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ABSTRACT

How each simulationist can design and implement
soft\vare tailored for each particular simulation project
is addressed by modular simulation environments. The
requirements of such cnvi ronmcnts are derived from thc
needs of four distinct types of users. Inter-tool
modularity deals \vith ho\v data £1o\,"s bct\veen a non
homogeneous sct of soft\vare tools that can be changed
on an ad hoc basis. Both simulation spccific and \videly
applicable soft\varc tools may be used. The
organization and management of simulation inputs and
results to achievc this goal is important. Intra-tool
modularity has to do \vith supporting simulation project
tasks in a modular fashion. Modular modeling is \vcll
established. Possibilities for modular animation and the
modular use of \vidcly applicable tools. spccifically
spreadsheets. arc discussed. An example modular
simulation environnlcnt is given.

INTRODUCTION

Ideally. e3ch simulationist \vould be able to select the
set of soft\"are tools to use on each si nlulation project
(Standridge and Centcno. 1994). The selection would
be based on the particular requirements of that project.
The tool set \\'ould contain both simulation specific tools
such as model builders and simulation engines as \vell
as tools \"ith \vide applicability such as ,,'ord processors.
statistical analysis packagcs~ and spreadshcets.

Modular simulation environnlent concepts seek to
proyide the standard by \vhich ad hoc collections of
sofuvare tools can be used together to perform a
simulation project. These concepts specify ho\"
simulation related data flo\vs bet\\'een tools in a general
"'ay so that heterogeneous soft\\'are can \vork together.
The concepts address ho\\' tools can be tailored for usc
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on particular problems and ho\\' general purpose tools
can be tailored for application in simulation.

Modular simulation environments arc based on an
approach similar to that of computer operating
environments such as Microsoft Windov.s for personal
computers and X-Windo\vs for Unix-based \\lork station
computers. The \vindo\\ling systems provide the design.
structure and mechanisms for tool integration.
Windo\,"s and X-Windo\\'s provide a user interface
standard for soft\\"arc tools as \vell as standard
mechanisms for sharing information bcl\\'ccn tools.

Some benefits of modular simulation environments
are as [01l0\vs:

1. High flexibility for end user sclection of
simulation soft\\'are. This supports sinlultaneous use of
simulation soft\\'arc fronl multiple soft\\'are providers as
,veIl as locally dcveloped tools.

2. Usc of \videly applicable soft,,'are \\lith \\'hich
the end user is already familiar.

3. Inclusion of tools such as spreadsheets. \\'ord
processors and presentation graphics generators that
have not traditionally bcen a part of simulation
environments,

4. Usc of standard "'indo\\'s techniques for
sharing information bet\vccn tools.

5. Management and selective use of simulation
inputs. results. and modcls.

6. Definition of a standard for simulation
environment structure and user interface. Because of its
flexibility. end users may generally adopt such a
standard and tool builders may find developing soft\varc
compatible \vith its requirements helpful.

This paper describes the design and initial
implementation of modular simulation environments as
\yell as an example application. Requirements for
nl0dular sinlulation environments are based on their
four different types of users. Thesc user types arc
derived from those proposed by Standridge and Centeno
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(1991). The flow of information bet\veen tools is
described. The use of modular modeling concepts to
tailor simulation specific and general purpose soft\\"are
tools for particular applications is discussed. Modular
modeling for net\\'ork simulation languages is revie\ved
(Standridge. 1995).

2 SIMULATION ENVIRONMENT OVERVIEW

Modular simulation environments are distinct from
these existing environments in that the set of soft\\'arc
tools are not pre-determined.. the use of \videl)'
applicable soft\vare is encouraged.. and the user
interface relics on the standards set by existing
graphical computer operating system interfaces.
Database management must accommodate the open
ended nature of the en\'ironment.

3 USER TYPE REQUIREMENTS
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Modular simulation environment capabilities are
based on the needs of four user types \\-'hose relationship
is given in Figure 1. The user types represent typical
roles. In any particular situation. the same individual
may take on multiple roles or many individuals may
participate in the same role.

Figure 1: Modular Simulation Environment User Types

An environment builder gathers the soft\\"are tools
that form a simulation environment. The builder can
construct multiple environments in this \\·ay. For
example. an environment bui lder could select the
SLAMSYSTEM simulation environment.. the PROOF
animation tool. and the EXCEL spreadsheet to comprise
the environment.

