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ABSTRACT

One of the greatest challenges in making optimistic
synchronization techniques such as Time Warp prac­
tical tools is making state saving efficient and easy to
use. State saving is necessary so that when optimistic
execution is found to be out of order, rollback can be
used to recover an earlier execution state. Previous
work has shown that the most robust and efficient
technique for saving state is to incrementally save
copies of small parts of the state at the point that
they are modified. Unfortunately, this requires sig­
nificant programmer intervention to insert additional
code.

In this paper, C++ language extensions for trans­
parent incremental state saving are presented. Op­
erator overloading and type parameterization are
used to incrementally save basic data types. Build­
ing on this, two new type-specifiers, "recover" and
"nonrecover" are described. They allow a single dec­
laration to specify, for example, that all the mem­
ber variables of a class are to be state saved, and
for all the resulting state saving calls to be automati­
cally generated. Issues, including how these specifiers
interact with class inheritance and function declara­
tions are examined and solved.

1 INTRODUCTION

Computer simulation is a valuable tool for the design
and analysis of complex systems. However, the sim­
ulation of many important systems requires massive
amounts of processor time and memory. The goal of
parallel discrete event simulation is the acceleration
of sequential simulation execution through concurrent
execution on multiple processors (Fujimoto 1990).

Optimistic synchronization has been proposed to
maximally exploit the inherent parallelism within sys­
tems. Time Warp, a well known optimistic syn­
chronization technique based on the virtual time
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paradigm (Jefferson 1985), has been shown to be ca­
pable of attaining impressive speedup. Optimistic
methods are characterized by logical processes exe­
cuting aggressively and independently of others. A
causality error detection and recovery scheme based
on rollback is used to assure causality in the asyn­
chronous parallel execution.

Two serious problems with rollback implementa­
tion need to be adequately resolved. The first is the
efficient saving of state information during forward
execution. The second problem is to solve the first
in a way which is transparent to the programmer, i.e.
that doesn't substantially complicate model develop­
ment.

State saving mechanisms can be categorized as
copy state saving (CSS) or incremental state saving
(ISS) (Bauer and Sporer 1993, Bruce 1995, Cleary
et al. 1994, Steinman 1993). In CSS mechanisms, a
checkpoint of the entire object's state is taken on each
event. CSS mechanisms are processor intensive and
consume a large amount of memory. An optimiza­
tion of the CSS strategy is to reduce the frequency
of checkpointing using periodic state saving (PSS)
(Fleischmann and Wilsey 1995, Lin et al. 1993, Preiss,
Loucks, and MacIntyre 1994, Ronngren and Ayani
1994). Estimation of the optimal frequency of check­
pointing, using static or adaptive schemes, is critical,
as the object may need to rollback further if there is
no state saved at the point of a synchronization error.

One major advantage of CSS is that it can easily be
made transparent to the programmer. That is, no ex­
tra code is required to ensure that all the appropriate
state is saved. Its major disadvantage is that it can
easily become very expensive when the state size is
large. This is particularly acute when each event has
a small computational grain and only a small part of
the state is modified.

On the other hand, in ISS mechanisms only infor­
mation related to changes to the state are saved. Gen­
erally, ISS is robust in its performance. Its cost tends
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3.1 State Data Type Templates

Two templates State<T> and StatePtr<T> are used
in the declaration of recoverable variables. The for­
mer is used in declaring recoverable variables of basic
types while the latter in declaring pointer type recov­
erable variables. Sample source code for the above
template class definitions are provided in appendix
A.

Basic recoverable types are defined USIng
class State<T> as follows:

class State<int> SInt1, SInt2( 100 );

In SimKit, an ISS backtrail mechanism is im­
plemented. In this mechanism, a backtrail of ad­
dress/value pairs is constructed during forward ex­
ecution. An address/value pair, representing an im­
age of the state, is referred to as a state log element
(SLE). SLEs are recorded prior to a write operation,
and are linked to form the backtrail, from which a
past system state can be recovered. Recovery en­
tails scanning the backtrail, from the most recent SLE
recorded back to the one at the recovery point, and
writing the old values back into the associated ad­
dresses.

