
Proceedings of the 1996 Winter Sirnu.lation Conference
ed. J. IvI. Cllarncs. D. J. IvIorrice, D. T. Brunner, and J. J. S"rvain

EFFICIENT SIMULATION MODEL GENERATION USING
AUTOMATIC PROGRAMMING TECHNIQUES

J ae- Wook Lee

Departlnent of Electrical ~Ilgi Il(~pri Ilg
Yonsei 0 llivcrsity

Seoul, I{orea

ABSTRACT

Generating simulation models is a knowledge in­
tensive, time consuming, and error-prone task in im­
plementing a simulator. The nlain purpose of this
research was to find an easy, fast, and reliable way
to generate simulation models and model library.
To solve this problen1, the AutOl1latic Elenlent Rou­
tine Generation Systenl (AERO) is developed as an
efficient way for automatic lnodel developnlent us­
ing domain specific automatic progranlming tech­
niques. Behavioral and structural nl0dels are gener­
ated from Boolean equations, truth tables, HDL de­
scriptions, schelnatic diagranls, or incoillplete specifi­
cations. Results show that the systenl could greatly
reduce the cost of simulation t110del generation for
CAD systenls and, consequently, reduce the design
cycle considerably.

1 INTRODUCTION

It is clear that silllulation, at various levels, is
an essential and conlnlonly used I1lethod for verifying
the design of digital systenls. A sinlulation tnodel is a
program code which represents the functional behav­
ior of an element and is written in a simulator's target
language. Simulation nl0dels are created and added
into a simulator library. The performance of a sinlU­
lator highly depends on the number of models in the
model library and the efficiency of the models. Since
a simulator can only simulate syst.enls constructed of
the primitives in the nlodel library, if there are not
sufficient nl0dels, a large systenl nlay not be handled
by the simulator. Also, if the nl0del is \vritten in an
inefficient way, the speed of the sinlulator is slow.

Therefore, it is very i111portant to find an effec­
tive way for developing a 1110dellibrary as well as for
generating efficient 1110dels. (1 ntil recently, sinlula­
tion Inodels were developed through a knowledge in­
tensive design process which is titne consu111ing and
error prone. Additionally, it is not easy to predict
the perfornlance of functional ele111ents. To OVerCOl1le

708

Sungho I{ang

()(.>part Inelli. of Elect.rical Engineering
'{Ollsei Ullivprsity

Spoul, I\:orea

these diffirlllt.ips, an aut.olnat.ir way of Blodel gener­
ation is required. Over the life tinle of a sinlulation
systenl, the developnlent of the simulation model li­
brary is the largest progranlnling effort. Therefore,
automatic nlodel generation is clearly necessary and
very significant, since it has the potential of saving
hundreds of man-years of code development.

The concept of automatic code generation of
functional models was initially introduced in (Szy­
genda 1979). Several atte111pts (Han 1991, Yang
1991) have been made to apply domain specific pro­
gra111111ing techniques (Barstow 1985) in the auto­
matic 1110del generation area, with great ease, ac­
curacy, and efficiency. D0111ain specific autolnatic
progranllning techniques allow a user to describe pro­
granls using infornlal and inlprecise ternlS of domain,
and produce efficient and reliable programs.

In this research, to elil1linate inefficiency of the
previous works, a new simulation lnodel generation
system, called AERO (Autolnatic Element Routine
Generation Systel1l), is developed. Also, the AERO
can generate sinlulation 1110dels from various descrip­
tions for various simulation algorithnls such as logic,
fault, error simulators. This system can be used ei­
ther when developing new silnulators or for upgrad­
ing existing simulators, as a model generation tool.