In addition. an environment builder tailors the engine
of any tool selected. SLX (Henriksen. 1995) and
Y"ANSL (Joines and Roberts. 1994 and 1995) are
simulation engines. For example. the environment
builder could construct a ne\\' transaction creation
mechanisnl in SLX that reads the time of the next
arrival and its attributes from a file as opposed to the
traditional specification of a random or constant timc
bet\veen transaction creation. The extensibilit\,
capabilities of SLX \vould be used to define the nc\·\"
creation statement and encode the logic, The nc\\'

Traditional simulation environments have three
major components: (1) a fixed set of software tools
prescribed by the environment designers and
implementers. (2) a database management system that
transparently to the environment users controls the flow
of data behveen the soft\vare tools.. and (3) a user
interface that gives access to all environment
capabilities. Each soft\vare tool uses existing
information in the database and adds the results of its
own operations to the database.

TESS (Standridge.. 1985: Standridge and Pritsker.
1987) \-vas an early.. pre-graphical user-interface.
simulation environment built on this strategy. Soft\vare
tools provided for building SLAM II net\\'ork models.
editing sets of SLAM II control statements. constructing
animations. making statistical computations. graphing
data. and reporting data. Simulation results could be
collected automatically from SLAM II. GPSSIH.. and
MAPII simulations. A conlnland language served as
the user interface. Selective querying of the database
,,'as supported. A database subprogram library allo\\'ed
computer programs to store and retrieve data from the
TESS database. The database manager organized
simulation inputs and outputs.

Balci and Nance (1987. 1992) have used a similar
strategy in designing and inlplementing a simulation
model development environment. This ,,"ork has lead to
the visual simulation environment (Balci et al. .. 1995).
A visual user interface supports the development and
simulation of visual models that nlay be hierarchical
and object oriented. The collection of tools includes a
\"isual editor. a library of existing component models. a
static model analyzer~ a nlodel dynanlics tester. a
simulator. an analyzer for simulation results. a multi
media learning support system. and an e\'aluator for
accessing the credibility of a simulation study.

Centeno and Standridge (1991) describe an
information based simulation environment constructed
using the same approach. Its distinguishing features
include the description of a manufacturing system of
interest as information stored in the database.
Alternative models can be generated by querying the
database. In addition. a kno\vledge-based user interface
is proposed to guide the user through the steps of a
simulation project.
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Modular Simulation Environment Demonstration

Figure 2: Dcmonstration Modular Simulation
Environment Tool Set

specific and ".idely applicable tools arc included. Tools
developed to achieve inter-tool modularity arc sho\vn in
lo\'~'er case.

SLAMSYSTEM is used for modeling and simulation
activities. It is interesting to note that another
simulation environnlent can be used \\ithin a modular
simulation environment. PROOF provides animation
capabilities. EXCEL spreadsheets are used for model
input value entry and for processing simulation results.
ACCESS databases can be used to organize.. manage.
examine. and present sinlulation results, A text editor
helps \\lith input valuc entry.

Template-based tools havc been dcvcloped
specifically for organizing. specifying. and optionally
entering model input values \\"ithin a modular
simulation environment. Multiple data sets can be input
to a model. A template or format is dcfined for each
input data set. A list of tcmplates needed for a
particular simulation is maintained. A template tool
provides for defining the format of one input data sct.
listing the input data scts necded for simulation input.
and entering values.

Simulation result collection can be specified.
Generic tools for organizing and collecting results are
provided. The capability to extract values from each
simulation language of interest must be coded. This has
been done for SLAM II.

Results processing has to do \\'ith making simulation
results ready for input to other soft\\'are tools. It
includes joining together results collected from the
simulation of multiplc alternatives. This facilitates the
comparison of alternatives.

Finally, a ne\\' tool can be attached to the
environ~ent. This involves describing the input data
formats It accepts and the format of the output data it
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ACCESS

Result
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Tool
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Tool
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4 INTER-TOOL MODULARITY

One type of modularity in a simulation environment
has to do \vith ho\\' data flo\vs behveen tools. This is
referred to as inter-tool modularity. It must
accomplished in such a \vay that ne\\' tools can be added
to the environment on an ad hoc basis. No modification
of existing tools can be required though the ability to
export data and capabilities for tailoring existing
functionality can be exploi ted.

