread migrates
to the appropriate LP. Otherwise, the thread goes through
the actual SEIZE procedure on the local object. A thread
migrates along with its attribute area, which is required
for the correct implementation of parameters, priorities
and other GPSS transaction attributes.

ods are provided to return facility statistics (e.g., facility
utilization and queueing delay). These methods are re
quired not only for printing final statistics but also for im
plementing GPSS 's standard attributes. The GPSS facility
object also contains state saving and restoration methods
which are required by ParaSol's optimistic synchroniza
tion protocol.

Not surprisingly, GPSS's transactions are actually Para
Sol's transaction threads. The execution path of GPSS
transactions, which comprise the bulk of the GPSS in
put lines, is incorporated into the thread code. Threads
then move from block to block as directed by the input
program. Transaction attributes such as parameters and
priorities are implemented via the thread attribute area
supported by Ariadne. An alternative would be to place
these transaction attributes on the thread's stack, but this
would hinder the translation of GPSS blocks that allow
one transaction to examine another's attributes. Time ad
vances (ADVANCE block) are achieved through calls to the
kernel trHold () primitive.

Transactions entering a SEI ZE block, for example, are
represented by threads executing

GPSS_Facility-ptr->seize()

A Parallel GPSS Based on the ParaSol SiInulation Sy~tcll1 8U·)

quential implementation, assumes the existence of central
ized data structures. Typical examples are statements such
as

TEST E Q8,15 (1)
TRANSFER BOTH, HERE, THERE (2)

VAR VARIABLE Q1+Q2+Q3 (3)

In the first statement above, the transaction must block
while the number of elements in queue number 8 is not
15. In a typical GPSS implementation, the transaction is
left in the CEC (see Section 4) and is awakened every time
the CEC is rescanned. This kind of blocking, called a
"non-unique blocking condition", is one where the system
does not know a priori what can be done to unblock the
transaction. Consequently, there is no specialized queue
for "transactions waiting for queue 8 to have 15 elements".

In the second statement, according to the language def
inition, the transaction must attempt to go to the block
labeled HERE and, if the block is "refusing transactions"
(for example, the block is a SEI ZE and the facility is in
use), the transaction must try the block labeled THERE. If
the latter also refuses entry, the transaction must suspend
itself inside the TRANSFER block and try again when the
CEC is rescanned.

In the third statement, the transaction must obtain the
number of elements in queues 1, 2, and 3 to compute the
value of the variable.

To be able to parallelize GPSS, we must do away with
centralized data structures such as the FEC and CEC.
While the FEC is handled "automatically" by the POES
synchronization mechanism, the CEC still requires some
suitable replacement. The existence of the CEC may
severely impact perfonnance, si nce it assumes that all
transactions it holds will have to be rescanned every time
some "significant" event, such as the release of a facility,
occurs. While the rescan in a sequential setting is already
recognized as inefficient (Bobillier et a1. 1976), doing it
in a distributed environment would certainly lead to bot
tlenecks: if the same scheme is adopted in a distributed
implementation, the "significant" events would have to be
reported to all processes, resulting in unacceptable com
munication cost.

Statement 3 above highlights the importance of object
placement in the perfonnance of parallel GPSS: if the three
queue objects are located on different processors, then the
thread implementing the transaction must migrate at least
twice just to compute the value required in the example.

Statement 2, which like statement 1 presents a non
unique blocking condition, illustrates how much the lan
guage depends on centralized infonnation: if the objects
referred to by blocks HERE and THERE are located at
different processes, then the transaction would have to mi
grate twice to detennine the status of these blocks. More
over, it would have to repeat the check every time some
"significant" event occurs at any place in the system.

Another difficulty related to the CEC is its policy of
considering transaction priorities when inserting transac
tions in the chain. Like many other systems, ParaSol does

not have a CEC-equivalent. It inserts transactions in the
calendar based only on their resumption times.

7 SOME SOLUTIONS

7.1 Object Placement

A judicious placement of objects may alleviate some per
fonnance problems by reducing the number of thread mi
grations. For instance. in statement 2. having the objects
accessed by blocks HERE and THERE in the same pro
cess would help tremendously, as would having queues
1,2. and 3 in the same process at statement 3. Of course.
applying this reasoning to all the blocks would result in
a sequential simulation! It can be observed that having
queues 1-3 in different processes is likely to be less dam
aging than having objects in HERE and THERE in differ
ent processes. since in the latter case the set of migrations
may occur several times for each transaction that enters a
TRANSFER BOTH, ... block.

