
Proceedings of the 1996 WinteT Simulation C~onfeTenrf! .
ed. J. AI. Cl1arnes, D. J. l\Jorrice, D. T. Brunner, and J. J. Sv/alll

DYNAMIC MODEL ABSTRACTION

Kangsun Lee
Paul A. Fishwick

Department of Computer and Information Science and Engineering
University of Florida

Bldg. CSE, Room 301
Gainesville, FL 32611

ABSTRACT

While complex behavior can be generated through
simple systems, as in chaotic and nonlinear systems,
complex systems are found where a systems study
contains multiple physical objects and interactions.
Through the use of hierarchy, we are able to simplify
and organize the complex system. Every level within
the hierarchy may be refined into another level. Sys
tem abstraction involves simplification through struc
tural system representation as well as through be
havioral approximations of executed model structure.
There has been little work on creating a unified tax
onomy for model abstraction. We present such a
taxonomy and define two major sub-fields of model
abstraction, while illustrating both sub-fields through
detailed examples. The introduction of this taxon
omy provides system and simulation researchers with
a way in which to view and manage complex systems.

1 INTRODUCTION

Real world dynamic systems involve a large number
of variables and interconnections. Abstraction is a
technique of suppressing details and dealing instead
with the generalized, idealized model of a system.
The need of abstract models and traversing levels
of abstractions are essential as complex models are
used in practice. Computational efficiency and rep
resentational economy are main reasons of using ab
stract models in simulation (Fishwick 1987; Fishwick
1989; Zeigler 1972) and well as in programming lan
guages (Berzins et ale 1986; Booch 1991).

Although many diverse areas employ abstraction
methods, no agreed-upon taxonomy has been devel
oped to categorize and structure them with under
lying characterization of a general approach. Our
goal is to clarify how abstraction methods relate to
each other under a uniform taxonomy. We define sys
tem abstraction to be one of two types: behavioral or
structural. In most cases, one should explore both
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of these methods when constructing systems. For in
stance, when a system is first being designed, one
should construct it hierarchically, with simple sys
tem types at first, graduating to more complex model
types later. Structural abstraction corresponds to
this iterative procedure (Fishwick and Lee 1996; Fish
wick 1996a; Fishwick 1996c). After creating the hier
archy, we may want to isolate abstraction levels, so a
level can be executed apart from the rest of hierarchy
with no detailed internal structure. This is where the
behavioral approaches are employed. In depth dis
cussions of each abstraction technique follow in the
subsequent sections.

Our contribution is the formulation of a taxon
omy capturing two types of abstraction, which have
generally been overviewed in separate disciplines.
Structural abstraction is found mostly in information
on design, whereas behavioral abstraction is strewn
across many fields of computer science and simu
lation. Through a unification in terminology, we
demonstrate that structural and behavioral meth
ods are complementary aspects of system abstract
ion. Structural abstraction is common in program
ming language development within computer science
as well as in simulation. Behavioral abstraction is
common in statistical analysis and automatic control
where system abstractions are used in lieu of more
complicated model-based transfer functions. Along
with our discuss of the taxonomy, we present exam
ples of each approach to complete the discussion.

The paper is organized as follows : we present
the new system abstraction taxonomy with specific
methods of each category in Section 2. Then we il
lustrate the abstraction types using two scenarios and
show how abstraction methods perform in both lin
ear and nonlinear system abstraction, in Sections 3
and 4. We close with a summary of the taxonomy
and its advantages, with future goals to be achieved
in Section 5.
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Figure 1: Proposed Taxonomy for Abstraction

2 ABSTRACTION TAXONOMY

Figure 1 illustrates our abstraction taxonomy. A sys
tem consists of data and model components. Data
refers to values obtained either by observation or
arbitrary assignment of values to model compo
nents. Model components, which serve as funda
mental building blocks for models, take on the data
values. Sample model components include state and
event (Fishwick 1995). We sub-define structural abs
traction of a system into data abstraction and model
abstraction.

• Data Abstraction : abstraction of input, out
put, time, parameter system values or time
dependent trajectories.

• Model Abstraction : abstraction of dynamical
models.

Examples of data abstraction are symbolic value,
statistic mean and variance, interval, ratio and fuzzy
numbers. Data abstraction represents a way of
compressing time-dependent information. In con
structing a model, we further refine model abs
traction to homogeneous and heterogeneous abstract
ion (Miller and Fishwick 1992; Fishwick 1991). For
homogeneous-structural abstraction, dynamical sys
tems can be abstracted with only one model type,
depending on the level of information that one ex
pects to receive from analysis. Specific model types
are required at different abstraction levels. For exam
ple, one would not choose to model low-level physi
cal behavior with a Petri net since a Petri net is an
appropriate model type for a particular sort of condi
tion within a system, where there is contention for re
sources by discretely-defined moving entities. Exam
ples of homogeneous-structural abstraction are con
ceptual, declarative, functional, constraint and spa
tial modeling. Detailed discussion on each model
type is shown in (Fishwick 1995). Models must be
multi-layered so that different abstraction levels of
the model respond to different needs of the analyst.