2 CONFIGURATION OF AERO

To inlplel1lent efficient domain specific auto­
matic progralnming techniques, the following must
be carefully considered. Firstly, knowledge of the
application domain Inust be kept in some form of
rule base to guide the program synthesis. It can be
classified into donlain independent knowledge base
about iInplelnenting code syntax and domain specific
knowledge base about application domain. Secondly,
the systenl Blust provide the efficient user interface to
get specifications and knowledge. Thirdly, in order
to handle the users' incomplete or imprecise specifi­
cations, the systenl must be capable of figuring out

Ivfodel Generation Using A lltomatic ProgranlIning 'Techniques 709

the users' intention.
To generate silnulat.ion 1l1odels pffpct.ively, tht'

following must be considered. Firstly, the syst.en1
11lust generate high pel'fol'lnan ce 1l1odpls si nee Inocl­
els affect the overall perfOl'111anCe of a ':\illlulat.or. Sec­
ondly, the systel11 11111St. vprify generat.ed 1110dc'ls, sin ce

the correctness of the 1110dels IllPClIlS t,hp accuracy of
a sil1lulator. Thirdly, t.he SYSt.f>lll Illllst, gf'llf'l'ate Inod­
els which can easily interface wit.h various Sill111lat.ors,
with mininlal nl0dification. Also, the syst.elll should
generate concise models, in order to lnininlize the
usage of Inemory. Fina.lly, t.he generat.ed Inoelels for
sequential devices mnst havf:> SOlllP 111('challislllS to al­
locate data for each inst.allcr- of t,he elrlllPnt., including
internal l1lenl0ry states.

Figure 1: Configuration of the AERO

The AERO (Automatic Elelnent Routine Gen­
eration System) can autolnatically generate 1110dels
froll1 various descriptions, using dOlllain specific au­
t0111atic programnling techniques. As shown in Fig­
ure 1, the AERO consists of several subsystenls,
i.e., Preprocessing Unit, Autolnatic Code Generation
Unit, Model Verification Unit, Postprocessing Unit,
Knowledge Base and Model Library. This system can
generate models written in the C programming lan­
guage from truth tables, boolean equations, schenlat­
ics, and hardware description languages.

3 PREPROCESSING UNIT

Figure 2 shows a block diagra111 of the Pre­
processing Unit. The Preprocessing Unit includes
parsers and translators which have interactive user
interface facilities.

FrOin the scheinatic description, a net list is gen-
erated with the help of the OCT environment (Spick-

Figure 2: Preprocpssing lJnit

e1tnier 1989). A netlist can also be generated frOll1
the hard warp description language, Sinlulation Au­
tomation System (SAS) Hardware Description Lan­
guage (SHDL) (Kang 1991), Tegas Description Lan­
guage (TOL), and VHDL. These descriptions are
parsed, and passed onto the Netlist Generator, which
generates the levelized netlists. SHDL and VHDL
are also used to describe behavioral domain 1110dels.
Parsed behavioral descriptions include control flows
and equations.

When truth table descriptions, which are one
of the easiest and nl0st natural Oleans to describe a
reasonable size circuit, are entered, they are trans­
lated into internal data structures. If the Boolean
equations, or the gate implementation, of a circuit is
known, it is convenient to use equations to describe
the circuit. These equations are translated into in­
ternal data structures.

Interacti ve user interface displays the existing
n10dels which can be used to construct new models,
or to store the generated 1110dels and the correspond­
ing nl0del specification into the nl0del library. By
grouping sin1ilar 1110dels into the sanle class, users can
deri ve t.he characteristics and transformation rules
and attach thelll onto this class. This knowledge will
be used by the incomplete information handler and
the input verifier to complete the missing part of the
input. specification and to perform the consistency
check. The series of questions are shown in Figure 3.

4 MODEL GENERATION UNIT

Using the information fronl the Preprocessing
Unit, the Model Generation Unit (MGU) synthesizes
Inodels. Fr0l11 the synthesized models, it can gener·
ate 'C' o10dels according to user's command. Tht
structure of the MG U is shown in Figure 4.