Since, in some applications, the user may be better
equipped than the compiler to decide the location of some
key entities, constructs are provided to allow manual place
ment of entities at either compile time or program load
time.

7.2 Replacement of the CEC

The CEC and the mechanism used to handle non-unique
blocking conditions must be altered for the parallel im
plementation. Suppose a transaction is blocked, waiting
for the condition "queue 4 has 3 elements and storage 6 is
full". In the sequential implementation, the transaction is
placed on the CEC. Every time the CEC is rescanned, the
transaction is resumed. The transaction then proceeds to
check one more time if the two conditions are true. In the
distributed setting, queue 4 and storage 6 may be located
on different LPs, say LP 1 and LP2, respectively.

Since a "global" CEC is not maintained, the following
scheme is adopted when a transaction is about to block
on a non-unique blocking condition (we use the example
above to explain it):

• Thread Tl visits queue 4 at LPI and places a notifi
cation record [TI ,LP3] at queue 4

• Thread TI then visits storage 6 at LP2 and places a
record [Tl ,LP3] at storage 6

• Thread Tl moves to LP3 and suspends itself. LP3
may be LP 1, LP2, or yet another LP.

• When the status of queue 4, for example, changes,
the queue object (that is, the particular thread which.
executing some method in the queue object, alters the
queue's status) checks its notification records. Upon
finding the entry [TI.LP3] there, it sends a messenger
thread to LP3. Once there, the messenger confinns
that Tl is still blocked and, if so, awakens it. TI then
visits queue 4 and storage 6 once again.

806 !{nop, i\Iascarenllas, and Rego

Although still expensive, this scheme is nevertheless
cheaper than sending broadcast notification messages ev
ery time any entity changes state (the distributed equi valent
of the CEC). For unique blocking conditions, the imple
mentation is simpler and more efficient: transactions are
suspended and placed in existing queues at the appropriate
entities. As an example, consider the queue of transactions
waiting to enter the facility entity, located \vithin the GPSS
facili ty obj ect.

7.3 Space-Time Memory

Besides triggering expensive multiple migrations, con
structs such as that shown in example 3 above
(Ql +Q2 +Q3) create havoc with optimistic synchroniza
tion protocols, since migrations may cause rollbacks at
one or more LPs. On the other hand, in such constructs
the queue objects themselves are not altered by the oper
ations following the migration. Therefore, the following
scheme may be adopted:

• Variables that are frequently accessed in a read-only
fashion, such as the queue size in the given example,
are stored in a "space-time" manner, not unlike the
Tsai and Fujimoto approach (1993): not only the most
current value, but also all past values are stored. An
appropriate fonnat for this is a time-ordered sequence
of (ti, Vi) pairs, where Ci is the variable's value and t i

is the simulated time at which the variable is loaded
with the value Vi.

• If a thread migrates to an LP only to retrieve the value
of some variable, then a special "read-only" migra
tion is used that does not cause a rollback even if the
destination LP is already in the future of the migrated
thread. In this case, the migrated thread is scheduled
as if it were not a straggler, and it then accesses a past
value of the desired variable by examining the past
history of values stored in the space-time memory.

To avoid causality problems, the migrating thread
should refrain from altering the state of any object. If
it decides to do so. the thread is required to update its
migration status from "read-only migration" to the default
"read-write" migration. Then, if the destination LP is in
the future of the arriving thread, in tenns of virtual time. a
rollback procedure is immediately initiated.

The mechanism used for reclaiming the space-time
memory is similar to that used in fossil collection: values
saved before GVT (Global Virtual Time, Fujimoto 1990)
may be discarded since they are no longer needed. Notice,
however. that all manipulation of the space-time memory
is done at the domain level, independently of the kernel.
The kernel could have provided all support for space-time
memory by incorporating it into the state saving mecha
nisms. Past values of variables would then be retrieved
from system snapshots taken for state saving purposes.
The drawback of this approach is that it would require
the kernel to save state at every execution of an event,
preventing the use of infrequent state saving mechanisms.

If keeping all values since the GVT in space-time mem
ory is too expensive, the space-time memory may be con
figured to store only the last few values. This may be the
case if each value requires a large amount of memory, or
if the GVT is not computed frequently enough, If some
older value that is not stored in space-time memory is re
quested, then the read-only migration is updated to the
default migration.

