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ABSTRACT

Generating simulation models is a knowledge in-
tensive, time consuming, and error-prone task in im-
plementing a simulator. The main purpose of this
research was to find an easy, fast, and reliable way
to generate simulation models and model library.
To solve this problem, the Automatic Element Rou-
tine Generation System (AERO) is developed as an
efficient way for automatic model development us-
ing domain specific automatic programming tech-
niques. Behavioral and structural models are gener-
ated from Boolean equations, truth tables, HDL de-
scriptions, schematic diagrams, or incomplete specifi-
cations. Results show that the system could greatly
reduce the cost of simulation model generation for
CAD systems and, consequently, reduce the design
cycle considerably.

1 INTRODUCTION

It is clear that simulation, at various levels, is
an essential and commonly used method for verifying
the design of digital systems. A simulation model is a
program code which represents the functional behav-
ior of an element and is written in a simulator’s target
language. Simulation models are created and added
into a simulator library. The performance of a simu-
lator highly depends on the number of models in the
model library and the efficiency of the models. Since
a simulator can only simulate systems constructed of
the primitives in the model library, if there are not
sufficient models, a large system may not be handled
by the simulator. Also, if the model is written in an
inefficient way, the speed of the simulator is slow.

Therefore, it 1s very important to find an effec-
tive way for developing a model library as well as for
generating efficient models. Until recently, simula-
tion models were developed through a knowledge in-
tensive design process which is time consuming and
error prone. Additionally, it is not easy to predict
the performance of functional elements. To overcome
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these difficulties, an automatic way of model gener-
ation is required. Over the life time of a simulation
system, the development of the simulation model li-
brary is the largest programming effort. Therefore,
automatic model generation is clearly necessary and
very significant, since it has the potential of saving
hundreds of man-years of code development.

The concept of automatic code generation of
functional models was initially introduced in (Szy-
genda 1979). Several attempts (Han 1991, Yang
1991) have been made to apply domain specific pro-
gramming techniques (Barstow 1985) in the auto-
matic model generation area, with great ease, ac-
curacy, and efficiency. Domain specific automatic
programming techniques allow a user to describe pro-
grams using informal and imprecise terms of domain,
and produce efficient and reliable programs.

In this research, to eliminate inefficiency of the
previous works, a new simulation model generation
system, called AERO (Automatic Element Routine
Generation System), is developed. Also, the AERO
can generate simulation models from various descrip-
tions for various simulation algorithms such as logic,
fault, error simulators. This system can be used ei-
ther when developing new simulators or for upgrad-
ing existing simulators, as a model generation tool.

2 CONFIGURATION OF AERO

To implement efficient domain specific auto-
matic programming techniques, the following must
be carefully considered. Firstly, knowledge of the
application domain must be kept in some form of
rule base to guide the program synthesis. It can be
classified into domain independent knowledge base
about implementing code syntax and domain specific
knowledge base about application domain. Secondly,
the system must provide the efficient user interface to
get specifications and knowledge. Thirdly, in order
to handle the users’ incomplete or imprecise specifi-
cations, the system must be capable of figuring out
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the users’ intention.

To generate simulation models effectively, the
following must be considered. Firstly, the system
must generate high performance models since mod-
els affect the overall performance of a simulator. Sec-
ondly, the system must verify generated models, since
the correctness of the models means the accuracy of
a simulator. Thirdly, the system must generate mod-
els which can easily interface with various simulators,
with minimal modification. Also, the system should
generate concise models, in order to minimize the
usage of memory. Finally, the generated models for
sequential devices must have some mechanisms to al-
locate data for each instance of the element, including
internal memory states.
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Figure 1: Configuration of the AERO

The AERO (Automatic Element Routine Gen-
eration System) can automatically generate models
from various descriptions, using domain specific au-
tomatic programming techniques. As shown in Fig-
ure 1, the AERO consists of several subsystems,
i.e., Preprocessing Unit, Automatic Code Generation
Unit, Model Verification Unit, Postprocessing Unit,
Knowledge Base and Model Library. This system can
generate models written in the C programming lan-
guage from truth tables, boolean equations, schemat-
ics, and hardware description languages.

3 PREPROCESSING UNIT

Figure 2 shows a block diagram of the Pre-
processing Unit. The Preprocessing Unit includes
parsers and translators which have interactive user
interface facilities.