The general silnulation Inodels can be classified
into structural and behavioral models. A structural

710 Lee and I{ang

1. ,t\'hat. 's the 111 0 cl rigrOll p Il a III p?
2. vVhat's the 1110dpl natHe'?
3. Ho\v 11lany st.atps arc desired for t.lti-.; Illod(,I'? [L- J 0]
4. Do you \vant. to spPC'ify hit. rppn'~Pllt,at.ioll-';'?

5. vVhat's the type of your input. -.;p('cifiratioll'! [a-II]

(a) truth table (b) boolean equat.iolls
(c) schematics (d) TDL
(e) behavioral SHDL (f) behavioral \fHOL
(g) structural SHDL (h) st.ruct.ural \!IIDL

Figure 3: Questiollnairr- of [nt.erart.ivl' (r~('r [Iltprfrtr('

Figure 4: Model Generation lJ nit

Bl0del describes a circuit by connecting lo\v level
primitives. A behavioral Bl0del is used to describe
the functional behavior of a circuit. This systenl
can generate both structural and behavioral Inodels.
The simulation model consists of ent.ity declarations,
architectural bodies, and configuration declarations.
An entity represents a part of a well-defined hard­
ware design. An architecture specifies t.he relatioll­
ship bet\vee11 the in putsand the 0 utputS 0fadesign
entity, and a configuration specifies the binding of
cOBlponents to entities. "\lith the infonnatioll about.
input and output signal nanles, entity part.s can be
cOBlpleted.

If the description is in the fOrIn of truth t.ables
or Boolean equations, there are no prill1itives in the
descriptions. However, 2 input AND, 2 input OR,
and NOT gates are used t.o cOlnplet.e an 'architect.ur(.;)'
part. of st.ructural C 1110clels. If the descript.ion is in
the for 111 0 f scheBlat icS 0 r fI 0 Ls, the 11 the i II for n1a­
tion about primitives used in t.he descript.ions is used
for the structural I1l0dels. The rell1ainder of 'archi­
tecture' part is filled out using net. list infornlation,
control flow infortnation, and equat.ion infornlation
which is synthesized using d0l11ain rules and gi ven
specifications.

According to the bit representations of a specific
simulator, a signal modeler generates an enhanced

tahll j or (,filiations. '["he' ,-,igllal 1110dcler is used t.o
dy n;t III ica Ily c lI'-\t 0111 izf' j\ EH() according to the user
-';(H\rirh·d l()~ir vallll''''i and hit, repreSPlltations, so that.
t 11(, AEBC) prort'~s hl'('OlllPS vpry flpxihle in tenns of
gC'Il('l"fi ti Ilg IlIodt'l "'i. \,·It icit COlll ply \vi t.h various sig­
lIa/lltodl·ls. For (lily k-vall1f'd sigllal Blodel, A· dist.inct
lugir V;:l!lJPS ran he reprpspnt.ed in the conlputer by
s('t~ of hit.s wit.h rtt Ipas(. log:? k bits in the set. For
pxalllplt·, silllulator~ like T~C;AS use t.wo word rep­
r(''''iI\Il(.a(,ioll~ for t.hree' value sinlldation. Hence, two
variahlr·s arp llsed for ('arh variable defined in the
origillal tl'llt.11 t.ahlp. Lpt, liS rlSSUllle that we want. to
f!/'I H\ rat e (t ...; i 111111 a t. i0 11 III 0 del for a t \VO in put AND
gat.p, ror tlll·('(' vallI(' logic: \vhprf' t.he t.hree st.ate val­
(JI'S art' L, II, and X, for lo\v signal value, high signal
val UP all d un kno\vn value, respectively. The signal
lllodeler 111ay assign; bit.O = 0 and bit1 = 0 for L,
bit.O = a and bit1 = 1 for H, and bitO = 1 and bit1
= 1 for X. 1\ C Inodel based on the above bit assign­
111ents is shown in Figure 5.