Together with the read-only migration, the space-time
memory can be used in the implementation of several
GPSS constructs, including the savevalues and many of
GPSS's "standard attributes".

7.4 Transaction Priorities and the CEC

It is possible to simulate the structure of the CEC (transac
tions ordered by insertion time and priority) without hav
ing to change ParaSol's kernel. First, we observe that the
ParaSol calendar. the equi valent of GPSS 's FEC and CEC
combined, already respects a FIFO ordering for threads
having the same time: if a thread executes trHold (x),
and the current time is t, its resumption is scheduled as
the last entry in the calendar having time t + x. Next,
we can take advantage of GPSS's integer time advances
and use ParaSol's arbitrary time advances. If the thread
priori ty changes from 0 to P (0 ::; p < 128) then the next
ADVANCE x issued by the thread at time t will cause the
thread to be resumed at ParaSol time t + x - cp, where
c < 1/128 is a constant. In this way, the thread is resumed
before all threads with priority smaller than p scheduled
for t + .r (GPSS time).

The simulation of the CEC's structure is not perfect,
though. The order of scheduling two transactions arriving
at an LP from two different processors, with the same
simulation timestamp, is essentially random, and depends
on the real times at which the transactions arrive at the LP.

8 EXPERIMENTS: ENTITY MAPPING

We report results of initial performance experiments that
measure the effect of the entity-to-LP mapping.

Our test program simulates a closed queueing network
and is written in a GPSS subset. The network has 64
facilities, divided into four groups of 16 facilities in tan
dem. Jobs that leave one group can be routed to any
other group. The GPSS code is shown in Figure 5. The
GENERATE block at line 2 generates 32 transactions, with
inter-generation time unifonnly distributed between 80
and 120. These transactions begin execution at the line
following the GENERATE block. Once created, transac
tions go with equal probability to blocks labeled SWT1.

SWT2, SWT3, or SWT4. At each such block, transactions
visit 16 facilities in series, after which they go back to
the TRAl'-JSFER block at line 3. Blocks at lines 31-33 ac
tually define the termination condition for this particular
program: a transaction is created at time 160000. Upon
being created at line 31, it executes the termination block

A Parallel GPSS Based on the ParaSol Simulation S.-vstelll

1 SIMULATE 1
2 GENERATE 100,20, ,32 32 jobs generated

once every U(80,120) units
3 ROUT TRANSFER 0.250, ,SWT1 With prob 1/4,

transfer transactions to blocks
SWT1, SWT2, SWT3, or SWT4

4 TRANSFER 0.333, ,SWT2
5 TRANSFER 0.500, ,SWT3
6 TRANSFER ,SWT4
7 SWT1 ASSIGN 1,16 P1 <- 16
8 ASSIGN 2,1 Entities [1-16]
9 LOO1 QUEUE P2

10 SEIZE P2
11 DEPART P2
12 ADVANCE 50,10 Service time: U(40,60)
13 RELEASE P2
14 ASSIGN 2+,1 P2++
15 LOOP 1,LOO1 P1--;if(P1==0) goto LOO1
16 TRANSFER ,ROUT

17 SWT2 ASSIGN 1,16 P1 <- 16
18 ASSIGN 2,17 Entities [17-32]
19 LOO2 QUEUE P2
20 SEIZE P2
21 DEPART P2
22 ADVANCE 50,10 Service time: U(40,60)
23 RELEASE P2
24 ASSIGN 2+,1 P2++
25 LOOP 1,LOO2 Pl--;if(Pl==O) goto LOO2
26 TRANSFER ,ROUT
27 SWT3 ASSIGN 1,16 PI <- 16
28 ASSIGN 2,33 Entities [33-48]

[...]
29 SWT4 ASSIGN 1,16 PI <- 16
30 ASSIGN 2,49 Entities [49-64]

[...]
31 GENERATE 160000 create transctns every

160000 time units (*)

32 TERMINATE 1 termination transctn (+)

33 START 1 set termination cnt to 1
34 END

Figure 5: A Closed Queueing Network Coded in the GPSS
Subset

at line 32. Since the termination counter is now O. the
simulation is terminated.