Figure 2 sho\vs the tool set of the first demonstration
modular simulation environment. Existing conlmercial
tools are sho\vn in capital letters. Both simulation

statement could then be used as \vould any other
statement.

A module builder deals with one environment. The
environment is tailored multiple times. once for each
application domain of interest.

Consider a module builder concerned with discrete
parts manufacturing. Using the capabilities of the
simulation language selected by the environment
builder. the module builder could construct modules for
modeling individual work stations, material handling
between work stations. serial lines and the like.
Spreadsheet macros for processing observations of
performance measure values could be written. Such
macros could compute confidence intervals using the
method of replicates. help find the truncation point in a
steady state simulation.. and graph simulation
performance measure observations. Interfaces to these
capabilities \\"ould "speak the language" of the domain.
Thus.. the simulation environment \\'ould more closely
~~use the language" of the application domain. .

A model builder is concerned about multiple systems
in one domain. Using the domain specific modeling
modules provided by the module builder. a model
builder constructs a si mulation model of any particular
system in the domain. Other tools tailored by the
module builder for the donlain can be further tailored bv
model builder for the system. For example.. a tool fo'r
graphing time series of observations could be labeled as
graphing the number of parts ina buffer. The range of
the number of batches considered in computing a
confidence interval from one series of observations
could be specified.

A model user evaluates nlultiple alternatives about
one system. The alternatives are described using input
data to the simulation model constructed by the model
builder. Other tools tailored by the model builder are
used to exanline.. compare. and analyze performance
measures resulting from sinlulations. For examples.
spreadsheet macros can be used to graph performance
measure values and perform statistical analysis.
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corresponding name in the simulation language. For
example~ the performance measure, #INBUFFER could
correspond to the SLAM II function NNQ( I). A list of
the simulation result sets to be gathered is created using
the TEMPLATE tool.

Figure 4 sho\vs the flow of information for the
collection of simulation results. Each result template is
defined using the TErvtPLATE tool. A list of the all of
the result templates desired for each simulation run is
prepared. Based on the result template list, the result
collector interacts \vith a simulation run to gather the
performance measure values of intcrest. The resul t
collector consists of a generic part and an intcrface to a
particular simulation engine. Results can be stored in
an ACCESS database for further processing.

produces if these are non-standard. Standard formats
include text (ASCII) files~ spreadsheet files, and
database files. Existing tools may be removed.

Multiple data sets can be input to a model. A
template or format is defined for each input data set. A
list of templates needed for a particular simulation is
maintained. A template tool provides for defining the
fonnat of one input data set. listing the input data sets
needed for simulation input:- and entering values. .

Figure 3 shows the flo,,' for input data. The
TEivtPLATE tool is used to describe the data. Values
can be entered using anyone of a variety of tools,
including a spreadsheet such as EXCEL, a text editor
such as NOTEPAD, or the TEMPLATE tool. This
illustrates how a variety of tools can be employed to
accomplish the same purpose in a modular simulation
environment. Which tool is employed depends on each
particular user. TENfPLATE

Result
Collection
Template

Result SLA.\f II
Collector Inter-
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TEl\1PLATE

Input Data
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Figure 3: Flo\v of Simulation Input Data

The TEN1PLATE tool also is used to define the data
input requirements of a simulation model. This
definition is a list of the templates for \vhich values
must be supplied in order to run the simulation.
Running a simulation requires creating a list of the
specific input data sets, one corresponding to each
required tenlplate. This list defines the simulation input
for one particular simulation run. Again, this input data
list is created using the TElv1PLATE tool. The input
data list and the input data files are supplied to
SLAMSYSTEM in its standard form for user data.

Within an input data set values can be organized
into ro,vs and columns. Each row gives new values for
the variables represented by the columns. Alternatively~

each ro,,, can correspond to a different variable. A
prompt at the beginning of the row specifies the input
requirements.