AIID2(i, 0)

int i [2] [2], 0 [1] [2] ;

int aO, at;
int bO, bl;
int cO, el;

aO = i [0] [0] ;
al = i [0] [1] ;
bO = i[l][O];
b1 = i [1] [1] ;

cO = (aO&bO);
el = «alibl)l(allbO)I(aOlbl»;

0[0][0] = eO;
0[0][1] = el;

Figure 5: 2 Input AND Model for 3 Values

For 1110re accurate sinlulation, 5 logic values (0,
1, lJ, D, E) are usually used. To represent 5 value, 3
bit.s are used, where logic L is represented by bit pat­
tern 000, logic H is represented by bit pattern 110,
t.he stat.e lJ (for signal going-up) is represented by
bit pattern 010, the state D (for signal going-down)
is represented by bit pattern 100, and the state E
(for error 01' unknown value) is represented by bit
patterns 001, 011, 10 I, or 111. However, the encod­
ing for the given value is not unique and the users
should he able to decide on their own selections. A
C lnodel based on the above bit assignments is shown
in Figure 6.

As an example, consider path delay fault sim-

lvIodel Generation Using A utoIllatic ProgranlIlling Techniques ,11

OR2(i, 0)

int i [2] [3], 0 [1] [3] ;
{

int aO, a1, a2;
int bO, b1, b2;
int cO, c1, c2;

aO = i[O][O];
a1 = i [0] [1] ;
a2 = i [0] [2] ;
bO = i[1][O];
b1 i[1][1];

b2 = i [1] [2] ;

cO = (aOlbO);
cl = (allbl);
c2 = «-,aOlb2) I (-,allb2) I (a2l-,bO) I (a2l-,bl)

(a2lb2)I(aOl-,all-,bOlb1)1(-,aOla11bOt-,bl»;
0[0] [0] cO;
0[0][1] c1;
0[0][2] c2;

MUX21(i t 0)

int i[3][2], 0[1][2] ;
{

int aO, a1 t bOt b1 t cO, c1, dO, d1

aO = i[O][O]
at = i[O] [1]
bO = i [1] [0]
b1 = i[1] [1]
cO = i [2] [0]
cl = i[2][l]

dO = (-,cOlaO)I (cOlbO)I
(cll:(aOlbOI(-,allb1)I(al1-,b1»);

d1 = (-, cOl: a1) I (cOtb1) I
(cll(allb11(-,aOlbO)I(all-,bO»);

0[0][0] = dO
0[0][1] = dl;

Figure 7: 2-to-l l\1lTX for Delay Fault Sinlulation

Figure 6: 2 input OR rVIouel for 5 Values

ulation (I(ang 1994) using 4 values. Logic L is rep­
resented by bit pattern 00, logic H is represented by
bit pattern 10, logic X is represented by bit patt.ern
11, and logic Z is represented by bi t pattern 01. The
evaluation routine for 2-to-1 MUX is shown in Fig­
ure 7.

When equations or truth tables are ellt.ered, it
can generate the enhanced equat.ions directly fronl
the given equations, or can generate nlininlizecl
equations using optil11izatioll routines. The opti­
mizer generates optinlized equat.ions using the Quinp­
rvlcCluskey's algoritilln. If the descI'iption is given in
equation fornl, the equations are trallsfornlp.d into a
table forIn to perrnit the use of thE' saine algorithlll.

The code generator generat.es the sill1ulat.ion
1110 del fro 111 the modeI 11 a111 e, i11 put. pin na 111 eS,Oll t put
pin names, signal nal11eS, t.he opt.ill1ized equat.ions,
and other inforrnation using dOlllain rules. The code
generation algorithll1 is based on a l.Plnplatp Inatch­
ing 111echanisll1 (Biennann 1984).