On most architectures two backtrails, one allowing
4-byte data and the other allowing for 8-byte data
are instantiated for each ak_lp. These two sizes effi­
ciently cover most basic data types, including integer,
pointer, double, long long, etc.

Incremental State saving can be automated in C++
using parameterized types and operator overloading.
A parameterized type defines a new type in terms
of (or parameterized by) another unspecified type.
The following design uses the t emplat e construct, to
define specialized state types from basic data types
(Ellis and Stroustrup 1990, Stroustrup 1988). State
variables declared using the state type templates are
said to be recoverable. Each of these specialized re­
coverable types need to have the same semantics as
the base data type but are extended to include state
saving. Assignment related operators are redefined
to record a backtrail entry prior to the actual write
operation, using operator overloading. In C++, write
operations on an integer data type include assignment
operations like =, *=, /=, \%=, +=, -=, and, prefix and
postfix versions of ++ and --. Integers also masquer­
ade as bit vectors so assignment operators of the form
\t=, 1=, \ ... { }=, \ -{ }=, «= and »= also need to
be overloaded.

to be a constant fraction of the event execution time,
so that it seldom causes unexpected costs. The cost
of rollback is proportional to the distance rolled-back,
and in principle this can be arbitrarily large. Prac­
tical experience however shows that in most Time
Warp executions rollbacks are limited to a few events,
so that this is not a problem (Fujimoto 1989, Gomes
and Unger 1994, Xiao and Unger 1995).

The major difficulty with ISS is the need for pro­
grammer intervention, in explicitly saving a state
prior to its modification. This code and the effort of
inserting it is needed only for Time Warp, thus expos­
ing the underlying synchronization protocol during
the model design, development and validation phases.
Also mistakes in the ISS code can lead to subtle and
difficult to detect bugs. Clearly ~ome easy transpar­
ent mechanism for implementing ISS is necessary if
Time Warp is to become part of the normal simula­
tion life-cycle.

In this paper, C++ language extensions to support
transparent incremental state saving are addressed.
Incremental state saving is automated without com­
promising efficiency. A simple ISS backtrail mecha­
nism is presented in section 2. Section 3 details the
use of parameterized types to define recoverable basic
data types. They have the same semantics as basic
data types, but have built-in incremental state saving
for write operations. The specification for a recover­
able type annotation semantics and its use is detailed
in section 4. This uses two new keywords "recover"
and "nonrecover" to enable a type-safe declaration
of which state is to be saved. Finally, a summary is
presented in section 5.

2 SIMKIT SYSTEM

SimKit is a C++ class library that is designed for very
fast discrete event simulation (Gomes et al. 1995).
The primary goal of SimKit is to provide an event­
oriented logical process modeling interface that facil­
itates building application models for sequential and
parallel simulation with high performance execution
capabilities.

The parallel SimKit implementation is atop a Time
Warp executive interface called WarpKit. SimKit
specifies three classes called ak_simulation, ak_lp
and ak_event. In a simulation execution, there is
one instance of sk_simulation that controls the var­
ious phases of the simulation execution. ak_lp is
an abstract base class that is used to derive appli­
cation level logical processes. Logical processes com­
municate using objects derived from ak_event. A
send_and_delete () primitive in the sk_lp class is
provided for inter-LP communication.

3 PARAMETERIZED
TYPES

STATE DATA
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Recoverable integers SInt 1 and SInt2 are con­
structed having the semantics of their base type, i.e.
into SInt2 is initialized to 100 during construction.
Such initialization does not cause SInt2 to be state
saved.

An automatic conversion operator allows recover­
able objects SInt 1 and SInt2 to be used in place of
an int base type, as in the expressions,

a_int =SInt2;
if ( SInt2 < 100 ) { ... }
SInt2 = 1 + a_int + SInt1 * 2;

The overloaded assignment operator
in class State<int> records a backtrail entry for
SInt2 prior to the assignment in the last statement.