The TEN1PLATE tool is used to define the simulation
results collected. Multiple result sets can be gathered
for each simulation run. A template is given for each
set. The template shows the name of the performance
measure as kno\\:n in the sinlulation result set and the

Figure --1-: Simulation Rcsult Collection

Result processing has to do \vith preparing simulation
performance nlcasure values gathered by the result
collector for processing by other tools. Values of
different performance measures from one alternativc
(different result sets) or values of the same performance
measure from different alternatives can be organized
together. EXCEL and PROOF can be used to analyzc
and display performance measure values.

Result processing is summarized in Figure 5. The
TEtv1PLATE tool is used to specify which simulation
results from \vhich alternatives are of interest. The
result processor produces a file of these result which be
input to another tool. Data files collected from the
simulation can be used directly in other tools if no re..
organization of the simulation results is needed. This
sho\v the flexibility of a modular simulation
environment is meeting user requirements.
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Figure 5: Simulation Result Processing

Scenario -- What alternative is being described.
Variable -- Identifying name of an input quantity.
Value -- As specified by the nlodel user

The organization of input values and simulation
results is a fundamental aspect of achieving inter-tool
modularity. Input data arc labeled as follo\vs:

The second type of modularity has to do \\'ith ho\\'
each tool does its \vork. Moduiar modeling concepts
have long been discussed and are \vell implemented. Sec
Zeigler (1990). Cota and Sargent (1992). and Sanderson
et al. ( ~ 992) for basic definitions. concepts. and
example lnlplementations.

6 INTRA-TOOL MODULARITY

Abrams. Standridge, et al. (1995) describe a
simulation model of local caching policies. Files are
retrieved via the World Wide Web to support distance
learning. Caching allows the files to remain local.
avoiding multiple retrievals of the same file. Caching
policies tell \vhat files to replace when a ne\\' file tries to
enter a full cache.

A modular simulation environment supports this
model. There arc t\VO input data sets: simulation
options and experiment specification. Typical
simulation options are the number of replications of
each experiment. internet transmission time for files.
and the name of the file listing the names of the files
giving the files transmitted on the internet. This input
data set in organized \\'ith a different variable and its
value on each line. The experiment specification
includes parameters such as the cache size. the
replacemcnt policy. and the parameters of the
replacement policy. It is organized in a tabular format
\\ith one experinlcnt per fO\\". Columns correspond to
experiment parameters.

The TEMPLATE tool is used to describe the t,,'o
files. The Windo\\'s notepad editor is used to entcr
values. This sho\\'s the flexibility of a modular
simulation environment. Either the TEMPLATE tool.
the notepad editor. or a spreadsheet could have used to
enter the valucs. The model uscrs arc computcr
scientists \\ho arc comfortable using the notepad editor.

Thc primary simulation rcsults are gathcred at the
end of the simulation run (ty-pc end of simulation ani\')
into one set. Results include the expcriment~1
parameter values and performance nlcasures such as the
hit ratc. the percent of files found in the cache \,"hen
requested.

Statistical analyses. such as regression and ANOYA.
are used to determine \vhich of the expcrinlcntal
parameters significantly affect the hit rate. These
statistical analysis capabilities exist \\"ithin a
spreadsheet. Since only one result set is collected. it is
store? by the results collector in a file fonnat acceptable
for dIrect spreadsheet input.

5 AN EXAMPLE MODULAR SIMULATION
ENVIRONMENT

PROOF

EXCELResult
Processor

Result Values
Fil~

ACCESS or
Data Files

TEMPLATE

Result Processing
Template

Note that there are multiple scenarios. versions.
possible for each input data set. For exanlple. there
could be an input data set for the routes of parts through
a job shop. Each scenario "'ould represent a different
possibility for routing jobs through the shop.

In addition. that there are multiple input data sets.
Thus. a simulation alternative is defined by a model
user by specifying the sccnario of each input'data set to
be employed.

Performance mcasure values resulting from a
simulation are labeled as in the follo\ving \\'ay.

Scenario -- What system alternative \\'as simulated.
Type of values -- Time-persistent observed. trace.

end of simulation only,
Replicate -- ID number
Variable -- Identifying nanle of an performance

measure.
Time or time interval -- When observed
Value -- As observed

For example. the follo"ing data sets could be
collected: queue lengths. resource utilization, part time
in the system. and throughput. The first t\VO are time
persistent the third obsen·cd. and the last end of
simulation only.