In heterogeneous-structural abstraction, different
abstraction levels of a system are provided by allow
ing either homogeneous or heterogeneous model types

together under one structure. To incorporate differ
ent levels together, we have constructed a multimod
eling methodology (Fishwick 1991; Fishwick and Zei
gler 1992; Fishwick 1993; Fishwick et al. 1994), which
provides a way of structuring a heterogeneous and ho
mogeneous set of model types together so that each
type performs its part, and the behavior is preserved
as levels are mapped (Fishwick 1988; Zeigler 1972;
Zeigler 1990). Heterogeneous-structural abstraction
is equivalent to multimodeling in the sense that we
abstract a system structurally using homomorphic re
lationships of one level to another, providing multiple
level abstractions. While the multimodel approach is
sound for well-structured models defined in terms of
state space functions and set-theoretic components,
selecting system components in each level are depen
dent on the next-lowest level. This implies that we are
unable to run each level independently. It is possible,
to obtain output for any abstraction level but, nev
ertheless, the system model must be executed at the
lowest levels of the hierarchy. A new definition and
methodology are needed to better handle abstraction
of systems and components.

Behavioral abstraction is where a system is ab
stracted by its behavior. We replace a system compo
nent with something more generic that approximates,
to some degree of accuracy, the behavior of the system
component at its refined levels. Therefore, discarding
the refined levels that define a system component will
still result in a complete behavioral description of a
system (Fishwick and Lee 1996). By incorporating
behavioral abstraction approaches into multimodel
ing allows each level to be understood independetly
of the others. This is why we put multimodeling on
the top of our taxonomy.

We have two approaches of specifying system be
havior:

• Static approach : one takes a system and cap
tures only the steady state output value instead
of a complete output trajectory. The input
value is defined to be the integral of time value
over the simulation trajectory.

• Dynamic approach: one needs to associate
time-dependent input and output trajectories.

System identification (Ljung and Soderstrom
1983; Johansson 1993) is to abstract a system by
mathematical models. Modeling the system consists
of selecting a general, parameterized mathematical
representation and then tuning the parameters, so
that behavior predicted by the model coincides with
measurements from the real system. Parameter esti
mation procedure provides a search through param
eter space, effectively, to achieve a close-to optimal
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I Base Abstraction Type I Abstraction Technique I
Data Abstraction Symbolic Value

Mean, Variance
Interval, Ratio
Fuzzy Number

Structural Abstraction Conceptual Modeling
Declaration Modeling
Functional Modeling
Constraint Modeling
Spatial Modeling
Multimodeling

Behavioral Abstraction Regression
System Identification
Neural Network
Wavelet
Genetic Algorithm

Table 1: Sample Abstraction Categories and Associ
ated Techniques

Figure 2: Boiling Water System

3 EXAMPLE I: BOILING WATER MODEL

Consider a pot of water in Figure 2. Here we show
a picture of the boiling pot along with an input and
output trajectory. The input reflects the state of the
knob, which serves to specify external events for the
system. The output defines the temperature of the
water over time. Newton's law of cooling states that
Rqh = IlT = T1 - T2 where T1 is the temperature of
the source (heating element), and T2 is the tempera
ture of the water. qh is heat flow. Since T2 is our state
variable we let T = T2 for convenience. By combining
Newton's law with the capacitance law, and using the
law of capacitors in series, we arrive at:

3.1 Structural Abstraction

The structural approach to system abstraction for
the boiling water is defined in a recent text (Fish
wick 1995) where the boiling water is included as a
sub-system within a system of two flasks and a hu
man operator who mixes the flasks once the liquids
are boiling. In the structural abstraction approach
to systems, we first need to define our levels of abs
traction and then choose which models types to use
at each level.

We show part of the multimodel in Figure~ 3 and
4. The first model is a compressed version of all the

mapping between the actual values of the system and
the approximate abstract system. Commonly used
parameter models are ARX, ARMAX, OE (Output
Error) and BJ (Box-Jenkins) (Tan et al. 1995; Jo
hansson 1993). Brief explanations of these models
are shown in Section 3.2.2.

Neural networks have been established as a gen
eral approximation tool for fitting models from in
put/output data (Cynbenko 1989; Tang et al. 1991;
Tang and Fishwick 1993). From the system identifi
cation perspective, a neural network is just another
model structure (Ljung and Soqerstrom 1983; Bar
ron 1989). The inputs are linearly combined at the
nodes of the hidden layer(s) and then subjected to
a threshold-like non-linearity, and then the proce
dure is repeated until the output nodes are reached.
Backpropagation, recurrent and temporal neural net
works have been shown to be applicable to model
ing an identification (Fishwick and Lee 1996; Mills
et al. 1995). On the other hand, recently intra
~uced wavelet decomposition achieves the same qual
Ity of approximation with a network of reduced size
by replacing the neurons by "wavelons", Le. com
puting units obtained by cascading an affine trans
form and multidimensional wavelets (Ahang and Ben
veniste 1992).