How GPSS entities are mapped onto LPs is crucial to
the performance of parallel GPSS. We have experimented
with different mappings. in order to evaluate its effect on
execution time. The ideal mapping for the given queueing
network is to have each group of 16 tandem facilities and
queues placed at a different LP: facilities 1-16 are placed
at LP O. facilities 17-32 at LP I, and so on. Queues are
treated identically. By doing this, we balance computa
tion across processes. Also, we minimize communication,
since transactions visit 16 facilities and queues at a time
without the need for remote object access.

Like queues and facilities. GENERATE blocks and ter
mination objects must also be mapped. All transactions
created by GENERATE begin their execution at the LP
hosting the generate thread (Section 5). Transactions ex
ecuting TERMINATE with a non-zero operand must mi
grate to the LP that hosts the termination object. The
GENERATE block on line 31 should be placed at the LP
that contains the termination object. LP 0 is chosen for
both. The generate block on line 2 can be placed at any
LP. and LP 0 is chosen for this block.

Table 1 shows the results of executions using differ
ent entity-to-LP mappings. All four processors in a SUN
SPARCstation 20, a shared memory multiprocessor. were

Table 1: Performance of a Closed Queueing Network
Coded in GPSS with Several Different Entity-to-LP Map
pIngs

Mapping Exec Num 0.ilsg read
time rollbacks ops

1 Optimal mapping 52.7 1959 14907
2 GENERATE block (*) 53.5 2976 18515

and
TERMINATE block (+)
in different LPs

3 Facilities and queues 66.4 4755 33779
13-16 atLP 1; facili-
ties and queues 29-32
at LPO

4 Facility and queue 10 66.6 3953 26819
atLP 1

5 Unbalanced: facilities 82.3 4424 35653
and queues 17-32 at
LP 0 (LP 1 hosts no
entities)

used in the experiment. Execution times are in seconds.
Approach I shows, as a reference, the performance of the
optimal mapping. Approach 2 shows the performance of a
near-optimal mapping: only the GENERATE block at line
31 is moved to LP 1. This seems to be a trivial variation of
the optimal mapping, since only one transaction is created
on line 31. In an optimistic environment, however, the
sequence of events is more complex. Since all job trans
actions are generated at LP 0, LP 1 is initially idle and
has no alternati ve but to schedule the only calendar entry
it has, which is for the generate thread (line 31) at time
160000. Once scheduled, the generate thread creates a
transaction that immediately migrates to LP 0 in search of
the termination object. At LP 0, this transaction is placed
in the calendar but not scheduled, since time at LP 0 is
still far from the termination time. The GENERATE block
on line 31 creates a transaction every 160000 time units,
so that a new transaction is created at each of the virtual
times 320000, 480000, etc.~ each immediately migrates
to LP O. Eventually, job transactions migrate from LP 0
to LP 1, causing a rollback at LP 1. Several anti-thread
messages (ParaSol's equivalent of anti-messages) are sent
from LP 1 to LP O. The whole process is repeated when
ever LP 1 finds itself idle. Though the effect on execution
time, as shown in Table 1, is small, the effect on number
of rollbacks is not. On a distributed-memory environ
ment, execution times would suffer because of the larger
communication delays.

Approach 3 shows a more significant departure from
the optimal mapping: four facilities and queues are moved
from LP 0 to LP 1, and vice versa. Not surprisingly, the
execution time. number of rollbacks, and number of mes
sage operations are all higher than in the optimal mapping.
In approach 4, the optirnal mapping is changed by placing
only one facility-queue pair (number 10)-originally at LP
o-at LP 1. The execution time is close to that given by

808 I{nop~ l\Iascarcnlla5, and Rego

approach 3. When compared to the optimal mapping, this
indicates that even small changes may have a noticeable
effect on execution time. After accessing facilities 1-9.
transactions at LP 0 must migrate to LP 1 to access facil
ity 10, and then return to LP 0 to access facilities 11-16.
These extra migrations account for the increased commu
nication/rollback overhead over the optimal mapping.

Finally. approach 5 shows a more radical departure: all
entities at LP 1 are now assigned to LP 0, resulting in an
unbalanced load. The execution time is greatly affected,
with the processor hosting LP 1 becoming idle for the
entire run.