5 MODEL VERIFICATION UNIT

When simulation ITIodels are au tOlnatically gen­
erated, it is necessary to verify the correctness of
these models. Verification of 1110dels is arcolnplishecl
in a silTIilar fashion to the verification of design in
that a sin1ulator is used to verify new 1110dels. S0l11e
difficulty exists with respect to the deterlllination of
consistency anl0ng models at various levels.

Sin1ulation at various levels is used in order to
verify the correctness of 1l10dels. The Sill1ulator call

handle multi-level prilnitives according to the level

of the rrilnitives. The basic configuration is shown
ill Figure R. FrOln the given descriptions of nl0dels,

Verify

Figurp 8: I'vlodel Verification Unit

expect.ed bphaviors are extracted and stored. This
process is straightforward, to directly provide an en­
virolllnent for sinlulat.ing a given model. If the user
\vant.s to see the result.s for each sinlulation pattern,
they can be provided. If the user specifies the nunlber
of sil11ulation patterns, then, according to the given
nunlber, t.he patt.ern set is generated. Also, if the
uspr provides a sil11ulat.ion pattern set, it can be used
for sinlulation. Then, according to the size of a de­
scribed circuit., a randolll pattern set, or an exhaus­
t.i ve pattern set, 111ay be generated by the pattern
generator. Then, the Silllulation results are passed
011 t.o t.he COlll parator. After cOlllparison, if all re­
sui ts are the saIne, the I110del is said to be correct.
However, if any of results is not the same, an er-

712 Lee and Kang

ror message is provided and t.he:> si'l1lllatioll pat.l.(\rns

in disagreement. are providpd t.o t.hp llser for fnrt.hpf
consideration.

6 MODEL LIBRARY AND KNOWLEDGE
BASE

Model Libra.ry ha.s sflvpral sub-lihraries 1.n st,O("f~

the sanle device using diffpreul. IPovpls of dpscl'i p1 iOlls.
The library handler is uspd to display all ('xi~f.illg

models and specificat.ions. Also, it is us(\d t.o pll)('f'
new specifications int.o t.he liol'ary. It. st.()r('~ and I'C­

trieves the circuit. descriptions of various t.YP(~S and
puts the generated 1110dpls int.o thr library. (t. is also
used t.o link the structural rllodels t.o their cOlnpo­
nents and to add the generateJ p.lenlellts to t.he SP('­

cific sinlulators.
The Knowledge Base cont.ai ns dOlnain specific

knowledge, used in model generation an d verifica­
tion. The knowledge stored in the Knowledge Base
is classified into several categories including;

1) information about specific silllulators, such as,
logic values, memory state handling, how t.o call ele­
ment routines, etc;

2) information about input. descriptions, such as
how to describe truth table spec.ification, boolean
equation specification, and HDLs; and

3) information about model verifica.tion.

7 POSTPROCESSING UNIT

The Postprocessing Unit generat.es an i/o inter­
face for specific sin1ulators. Since every sinlulatol' has
its own way of using sinlulat.ion lllodels, the post.pro­
cessor should be capable of handling the variat.ion.
In order to do this, it requires various illfonnation
about simulators, including; how to c.all an element
routine, how to keep the state variables, etc. This
information is stored in the Rule Base.

8 RESULTS

Using the AERO, nlany 1110dels were generatp.d
using ISCAS benchmark circuit.s (Brglez 1985). The
results of model generation are shown in Table 1, in­
cluding; circuit sizes, model genera.tion times, nunl­
ber of simulation patterns, and sin1ulation tinles.
The circuit size is the number of gates, being assllnled
that the circuit was flattened into a. gate level, if it
is not at the gate level. Although nl0del generation
time increases according to the circuit size, the au­
tomatic model generation tilne is acceptable because
of its speed and accuracy. For simulation purpose,
1024 random patterns were generated and used.

Sin1ulation was perfonned llsi ng the generated
models to prove thier efficiency and accurac.y. The
3 value parallel fault simulation result.s are shown in

'T'a.hle' L. rrhf'sr r(-~sults arp derived using the PAR­
srr\'t "illiulat,nr (I\ang lUnD) For these results, 1024
rRlldo111 paLf.,prns arf~ lJspd.