. Table 1 summarizes the based categories along
WIth some sample abstraction techniques discussed so
far. Having defined the model abstraction taxonomy,
we now proceed to illustrate the different abstraction
techniques using the following example.

k

T

C1 +C2

RC1C2

k(T1 - T)
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Figure 3: Six State Automaton Controller for the
Boiling Water Multimodel
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Figure 5: Elapsed Time vs. Temperature

linear equations: Ac = y (Law and Kelton 1991). Fig
ure 6 shows the result. The approximation is poor in
the graph's central region because linear regression is
done by polynomial fit, and so it generates a mono
tonically increasing function.

hierarchy. Figure 4 shows Newton's law of cooling in
a functional block form.

3.2 Behavioral Abstraction

3.2.1 Static Approach

In the static approach, we're interested only in the fi
nal (i.e., steady state) temperature of the water. Our
two inputs are: (1) total amount of elapsed time for
the input trajectory and (2) integral value of the in
put trajectory integrated over time. The output is
the temperature of the water at the elapsed time. A
graph of elapsed time versus temperature is shown in
Figure 5. This information is obtained directly from
the underlying simulation of the boiling water system.
We chose a subset of all possible input time trajecto
ries in such a way that some nonlinearity was intro
duced into the graph in Figure 5. This was done to
challenge the behavioral parameter estimation meth
ods in creating a good fit. This explains why Figure 5
contains a small area of discontinuity in the region be
tween steady state temperature values of 20 and 40.

We will use linear regression to exemplify the
static approach. In general, a polynomial fit to data
in vectors x and y is a function p of the form:

( )
n n-Ip X = CI X + C2 X + ... + Cd

The degree is n and the number of coefficients is
d = n + 1. The regression coefficients CI, C2, ... , Cn

are determined by solving a system of simultaneous

3.2.2 Dynamic Approach

In the dynamic approach, we're interested in time
dependent behavior. In this case, we are concerned
not only in the steady state temperature but also the
way in which the temperature changes over time. For
this approach, we chose a system with just one input
and one output, both time-varying trajectories. The
input is the input "knob off/knob on" trajectory and
the output is the temperature trajectory.

The Box-Jenkins method is a frequently used lin
ear system identification method in time series analy
sis (Tang, de Almeida, and Fishwick 1991; Tang and
Fishwick 1993; The MathWorks 1991). Its structure
is given by

B(q) C(q)
yet) = F(q) u(t - nk) + D(q) e(t)

with

y(t) output signal

B(q) bi + b2q-l + + bnbq-nb

F(q) 1 + fIq-1 + + fnjq-n j

C(q) 1 + CIq-1 + + cncq-nc

D(q) 1 + dIq-1 + + dndq-nd

The numbers nb, nc, nd and nf are the orders of the
respective polynomials and q is the shift operator.
The number nk is the number of delays from input
to output. Figures 7 and 8 show the approximation
result and the accompanying error. Successful iden
tification of y(t) depends on how well we guess the
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Figure 7: Box-Jenkins Method

values of nb, nc, nd, nf and nk. Heuristics and "ex
pert rules," if available, aid us in choosing parame
ters. For example, too large a value for a parameter
results in computational difficulties to generate y(t),
while too small a value results in a rough estimation.
We often had to tune parameters by hand in order to
get a good approximation.

Though the abstraction methods discussed so far were
good at linear system abstraction, non-linear system
abstraction involves more complex behavior mapping.
In this section, we show how these abstraction meth
ods perform under non-linear conditions.

Our model deals with the regulation of hematopo
iesis, the formation of blood cell elements in the body.
Hematopoiesis is the process of blood creation in the
body. White and red blood cells are produced in bone
marrow. From the marrow they enter the blood cir-

Small sampling period for the discretization
makes the order of the discrete model very high due
to the long dependence of P(t) on P(t - 20), which
results in numerical difficulties to compute the opti
mal function of f. Therefore, increasing sampling pe
riod is needed as long as the discretization is not too

P(t) = f(P(t - 1), ... ,P(t - na))

culatory system. As the oxygen level decreases in the
body, there is a feedback back to the bone marrow
which produces more cells.

Mackey and Glass (Mackey and Glass 1977) pro
vide a delay model for hematopoieses of the following
form:

dP(t) = )..()mP(t - T) _ P(t)
dt 8m + pm (t - T) 9

where, A : the flux of cells into the blood stream,
P (t ) : the concentration of cells(the population
species) in the circulating blood (cells/mm3

), g :
day-I, cell loss rate per day and T : maturation delay.