From the schematic description, a net list is gen-
erated with the help of the OCT environment (Spick-
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Figure 2: Preprocessing Unit

elmier 1989). A netlist can also be generated from
the hardware description language, Simulation Au-
tomation System (SAS) Hardware Description Lan-
guage (SHDL) (Kang 1991), Tegas Description Lan-
guage (TDL), and VHDL. These descriptions are
parsed, and passed onto the Netlist Generator, which
generates the levelized netlists. SHDL and VHDL
are also used to describe behavioral domain models.
Parsed behavioral descriptions include control flows
and equations.

When truth table descriptions, which are one
of the easiest and most natural means to describe a
reasonable size circuit, are entered, they are trans-
lated into internal data structures. If the Boolean
equations, or the gate implementation, of a circuit is
known, it is convenient to use equations to describe
the circuit. These equations are translated into in-
ternal data structures.

Interactive user interface displays the existing
models which can be used to construct new models,
or to store the generated models and the correspond-
ing model specification into the model library. By
grouping similar models into the same class, users can
derive the characteristics and transformation rules
and attach them onto this class. This knowledge will
be used by the incomplete information handler and
the input verifier to complete the missing part of the
input specification and to perform the consistency
check. The series of questions are shown in Figure 3.

4 MODEL GENERATION UNIT

Using the information from the Preprocessing
Unit, the Model Generation Unit (MGU) synthesizes
models. From the synthesized models, it can gener
ate ‘C’ models according to user’s command. The
structure of the MGU is shown in Figure 4.

The general simulation models can be classified
into structural and behavioral models. A structural
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model describes a circuit by connecting low level
primitives. A behavioral model is used to describe
the functional behavior of a circuit. This system
can generate both structural and behavioral models.
The simulation model consists of entity declarations,
architectural bodies, and configuration declarations.
An entity represents a part of a well-defined hard-
ware design. An architecture specifies the relation-
ship between the inputs and the outputs of a design
entity, and a configuration specifies the binding of
components to entities. With the information about
input and output signal names, entity parts can be
completed.

If the description is in the form of truth tables
or Boolean equations, there are no primitives in the
descriptions. However, 2 input AND, 2 input OR,
and NOT gates are used to complete an ‘architecture’
part of structural C models. If the description is in
the form of schematics or HDLs, then the informa-
tion about primitives used in the descriptions is used
for the structural models. The remainder of ‘archi-
tecture’ part is filled out using net list information,
control flow information, and equation information
which is synthesized using domain rules and given
specifications.

According to the bit representations of a specific
simulator, a signal modeler generates an enhanced

table or equations.  The signal modeler is used to
dynamically customize AERO according to the user
specified Togie values and hit representations, so that
the AERO process becomes very flexible in terms of
generating models, which comply with various sig-
nal models. For any A-valued signal model, & distinct
logic values can he represented in the computer by
sets of bits with at least log, k bits in the set. For
example, simulators like TEGAS use two word rep-
resentations for three value simulation. Hence, two
variables are used for cach variable defined in the
original truth table. Let us assume that we want to
generate a simulation model for a two input AND
gate, for three value Jogic: where the three state val-
ues are L, 11, and X, for low signal value, high signal
value and unknown value, respectively. The signal
modeler may assign; bitd = 0 and bitl = 0 for L,
bit0 = 0 and bitl = 1 for H, and bit0) = 1 and bitl
= 1 for X. A C model based on the above bit assign-
ments is shown in Figure 5.

AND2(i, o)
int i[2])(2], o[1]1[2];

int a0, ai;
int b0, bil;
int c0, ci;

a0 = i[o][0];
al = i[0][1];
bo = i[1]1[0);
bl = i[1][1];
c0 = (a0gbo);
cl = ((al&bl)l(al&bon(&0&])1));
o[0][0] = coO;
o[0][1] = ci;

Figure 5: 2 Input AND Model for 3 Values

For more accurate simulation, 5 logic values (0,
1, U, D, E) are usually used. To represent 5 value, 3
bits are used, where logic L is represented by bit pat-
tern 000, logic H is represented by bit pattern 110,
the state U (for signal going-up) is represented by
bit pattern 010, the state D (for signal going-down)
is represented by bit pattern 100, and the state E
(for error or unknown value) is represented by bit
patterns 001, 011, 101, or 111. However, the encod-
ing for the given value is not unique and the users
should be able to decide on their own selections. A
C model based on the above bit assignments is shown
in Figure 6.