Also, thp Inixrd It~v(-'I pat.h delay fault. sinlulation
('r'sults are ShO\Vll ill rl'abl0. :J. Fo.. t.hese result.s, 1000

('irruit. # of (~("ll("rat.ioll # or Sinlulat.ion
(~ a(.es ~rinlf' [sec] Pat.terns Tilne [sec]

('1[:32 IGO O.2:l:3 1024 7.013
r4DH L02 0.317 1024 14.317
('88U :l8:3 a.GOO 1024 19.600

r I :Hi:) 546 O.8:3:J 1024 26.833
clOO8 g~O 1.067 1024 35.06i
c2G70 12()9 1.81 i 1024 47.817
r ;354 () 1()G~) 2.~50 1024 64.250
c5315 2307 3.433 1024 106.433
c6288 2416 4.083 1024 163.083
c7552 3513 4.833 1024 261.833

Table 1: Results of Model Generation

Circuit. Faults Fault Coverage[%] CPU Time
c432 524 95.99 0.009 sec/pat
c499 758 97.49 0.032 sec/pat
c880 942 98.20 0.026 sec/pat

c1355 1574 89.07 0.183 sec/pat
c1908 1879 94.40 0.185 sec/pat
c.2670 2747 81.61 0.580 sec/pat
c3540 3428 94.04 0.311 sec/pat
c5315 5350 95.73 0.534 sec/pat
c6288 7744 97.32 1.021 sec/pat
c7552 7550 91.08 1.345 sec/pat

I'able 2: Result.s of Fault Simulation

Circuit ROB SNR WNR CPU[sec]
s713 556 144 242 51.14
s820 72 193 106 145.08
s832 131 185 131 152.03
s953 510 63 25 159.85

s1196 226 451 187 196.68
s1238 3 494 244 233.01
s1423 180 37 110 231.39
s1488 152 174 147 204.87
s1494 147 138 125 205.70
s5378 383 51 51 465.36

Table 3: Results of Delay Fault Simulation

randon1 path delay faults and 1024 random patterns
are llsed for benchlnark circuits (Brglez 1989). In
the table, the number of detected paths for robust

Model Generation Using Automatic Programming Techniques 713

test, strong non-robust t.est., and w(:\ak non-robust.
test, and simulation tinle for pa.rh ri rru i t. arp f{'\P­

resented.
As a final pxalnplp~ t.he' df"\sigll (~rr()r silllulat.iun

(I(ang 1092) result.s al'c sho\vIJ in 'rahlp 4. III the
table, t.he nUlllber of d(~sign PITOI"S, SinlUlrl.t.ioll cover­
age Inetric, a.nd sinlllla.t.ion t.in}(~ [01· Pnch r.ircllit., HTP

represent.ed~ For these rpsult,s, 102"1 randoll) patterns
are used.

Circuits El'rors SC:rvI [9{)] (~PU [sec]
c432 2489 97.99 2.1.5
c499 3012 98.24 :·!.()O
c880 5171 9S.:3U G.7:3
c1355 7380 89.30 18.02
c1908 8775 94.21 10.43
c2670 13728 83.78 22.35
c3540 19130 94.88 38.75
c5315 33874 94.94 25.42
c6288 33472 92.46 33.67
c7552 38777 89.34 47.25

Table 4: Results of Design Error Sinlulat.ion

These results show tha.t autonlatic nl0del gen­
eration is efficient, and the nl0del generation tilne
of the AERO is superior to that of experienced hu­
man programnlers. Also, the results show tha.t the
generated models are efficient and accurate. If users
are careful when writing the specificat.ions, the gen­
erated code can approxilnate to the efficiency of the
code written by a hUlnan progralnnler. Additionally,
the generated models from the AERO can be used
for various simulators.