For result proccssing. the utilization of a particular
resourcc and the correspondi ng queue length could be
joined in a single data set. Alternatively. the queue
lengths corresponding to a particular resource from each
of t\\"o scenarios could be joined for comparison of the
t,vo alternatives.
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Standridge (1995) discusses modularity of net\vork
simulation languages and describes a modular network
language, ModNet. This paper defines the
characteristics of a module and the communication
bct\\'een modules. Module parameters are passed to a
receiving module via a construct that resembles calling
a subprogram in a general purpose programming
language. Performance measure values are made
public. that is accessible to all modules. Signals are
public quantities that indicate that an event of note has
taken place in a module. Other modules may respond to
that event.

ModNet places bounds on the common entities of a
nehvork language. transactions and resources.
Transactions may not cross module boundaries.
Transactions may not be cloned. The need for cloning
is satisfied by using a different module. A resource is
defined and controlled by one module. This module
may pass a resource name as input to another module to
use. For example. a module may define and control a
Vt'orker resource. The \vorker may perform tasks at t\vo
distinct \\'ork stations. Each "'ork station is represcnted
by a module. The name of the \vorker resource is
passed to each \\'ork station module by the defining and
controlling module.

ModNet is being implemented in the SLX simulation
engine. An environment builder uses the extensibility
properties of SLX to define the fundamental modeling
capabilities available in ModNet. A module builder
develops MOONet nlodules frool \\'hich a model builder
constructs nlodels.

Consider the possibilities for the use of modularity
concepts in other tools. A nlodcl user \vould like a
spreadsheet interface and functionality tailored to the
system under study. This could be constructcd as
fol1o\\'s. The environment builder is unlikely to have
the capability of changing the spreadsheet engine. its
core functions. The module builder \,,"ould \vrite
spreadsheet macros that generate graphs and perform
statistical computations generic to the domain of
interest. For a exanlplc. a spreadsheet nlacro could
graph the number of parts ina buffer versus simulation
time. Another macro could use the nlcthod of batches to
estimate a confidence interval concerning the mean
number of parts in the buffer. The model builder could
further tailor these macros to refer to the specific buffers
in the model and specify the number of batches used in
the confidence interval computation. Thus. the model
user could simply ask for the graph of the number in the
drill press buffer and the confidence interval concerning
the mean.

Figure 6 sho\vs one possible organization for
animating a simulation. An aninlJtion is generated by a
script that specifies a time ordered list of changes to a

scene starting with an initial frame. Changes include
modification to object attributes such as color or
movement of objects. This sJXX:ification allo\\'s the
animation engine to produce a set of frames that sho\\'
the time dynamics specificd by the script.

Figure 6: An Organization for Simulation Animation

The script can be based on the event trace produced
by a simulation engine. A set of rules can be used to
map the evcnts of the simulation into a script that
produces the animation of a simulation. In the case of a
simulator such as ProModeL these rules are implicit in
the specification of the model. In other \\·ords. the rules
are embedded in the sinlulation engine. In the case of a
simulation cnvironment such as SLA!v1SYSTEM. the
rules must be explicitly provided by a user.

Modular animation is achicved as fol1o\\"s. An initial
frame is associated \vith each model module. The trace
to script rules are specified. Thus. the animation for
each instantiation of that module is specified. The
combination of thc animation of each module results in
the animation of the model.

Animation of cach module can be made optional.
For example. an animation of the main module onh'
gives a high level overvie\\' of the model. Th~
animation can be expanded to include only those
nl0dules referenced by the main module to increase the
level of detail. An animation of all modules sho\\"s all
of the detail of the model.

7 SUMMARY

Current progress in the area of modular simulation
environments has been discussed. Requirements for
these environments arise from the four distinct types of
users that take part in a simulation activity. Inter-tool
modularity has to do \\'ith ho\\" data flo\\' bet\\'een
heterogeneous tools. Intra-tool modularity is concerncd
,,·ith performing tasks in a modular fash·ion. Modular
modeling is \vell established. Concepts of modularit,"
can be applied to other tools such as spreadsheets and
animators. The organization of simulation model inputs
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and outputs in a modular simulation environment is
discussed. An overview of a modular simulation
environment for a simulation of local caching of World
Wide Web files is given.
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