As an example, consider path delay fault sim-
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0R2(i, o)
int i[2](31, o[1](3];

int a0, al, a2;
int b0, b1, b2;
int cO, c1, c2;

a0 = i[o0][o0];
al = i[0][1];
a2 = i[0][2];
b0 = i[1][0];
b1 = i[11[1];
b2 = i[1]1[2];
cO0 = (a0|bo);
c1 = (a1lbl);
c2 = ((-a0&b2)|(-a18b2) | (a22-b0)|(a22-b1)
(a2&b2) | (a0&—a1&-b0&b1)| (-ad&a12b0&—-b1)) ;
o[0]J[0] = cO;
o[0]J[1] = c1;
o[0][2] = c2;

Figure 6: 2 input OR Model for 5 Values

ulation (Kang 1994) using 4 values. Logic L is rep-
resented by bit pattern 00, logic H is represented by
bit pattern 10, logic X is represented by bit pattern
11, and logic Z is represented by bit pattern 01. The
evaluation routine for 2-to-1 MUX is shown in Fig-
ure 7.

When equations or truth tables are entered, it
can generate the enhanced equations directly from
the given equations, or can generate minimized
equations using optimization routines. The opti-
mizer generates optimized equations using the Quine-
McCluskey’s algorithm. If the description is given in
equation form, the equations are transformed into a
table form to permit the use of the same algorithm.

The code generator generates the simulation
model from the model name, input pin names, output
pin names, signal names, the optimized equations,
and other information using domain rules. The code
generation algorithm is based on a template match-
ing mechanism (Biermann 1984).

5 MODEL VERIFICATION UNIT

When simulation models are automatically gen-
erated, it is necessary to verify the correctness of
these models. Verification of models is accomplished
in a similar fashion to the verification of design in
that a simulator is used to verify new models. Some
difficulty exists with respect to the determination of
consistency among models at various levels.

Simulation at various levels is used in order to
verify the correctness of models. The simulator can
handle multi-level primitives according to the level

MUX21(i, o)
int i(3]1[2], o(1](2] ;

{
int a0, al, b0, b1, cO0, ci, d0, d1 ;
a0 = i[o][o0] ;
a1l = i[0]([1] ;
b0 = i[1][0] ;
b1 = i[11[1] ;
co = i[2][0] ;
ct = i(21[1] ;

d0 = (—cO&a0) | (cO&bO) |
(c12(a0|b0| (—~a1gbl)|(a12-b1)));
d1 = (-~cO&al)|(cO&bl)|
(c1&(al]bl|(—-a0gbo)|(a1&-b0)));

o[0] [0]
o[01[1]

do ;
dl ;

Figure 7: 2-to-1 MUX for Delay Fault Simulation

ol the primitives. The basic configuration is shown
i1 Figure 8. From the given descriptions of models,
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Figure 8: Model Verification Unit

expected behaviors are extracted and stored. This
process is straightforward, to directly provide an en-
vironment for simulating a given model. If the user
wants to see the results for each simulation pattern,
they can be provided. If the user specifies the number
of simulation patterns, then, according to the given
number, the pattern set is generated. Also, if the
user provides a simulation pattern set, it can be used
for simulation. Then, according to the size of a de-
scribed circuit, a random pattern set, or an exhaus-
tive pattern set, may be generated by the pattern
generator. Then, the simulation results are passed
on to the comparator. After comparison, if all re-
sults are the same, the model is said to be correct.
However, if any of results is not the same, an er-



712 Lee and Kang

ror message is provided and the simulation patterns
in disagreement are provided to the user for further
consideration.

6 MODEL LIBRARY AND KNOWLEDGE
BASE

Model Library has several sub-libraries to store
the same device using different levels of descriptions.
The library handler is used to display all existing
models and specifications. Also, it is used to place
new specifications into the library. It stores and re-
trieves the circuit descriptions of various types and
puts the generated models into the library. [t is also
used to link the structural models to their compo-
nents and to add the generated clements to the spe-
cific simulators.

The Knowledge Base contains domain specific
knowledge, used in model generation and verifica-
tion. The knowledge stored in the Knowledge Base
is classified into several categories including;

1) information about specific simulators, such as,
logic values, memory state handling, how to call ele-
ment routines, etc;

2) information about input descriptions, such as
how to describe truth table specification, boolean
equation specification, and HDLs; and

3) information about model verification.

7 POSTPROCESSING UNIT

The Postprocessing Unit generates an i/o inter-
face for specific simulators. Since every simulator has
its own way of using simulation models, the postpro-
cessor should be capable of handling the variation.
In order to do this, it requires various information
about simulators, including; how to call an element
routine, how to keep the state variables, etc. This
information is stored in the Rule Base.