9 CONCLUSION

The main purpose of this research was to find
an easy, fast, and reliable way to generate sirnulation
models and model libraries. To solve this difficult
problem, a simulation lTIodel generat.ion systenl using
domain specific automatic progral1l111ing techniques,
is developed. The AERO can be used to construct
simulation model libraries when developing new sinl­
ulators or when upgrading existing sinlulat.ors. The
results prove that the time requil"ed to generate func­
tional models is reduced considerably. In addition,
since the designer needs not worry about the details
of low level coding, the chance of errors in the design
cycle can be significantly reduced. Therefore, this
system could greatly reduce the cost of 1110del gen­
eration for CAD systeills a.nd, consequently, could
reduce the design cycle considerably.

R.EFERENCES

I). Bar~1.o\\'. I ~)85. ()olllain-Specific Aut0111atic Pro­
gl"alllllljll~. l/~'l~'ll,' T1

1"(11l8. on 80fl.1vare Eng.
A. Bi(~"1l1anl)~ (~. C~lliho and 'f. I{odratoff. 1984. An

()v('rvic\\' of AlIt.Olllatic Progranll11ing Construc­
t.ioll 'l'r·chlliques. A Ui(J171aiir Progru1111ning Con­
struct ion T'erhniq'llf s.

F. Hrglez and H. F'uji\vCtl'a. 19R5. A Neutral Netlist
of 10 (toI11 hinat.iollnl Bpnchnlark Circuits a.nd a
1'al'g;pt. 'l'ranslat.or in FORI'RAN. Proc. of 15­
('AS': 595-698.

F. Brglp~. I). Bryan and }(. f{ozll1inski. 1989. Combi­
national Profiles of SpCluent.ial Benchmark Cir­
f.uits. Prof.. oJ [SC'A.'",': 1929-1934.

C~. Hall, S. Kang a.nd S. Szygenda. 1991. AFMG: Au­
tornat.ic Func.tional Model Generation System
for Digital Logic Silnulation. Proc. of ASIC
Con!.

s. Kang, and C. Han. 1990. PARSIM Manual. Univ.
of Texas, Austin.

S. Kang and S. Szygenda. 1992. Modeling and Simu­
lation of Design Errors. Proc, of ICCD: 443-446.

S. Kang, B. lTnderwood and O. Law. 1994. Path­
Delay Fault Simulat.ion for a Standard Scan De­
sign Methodology. Proc. of ICCD.

R. Spickelmier. 1989. Release Notes for Oct Tools
Distribution 3. O. Univ. of California, Berkeley.

S. Szygenda. 1979. Simulation of Digital Systems:
Where We Are and Where We May Be Headed.
Computer Aided Design: 41-54.

H. Yang and S. Szygenda. 1991. A Domain Spe­
cific Automatic Progralnming System for Ele­
ment Routine Generation. Proc. of SSC.

AUTHOR BIOGRAPHIES

JAE-WOOK LEE is a M.S. student in the Depart­
ll1ent. of Elect.ric-al Engineering at Yonsei University,
I{orca. He rere ived a B.S. degree in Electrical Engi­
neering fronl Yonsei {J nivesity in 1996.

SUNGHO I<:ANG is an Assistant Professor in the
Depart.lnent of Electrical Engineering at Yonsei Uni­
versity, Korea. He received a B.S. degree from Seoul
National tTniversity, Korea and the M.S. and Ph.D.
degrees in Electrical and Computer Engineering from
the Universit.y of Texas at Austin, respectively. He
was a senior staff engineer at the Semiconductor Sys­
t.enlS Design Technology, Motorola Inc., a research
scientist. at. Schlunlberger Laboratory for Computer
Science and a post. doctoral fellow at the University
of Texas at Aust.in. Dr. I{ang's research interests
include Sinlulation, Design Verification, VLSI CAD,
Testing and Design for Testability.

