
Proceedings of the 1996 }llinteT Simulation Conference
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Sl.vain

A TESTBED FOR PARALLEL SIMULATION PERFORMANCE PREDICTION

Alois Ferscha
James Johnson

Institut fur Ange\vandte Inforn1atik
Universitat Wien

Lenaugasse 2/8, A-1080 Vienna, AUSTRIA

ABSTRACT

The overwhelming cOTI1plexity of influencing factors
determining the performance of parallel simulation
executions demands a performance oriented develop
ment of logical process simulators. This paper presents
an incremental code developTI1ent process that sup
ports early performance predictions of Time Warp
protocols and several of its optimizations. A set of
tools, N-MAP, for performance prediction and visu
alization has been developed, representing a testbed
for a detailed sensitivity analysis of the various Time
Warp execution parameters. As an exan1ple, the ef
fects of various performance factors like the event
structure underlying the siTI1ulation task, the aver
age LVT progression per simulation step, the con1
mitment rate, state saving overhead, etc. are den10n
strated. We show how the scenario management fea
tures provided by the N-NIAP tool can be efficiently
utilized to predict performance sensitivities. For the
particular example, the Time Warp protocol, though
highly involved, N-IvIAP was able to predict the per
formance sensitivity that was measured from the full
implementation executing on the Meiko CS-2.

1 INTRODUCTION

A huge variety of Time Warp (TW) parallel sin1ula
tion (PS) protocols have been proposed in the liter
ature, with a primary focus on correctness issues in
their presentation. Performance aspects of the pro
tocols, due to an overwhelming interweaving of in
fluencing factors, have mostly been studied on the
basis of abstractions (models) of the target execution
platform, the TW implementation and the sin1ula
tion problem. In most of the literature, perforn1ance
analysis is used to motivate the optimization of the
TW protocol with respect to one or more of these
concerns, or to assert the performance gain obtained
with optimizations. Specifically the question on the
relative qualities of TW protocols (in protocol opti-

6:37

mization studies) has often been raised, but general
rules of superiority cannot be formulated since perfor
mance cannot be sufficiently characterized by n10dels.

In the first category of TW perforn1ance analysis,
all of the three influence factors (target platform, TW
implen1entation, sin1ulation problem) are in1plicitly
or explicitly abstracted intornode/s, mostly stochas
tic models. As an exan1ple, in the analysis by Gupta
et. al. (1991) event processing tin1e is assulned to be
exponentially distributed, tinle stanlps of messages
are Poisson distributed in virtual tin1e, the destina
tion logical process (LP) for each message is randomly
chosen and equally likely for every LP, etc. Perfor
mance investigations based on analytical 1l10dels often
fail to achieve a satisfactory accuracy due to unrealis
tic assumptions in the n10deling process itself, as well
as sin1plifying assull1ptions that n1ake the evaluation
of those n10dels tractable (e.g. symn1etry, hon10gene
ity, 1\1 ---+ AI property). Since perfornlance evaluation
based on analytical 1l10dels is prone to 1l10deling er
rors, only relative trust can be placed in the results
obtained (See Gupta et al. 1991 and Akyildiz et al.
1993 for exceptions).

As an in1provement, performance investigations
have been conducted upon full T\iV in1plementations,
but operating under synthetic workloads, thus defin
ing a second category of TW perforn1ance analysis.
In this category, the analysis is based on a real sys
tem. as far as the hardware and TW software is con
cerned, but the simulation task to be executed in this
environment is still an abstraction (model) of the real
sin1ulation task - leaving just a single source of po
tential performance analysis bias due to modeling er
rors. The most prominent synthetic workload model
for TW is PHOLD (Fujimoto 1990) which has been
widely used in the comn1unity to den10nstrate the per
formance sensitivity of TvV inlplen1entations to the
(event) structure of the simulation task. Another ap
proach where a nlixture of a real sin1ulation task and
a n10del of the execution environn1ent is studied is
trace driven simulation. Here, the behavior of a hy-

638 Fcrscha and Johnson

pothetical environnlent is studied under the real load .
Finally, in the third analysis category, even full

T\V inlplenlentations \\"ith real \vorkload sets often
prohibit perfornlance c0I11parisons if different inlple
nlentation strategies vvere followed or different target
platfornls vvere selected for the execution. Here, per
fornlance analysis potentially suffers fronl an "inconl
parability" dilenlnla addressed in (Ferscha and Chiola
1995). There we have developed a perfornlance conl
parable inlplenlentation design, which isolates hard
ware fronl inlplenlentation and TW protocol related
perfornlance influences. A nlaxinlunl of source code
reuse gained froIn a conditional cOlllpilation imple
nlentation technique allows for a further reduction of
incomparability to an acceptable level.

1.1 The need for performance predicition

In an existential discussion within the parallel and
distributed simulation conlmunity (Fujilll0tO 1993),
the availability of perform.ance predictlon methods for
PS protocols has been pointed out as being critical
for the future success and general acceptance of PS
11lethods in practice (Lin 1993). For exanlple, it is
inlportant for a sinlulationist to be able to evaluate
the suitability of certain PS protocols for a specific
sinlulation task before su bstantial efforts are invested
in developing sophisticated PS codes ..\nother aspect
is the early evaluation of the anticipated perfornlance
of a new PS protocol being developed.