Recoverable pointer data types are defined using
class StatePtr<T> as follows:

class StatePtr< int > SPtrlnt( & a_int );
class StatePtr< State<int> > SPtrSlnt;
SPtrSlnt = tSlnt1;

In the first declaration, a recoverable pointer to an
int data type is defined. SPtrlnt is initialized to
point to the variable a_into No state saving of
SPtrlnt takes place during initialization within the
constructor. In the second, a recoverable pointer to
a recoverable integer is defined. SPtrSlnt gets state
saved prior to the assignment, in the third statement.

An overloaded de-reference operator in the
class StatePtr returns the object pointed to by the
StatePtr type object. Only in the second of the fol­
lowing assignments is a record entered into the back­
trail. In the first case, the int type data pointed to
is not recoverable and so is not state saved. In the
second, as the object pointed to is recoverable, the
overloaded assignment defined for the class State
type object SInt 1 is invoked.

* SPtrlnt = 10;
* SPtrSlnt = 10;
In the next example, a recoverable pointer

SPtrSPtrSlnt, to another recoverable pointer to
a recoverable integer type variable is declared.

class StatePtr< StatePtr< State<int> > >
SPtrSPtrSlnt;

Now, consider the following assignment statements,
SPtrSPtrSlnt = tSPtrSlnt;
*SPtrSPtrSlnt = tSlnt2;
**SPtrSPtrSlnt = 200;

In the first assignment SPtrSPtrSlnt is saved, in the
second SPtrSlnt is saved, and in the third SInt2 is
saved.

3.2 Template Design Issues

When designing these templates, a number of impor­
tant design considerations were taken into account.

1. The result should always be safe - all modifica­
tions of a recoverable object should be trailed. A re­
coverable object may be modified directly by write
operations or indirectly via a pointer de-reference.
All write operations are identified and overloaded
to record a backtrail entry prior to the write oper­
ation. Recoverable objects modified indirectly by de­
referencing a class StatePtr are also saved, by over­
loading the de-reference operator to return a pointer
to the recoverable object whose overloaded assign­
ment operator is invoked.

2. As a consequence of the first point, the sys­
tem should be type safe, so that state accessed via
function parameters, or pointers is safe. All recov­
erable objects are defined using class State and
class StatePtr, that are parameterized by a speci­
fied type. Incorrect type usage will generate compile­
time error messages, for instance,

void fn( int * );
fn( t a_int );
fn( t SInt1 ); II Error

A compile time error message is generated in the sec­
ond function invocation, as the actual parameter is a
pointer to a class State<int>, where as the formal
parameter expects· a pointer to an into

3. It should be possible for the user to force the
point of state saving and this should be safe and effi­
cient. A type conversion function Save () is defined
in the templates. It does two things. It forces a state
save operation on the object's variable and returns
a reference to the variable of the original base type.
This reference can be subsequently used to modify
the variable without incurring state saving overheads
(recall that it is only necessary to record a variable
on the backtrail the first time it is modified in each
event).

Consider the example:
int t temp = SIntl.Save();
for (int i=O; i<100;i++)

temp++;
In the above example, a reference type variable temp
is initialized to refer to the int data type at the lo­
cation of SInt 1. SInt 1 is explicitly state saved only
once prior to the entry into the for loop. The data
of the recoverable object is modified within the loop
without any records being entered into the backtrail.

4. Temporary variables on the stack must never
be trailed as they may no longer exist upon rollback.
In C++, variables may be created on the stack due
to pass by value parameter or declarations local to
a function. Such variables have a temporary lifetime
limited to the function execution. A rollback would
cause an invalid value to be written into a stack loca­
tion which once contained the temporary recoverable
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variable. In pass by value parameter passing, a com­
piler invokes an object's copy constructor to create
a temporary object that is an exact duplicate of the
actual parameter. Pass by value temporary variables
are prevented by making the copy constructors pri­
vate. Local declarations are prevented by using an
execution time check in the default constructors. No
local state type variables may be declared once sim­
ulation event processing begins.

An unfortunate side effect of making the copy con­
structor private, is that recoverable object construc­
tion and initialization using another recoverable ob­
ject generates a compile-time error message, as in the
case of SInt3 declaration below:

class State<int> SInt3( SInt2 ); II Error
Alternatively, the programmer can use an assignment
to initialize a recoverable object as a copy of another,
as shown:

class State<int> SInt3;
SInt3 =SInt2;
5. It should be possible to dynamicly create recov­

erable objects. Dynamic state allocation is enabled by
providing an overloaded new operator in each of the
template classes. The new invokes a rollback sensitive
memory allocator to dynamicly construct a recover­
able object.