9 CONCLUSION

This paper describes the implementation of a parallel
GPSS simulation language. based on the ParaSol sys
tem. Because of GPSS's widespread use, this effort is
one significant step towards making parallel simulation
more practical and useful to the simulation communi ty.
ParaSol's process-orientation enhances the mapping from
GPSS to ParaSol, since GPSS is also process-oriented.
GPSS, however, relies heavily on centralized data struc
tures. These can hamper the performance of parallel ap
plications. We describe some techniques to tackle bottle
necks arising in the parallel GPSS implementation, such as
user-guided placement of simulation objects. the use of no
tification mechanisms to control communication costs in
non-unique blocking conditions, and the use of space-time
memory and read-only migrations to reduce the number
of rollbacks.

At the present time, the implementation of a GPSS core
is complete. Although we expect GPSS programs to run in
parallel without changes, some programs may not possess
a sufficient amount of inherent parallelism. These may
require code rearrangement or may run efficiently only for
select entity-processor m~ppings.

ACKNOWLEDGMENTS

This research was supported in part by ONR-9310233,
BMDO-34798-MA, and NSF-CCR 9311862. The first
author was supported by CNPq-Brazil, grant 260059/91.9.

REFERENCES

Bagrodia, R.L. 1991. Iterati ve design of efficient simula
tions using Maisie. In Proceedings of the 1991 Winter
Sinzulation Conference, pages 243-247.

Bobillier. P., B. Kahan, and A. Probst. 1976. Sinzulatio/l
H'ith GPSS and GPSS V. Prentice Hall.

BoyanTech, Inc. 1995. McLean, VA 22102. CPSinz 1.0
User's Guide and Reference Manual.

Fujimoto, R.M. 1990. Parallel discrete event simulation.
Conznzll/lications of the ACM, 33(10):30-53.

Fujimoto, R.M. 1993. Parallel discrete event simulation:
Will the field survive? ORSA Journal of Conzputing,
5(3):213-230.

Gomes, F., S. Franks, B. Unger, Z. Xiao, 1. Cleary, and
A. Covington. 1995. SimKit: A high performance
logical process simulation class in C++. In Proceedings
of the 1995 Winter Sinzulation Conference, pages 706
713.

Mascarenhas, E., F. Knop, and V. Rego. 1995. ParaSol:
a multithreaded system for parallel simulation based
on mobile threads. In Proceedings of the 1995 Winter
Sinzulatio/l Conference, pages 690-697.

Mascarenhas, E. and V. Rego. 1996. Ariadne: architecture
of a portable threads system supporting thread migra
tion. Softlvare - Practice and Experience, 26(3):327
356.

Nicol, D. and P. Heidelberger. 1994. On extending par
allelism to serial simulators. Technical Report ICASE
Report No. 94-95, Institute for Computer Applications
in Science and Engineering - NASA Langley Research
Center. December.

Schwetman, H.D. 1986. CSIM: A C-based, process
oriented simulation language. In Proceedings of the
1986 Winter Sinzulation Conference, pages 387-396.

Sunderam. V.S. 1990. PVM: a framework for parallel
distributed computing. Concurrency: Practice and Ex
perience, 2(4).

Tsai, 1.-1. and R.M. Fujimoto. 1993. Automatic par
allelization of discrete event simulation programs. In
Proceedings ofthe 1993 WinterSinlulation Conference,
pages 697-705.

AUTHOR BIOGRAPHIES

FELIPE KNOP, Ph.D., Computer Sciences Department,
Purdue University, (August 1996). received a Masters de
gree in Computer Sciences from Purdue University in 1993
and a Masters degree in Electrical Engineering from Uni
versity of Sao Paulo. Brazil, in 1990. His current research
interests include parallel and distributed simulation, and
multiprocessor operating systems.

EDWARD MASCARENHAS, Ph.D., Computer Sci
ences Department, Purdue University, (August 1996), re
ceived a Masters degree in Industrial Engineering from
NITIE (Bombay, India), and a Masters degree in Com
puter Sciences from Purdue University (West Lafayette)
in 1993. His research interests include parallel computa
tion, distributed simulation, and multithreaded program
ming environments.

VERNON REGO is a Professor of Computer Sciences
at Purdue University. He received his M.Sc.(Hons) in
Mathematics from B.LT.S (Pilani, India), and an M.S. and
~h.D. in Computer Science from Michigan State Univer
SIty (East Lansing) in 1985. He was awarded the 1992
IEEE/Gordon Bell Prize in parallel processing research,
and is an Editor of IEEE Transactions 011 Conzputers. His
research interests include parallel simulation, parallel pro
cessing, modeling and software engineering.