8 RESULTS

Using the AERO, many models were generated
using ISCAS benchmark circuits (Brglez 1985). The
results of model generation are shown in Table 1, in-
cluding; circuit sizes, model generation times, num-
ber of simulation patterns, and simulation times.
The circuit size is the number of gates, being assumed
that the circuit was flattened into a gate level, if it
is not at the gate level. Although model generation
time increases according to the circuit size, the au-
tomatic model generation time is acceptable because
of its speed and accuracy. For simulation purpose,
1024 random patterns were generaled and used.

Simulation was performed using the generated
models to prove thier efficiency and accuracy. The
3 value parallel fault simulation results are shown in

Table 2. These results are derived using the PAR-
SIM simulator (Kang 1990) For these results, 1024
random patterns are used.

Also, the mixed level path delay fault simulation
results are shown in Table 3. For these results, 1000

Circuit | # of | Generation # of Simulation
Gates | Time [sec] | Patterns | Time [sec]
cd32 160 0.233 1024 7.013
c499 202 0.317 1024 14.317
B8V 383 0.600 1024 19.600
c 1355 546 0.833 1024 26.833
c1908 880 1.067 1024 35.067
c2670 1269 1.817 1024 47.817
c3540 1669 2.250 1024 64.250
¢h31h | 2307 3.433 1024 106.433
c6288 | 2416 4.083 1024 163.083
c7552 | 3513 4.833 1024 261.833

Table 1: Results of Model Generation

Circuit | Faults | Fault Coverage[%] CPU Time
c432 524 95.99 0.009 sec/pat
c499 758 97.49 0.032 sec/pat
880 942 98.20 0.026 sec/pat
1355 1574 89.07 0.183 sec/pat
c1908 1879 94.40 0.185 sec/pat
2670 2747 81.61 0.580 sec/pat
¢3540 3428 94.04 0.311 sec/pat
c5315 5350 95.73 0.534 sec/pat
6288 7744 97.32 1.021 sec/pat
7552 7550 91.08 1.345 sec/pat

Table 2: Results of Fault Simulation

Circuit | ROB | SNR | WNR | CPUJseq]
s713 | 556 | 144 | 242 | b51.14
820 | 72 | 193 | 106 | 145.08
s832 | 131 | 185 | 131 | 152.03
s953 | 510 | 63 | 25 | 159.85
s1106 | 226 | 451 | 187 | 196.68
51238 | 3 | 494 | 244 | 233.01
s1423 | 180 | 37 | 110 | 231.39
s1488 | 152 | 174 | 147 | 204.87
s1494 | 147 | 138 | 125 | 205.70
s5378 | 383 | 51 | 51 | 465.36

Table 3: Results of Delay Fault Simulation

random path delay faults and 1024 random patterns
are used for benchmark circuits (Brglez 1989). In
the table, the number of detected paths for robust




Model Generation Using Automatic Programming Techniques 713

test, strong non-robust test, and weak non-robust
test, and simulation time for each circuit are rep-
resented.

As a final example, the design error simulation
(Kang 1992) rvesults are shown in Table 4. In the
table, the number of design errors, simulation cover-
age metric, and simulation time for each circuit, are
represented. For these resulig, 1024 random patterns
are used.

Circuits | Errors | SCM [%] | CPU [sec]
c432 2489 97.99 2.15
c499 3012 98.24 3.60
c880 5171 98.36 6.73
c1355 7380 89.30 18.02
c1908 8775 94.21 10.43
2670 | 13728 83.78 22.35
3540 | 19130 94.88 38.75
ch315 | 33874 94.94 25.42
c6288 | 33472 92.46 33.67
c7552 | 38777 89.34 47.25

Table 4: Results of Design Error Simulation

These results show that automatic model gen-
eration is efficient, and the model generation time
of the AERO is superior to that of experienced hu-
man programmers. Also, the results show that the
generated models are efficient and accurate. If users
are careful when writing the specifications, the gen-
erated code can approximate to the efficiency of the
code written by a human programmer. Additionally,
the generated models from the AERO can be used
for various simulators.

9 CONCLUSION

The main purpose of this research was to find
an easy, fast, and reliable way to generate simulation
models and model libraries. To solve this difficult
problem, a simulation model generation system using
domain specific automatic programming techniques,
is developed. The AERO can be used to construct
simulation model libraries when developing new sim-
ulators or when upgrading existing simulators. The
results prove that the time required to generate func-
tional models is reduced considerably. In addition,
since the designer needs not worry about the details
of low level coding, the chance of errors in the design
cycle can be significantly reduced. Therefore, this
system could greatly reduce the cost of model gen-
eration for CAD systems and, consequently, could
reduce the design cycle considerably.
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