6. The mechanism must be totally transparent
when executed on a non-optimistic system. In a non­
optimistic system, the template just returns the base
type making all the recovery declarations invisible.
So no state saving is performed on write operations.

4 RECOVER TYPE SPECIFIER

One of the problems in using templates parameterized
by basic types, is that the programmer must individ­
ually declare all state variables. This can be quite
cumbersome and inconvenient. To alleviate this, two
new keywords "recover" and "nonrecover" are used
as type-specifiers.

In the simplest form, a "recover int I" dec­
laration translates to "State<int> I". In the
context of pointer data types, a declaration
"recover int * IP" specifies that both the pointer
and the object pointed to are recoverable. This decla­
ration translates to "StatePtr< State<int> > IP".
Declarations of the form "State<int> * Ip" and
"StatePtr< int > iP" need to be explicitly rep­
resented as "recover int * nonrecover Ip" and
''nonrecover int * recover iP", respectively.

A preprocessor front end to the C++ compiler has
been developed for SimKit which uses the new key­
words to generate C++ code wherein state variables
are individually declared using the template classes.

4.1 Semantics of Recover Type Specifier

The recover and nonrecover keywords may be used
in a number of contexts.

1. The first context is in association with a
class-key. A class-key can be one of the class,
struct or union keywords (Ellis and Stroustrup
1990). By default all variables do not have a state
saving attribute. Consider the example declarations:

class z{ .. ,};
recover class A{ };
class B : class z{ };
recover class C : class z{ ... };
recover class D : nonrecover class A{ ... };
class E : class A{ ... };

Objects instantiated from clas s A will have all their
variables recoverable. The recover keyword quali­
fying clas s C, forces all variables including those of
the base class z to be recoverable in any objects in­
stantiated from class C. Objects instantiated from
the derived clas s D will have variables declared in
class D recoverable and, because of the nonrecover
qualifier, variables declared in its base class non re­
coverable. Objects of clas s E will only have vari­
ables declared within clas s A recoverable. In the
case of pointer type member variables in a class, the
use of recover as a class qualifier, specifies that
both the pointer and the object pointed to are re­
coverable, unless explicitly over-ridden by the use of
nonrecover in the pointer declaration.

2. The second use of the keyword is as an aggre­
gate declaration within a class, struct or union.
Members within a class may be grouped together as
recover and nonrecover types, using a similar mech­
anism to the access specifiers public, protected and
private. For instance, in the next example, all of I,
J, K and D are recoverable, but none of i, j and d.

class A {
recover:

int I, J, K;
double D;

nonrecover:
int i, j;
double d;

};

The use of such aggregate declarations in classes
needs some care. For example in the declaration:

class F {
int x, y, z;

recover:
int I, J, K'I
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double D;
nonrecover:

int i) j) k;
double d;

GOInes. [Tnger. and ClearJ~

};
class G : recover class F { ... }

the variables x, y, Z, I, J, K, and D will all be re­
coverable in the context of class G. However, be­
cause i, j, k, d were explicitly declared to be non­
recoverable, their type is not modified and they re­
main non-recoverable.

Note that the variables x, y and Z may be recover­
able or non-recoverable depending upon the context
of their usage. To deal with this correctly, the imple­
mentation automatically creates two versions of the
class F, one recoverable and the other not. The cor­
rect version is used depending upon the context.

3. In specifying recover type functions, the
recover type-specifer is applied to the function re­
turn type as well as to all the arguments passed to
the function. The example declaration

int * f1(int i) int *p, int **pp) recover;

translates to,

State<int> * f1(
int i,
State<int> .p,
StatePtr< State<int> > *pp
) ;

The translation of types here is rather different to
that in the other contexts. Because C++ passes pa­
rameters by value and because these are allocated as
temporaries on the stack, they must not be made re­
coverable. The rule used is that the "outer-most"
type declaration is left non-recoverable and all types
within this are made recoverable. So the declaration
int i is left non-recoverable. The declaration int *p
is changed to a non-recoverable pointer to a recover­
able integer. The declaration int *.pp is changed to
a non-recoverable pointer to a recoverable pointer to
a recoverable integer type.