We use A as an input. Depending on the matura
tion delay T, we can generate different solutions. In
a lower maturation delay, the system shows periodic
behaviors, but, as the delay moves upward, nonpe
riod trajectories appear. Figure 9 shows a nonperi
odic trajectory when the delay is 20.

Since we are interested in abstracting the time
dependent behavior of cell concentration in the cir
culating blood, we will restrict out experiments to
dynamic-behavioral abstractions. Also, to see how
abstraction techniques perform under heavy nonpe
riodie and nonlinearity, we choose maturation delay
20. Now, the dynamic-behavioral abstraction of hem
atopoiesis model is to approximate equation (1) with
a discrete model of the form where f is a nonlinear
function to be estimated with order na:
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40

30 I I, ,,
I

I 20 I ,
I ,

~
, ,

10
, ,

l!! ,
J

~ I

I 0

t.. -10
e I
~ I

1-20

~
.... -30 "

\

\
-40 \

....

-so
0 200 400 600 800 1000 1200 1400 1600 1800

Time

4 EXAMPLE
MODEL



D.ynamic ]\fodel Abstraction 769

1.8

1.6

I 1.4

.~ 1.2
e
~ ,

I

~0.8
iii
~

0.6

0l-----1.-_-..L...__--l-.__.....l.....-__....L....-_----J

o 50 100 150 200 250 300
Time

0.2

0.4

0.6

0.8

1.4----------r----.------.---~--__.

1.2

oL------L----L.__-..L.__----L..__----L-__-'

o 0.5 1.5 2.5 3
nme(days) x 1o~

Figure 9: Cell Concentration vs. Time for Delay T =
20 Days

Figure 11: ADALINE Network for Hematopoiesis
Model
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Figure 10: Hematopoiesis Model for Delay == 20 Days
with Increased Sampling Period: Abstraction Target

rough. Figure 10 displays the time trajectory for the
total concentration of blood cells when the sampling
period is increased by 100, which introduces more
nonlinearity and instability. We choose Figure 10 as
the abstraction target and use A for input.

ADALINE was developed by Widrow and
Hoff (Widrow and Sterns 1985). Their neural network
model differs from the perceptronq in that ADALINE
neurons have a linear transfer function. The ADA
LINE network also enables the Widrow-Hoff learning
rule, known as the Least Mean Square (LMS) rule, to
adjust weights and biases according to the magnitude
of errors.

The ADALINE neural network for the hematopo
iesis model performs abstraction as shown in Fig
ure 11. An ADALINE neural network takes initial
weights and biases, an input signal and a target sig
nal, and then filters the signal adaptively based on

Figure 12: Abstraction Error in ADALINE Network

input delay and learning rate parameters. In most
cases, input delay can be guessed by the modeled sys
tem itself. For hematopoiesis model, we know an out
put at time t is determined by 20 most recent inputs,
which could be inferred by the the delay-differential
equation (1). A proper learning rate is determined
by repetitive trials until a good fit is achieved with
fewer learning-stage perturbations.

5 CONCLUSIONS

We have presented a new taxonomy for model ab
stractions in dynamic systems. The taxonomy of abs
traction types, with multimodeling at the top level, is
constructed by model engineering perspective: when..
a system is first being developed, one should use
structural abstraction to organize the whole system
hierarchically with simple system types, and then
graduate to more complex model types. Below the
structural abstraction, each component is black-box
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with no detailed internal structure. Behavioral abs
traction is used to represent those black-boxes by
approximating the behavior of the system compo
nents. By combining structural and behavioral abs
traction together, each level of abstraction is inde
pendent from the lower abstraction levels, so a level
can be executed apart from the rest of the hierar
chy. These two concepts: structural and behavioral
abstraction are blended together to form a compre
hensive taxonomy. In addition to the taxonomy, we
discussed several abstraction methods according to
the categories they belong to and showed how they
perform in linear and nonlinear system abstractions.
We felt it important to provide both linear and non
linear models since one technique may fare well for
one type of system and then poorly on the other.

Given that we have developed this taxonomy, a
good question is "What to do with it?" We are de
veloping a system called MOOSE (Fishwick 1996b),
standing for multimodeling object oriented simula
tion environment, in which the taxonomy is to be ap
plied. MOOSE models are constructed using a graph
ical user interface which begins with the user speci
fying an object oriented class hierarchy. This proce
dure takes advantage of structural abstraction. For
exploiting behavioral model abstraction, our current
plans are to provide two or three basic techniques and
allow the user to choose which they would like. More
over, we are developing a semi-automated approach
to developing behavioral abstractions of multimodel
components which can benefit most from the compu
tational gain afforded by not having to simulate at
the lowest level.
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