4. A recover keyword may also be used to de­
rive types using the typedet construct. The new
type-name may then be used to declare recoverable
variables of the new derived type. For instance,

typedef recover int SIntType;
SIntType SInt1, SInt2;

4.2 Sample State Declaration

An example using recover is shown in Figure 1.
class nm_output defines an output buffered logical

class nm_output : public sk_lp {

public:

nm_output( ... );

void process(const sk_event *)~

void initialize( );

void termi nate(void)~

afr_Iink *Iink(void);

int id(void);

int index(void);

double average_occup(int,sk_time)

double std_dev_occup(int,sk_time);

int cells_dropped(int,int)~

int max_occupancy(int);

int curr_occupancy(int);

int cells_sent(int, int);

int cells_received(void)~

double average_ctd(int);

double std_dev_ctd(int);

private:

run_node *My_node;

afr_link * My_link;

int My_index, Id;

sk_time Cell_transm_delay;

RPT_STYLE Rpt;

char *Report_l, *Report_2;

void reset_stats(sk_time);

void report(sk_time);

void report_formatted(sk_time);

void report_wsv(sk_time);

recover:
nm_buffer *Buffer;

int Cells_received;

int Link_state;

int Cells_sent[AFR_N_CLASS][2J;

afr_tally State_ctd[AFR_N_CLASS];

};

Figure 1: Recoverable State Declaration Example
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process in an ATM switch in the ATM-TN simulation
model (Unger et al. 1995). It is a typical example of
the modifications necessary to ensure correct state
saving in this extensive body of software. Note that
recover is used only once in the example. In 6000
lines of C++ header source files, 35 recover and 5
nonrecover keywords were needed to define the re­
coverable state in the simulation model.

5 CONCLUSIONS

Two significant barriers to the adoption of PDES
techniques such as Time Warp are the execution cost
of state saving and the difficulties of writing correctly
state saved Time Warp models. Previous work has
shown that incremental state saving can be a low cost
robust state saving mechanism. This paper has ad­
dressed the second problem of ensuring that state is
saved safely, correctly and with minimal programmer
effort.
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APPENDIX: TEMPLATE CLASS DEFINI­
TION

template <class T> class State {
private:

T _datum;
State(const State<T> t) { }

public:
State() : _datum(NULL) { }
State(T t) : _datum(t) { }
·State() { ... }
operator T() { return _datum; }
T value() { return _datum; }
State<T>i operator=(T t)
{ ISSMgr.save( i_datum );

_datum = t;
return *this;

}

State<T>t operator=(const State<T> it)
{ ISSMgr.save( i_datum );

_datum = t.value();
return *this;

}

II All other forms of assignments
IIe. g. +=, *=, ++, ,. · ·

Tt Save()
{ ISSMgr.save( &_daturn );

return _datum;
}

State<T>* operator&()
{ return this; }

};

template <class T> class StatePtr{
private:

T* _datum_ptr;
StatePtr(const StatePtr<T> &)
{ 1* NO OP *1 }

pUblic:
StatePtr() : _datum_ptr(NULL) { ... }
StatePtr(T* p) : _datum_ptr(p)
{ ... }

·StatePtr() { ... }
operator T*() { return _datum_ptr; }
T* value() { return _datum_ptr; }
StatePtr<T>& operator=(T* p)
{ ISSMgr.save( &_datum_ptr );

_datum_ptr = p;
_datum_ptr = p; return *this;

}

StatePtr<T>&
operator=(const StatePtr<T>& p)

{ ISSMgr.save( &_datum_ptr );
_daturn_ptr = p.value();
return *this;

}

II All other forms of assignments
II e.g. +=, *=, ++, --

T* t Save()
{ ISSMgr.save( &_datum_ptr );

return _datum_ptr;
}

StatePtr<T>* operator&()
{ return this; }

Tt operator*()
{ return *_daturn_ptr; }

};
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