None of the three perfornlance analysis categories
above appears adequate for these denlands. !\Iod
els, although able to give fast predictions, are too
vague to be meaningfully applied ..\nalysis that con
siders full inlplementations, although accurate, just
brings to light the design fla\vs comnli tted earlier,
which are irrevocable or very hard to repair at the
tinle when major part of the developnlent \vork is al
ready done. In this paper \ve present a performance
prediction testbed for Time If'arp, .\l"-IVIAP, designed
and inlplenlented to support perfOrI11anCe engineering
endeavors from the early design phase ofT\\/ proto
cols in order to avoid late and costly re-engineering.
The perfornlance engineering activities in a super
visory role escort the developnlent of TvV, ranging
from performance prediction in the early developnlent
stages, to m.easurem.ents of perfornlance nletrics of
the prelinlinary or final progranl in the testing, de
bugging and tuning phase. Inlplementing TW incre
m.entally in N-NL\P, i.e. starting fronl a code skeleton
and providing nlore and more detailed progranl code
to\vards the full inlplenlentation, allo\vs for very early
performance based design decisions, systenlatic in
vestigations of perfornlance sensitivities using an au
tonlated scenario nlanager, and a nlaxinlunl of code

reuse \vhen trying different T\V optinlizations using
an au tonlated version nlanager. In the next chapter
\ve briefly recall TW performance factors. In Sec
tion :3 \ve develop a T\V skeleton in N-MAP, upon
\vhich - as a denl0nstration - \ve investigate the per
fornlance effects of global virtual tinle (GVT) conl
putation, throttling the optinlisnl via the available
nlemory, and the choice of the size of the checkpoint
ing interval. \Ve have execu ted the performance sce
narios on the Nleiko C~S-2, and present the results in
Section 4.

2 TW PERFORMANCE FACTORS

Collected argulllents on the TW perfornlance charac
teristics and influences have been reported in (Ferscha
1996) . (See also Ronngren et al. (1993) for perfor
nlance issues related to the implementation of Time
\\larp and sonle of its protocol optimizations, or Das
et al. (1994) for a TW implementation with a mininlal
amount of event processing overhead.) Here we enlist
SOllle of thenl, outlining the overwhelming complexity
of the perfornlance issue:

• Simulation Task The structure of events un
derlying the sinlulation task exhibit properties
such as persistency, concurrency, mutual exclu
sion, synchronization, causal connectedness, etc.,
which determine the potential TW performance.
TW optinlizations often utilize these properties.

• Partitioning A paramount TW perfornlance
factor is how the global sinlulation task is de
conlposed into LPs, and how these are assigned
to processors.

• Target Hardware Raw Performance: pro
cessor speed, comnlunication latency, memory
hierarchies/size, cache levels, etc.

• Communication/Synchronization Model
The target hardware together with several lay
ers of systenl software influence performance via
the routing strategy, policies for nlulticasting,
scattering, buffering, etc.

• Implementation related Optimizations
'~Tricky" implen1entations of e.g. memory allo
cation at run tinle, active messages, interrupts,
data referencing etc. can considerably acceler
ate TW sinlulations.

• Protocol related Optimizations e.g. aggres
sive/lazy cancellation, lazy re-evaluation, roll
back filtering, infrequent/incremental state sav
ing, cancelback, artificial rollback, time win
dows/buckets, GVT calculation, fossil collec
tion and many others.

A Testbed for Parallel Simulation Perfornlance Prediction 630

• Partitioning related Optimizations like the
balancement of inter- and intra-LP load, the
even1.-per- l1lessage ratio, roll back prevention by
blocking, etc. have severe performance inlpact.
Usually, information necessary for parti tioning
decisions is not available statically, clail1ling for
nlethods optimizing the execution perfornlance
at runtime.

• Simulation Engine Yet another source of po
tential accelerations is the organization and inl
plementation of the event list (binary heaps,
splay trees, calendar queues, skip lists, etc.),
other data structure l1lanipulations (input queue,
output queue, state stack, etc.), time progres
sion, random number generation, etc.

assigned a unique value, or a selection of values to
be systelllatically altered in different scenarios by the
scenario editor. :\"-:\IA.P then autonlatically creates
a suite of sill1ulation/execution runs by taking the
Cartesian product over all mutable values in \vhich
each point in the resulting space represents a specific
setting of mutable values.

For gathering perfOrIl1anCe data, N-l\1AP defines
a standard set of responses \vhich represent C0111nlOn
perfOrlllanCe 1l1etrics (e.g. execution time: busy, idle
and COnllllUnication time: packets/bytes sent/received
etc.) which may be chosen for inclusion in the sce
nario. In addition to the standard responses, N-~L~P
also allows the definition of ne\\' 1 application specific
responses.

Mutables Cases Responses

Figure 1: N-lVIAP Scenario l\1anagelllent

Contrary to other nl0deling techniques \vhich, as
a final result of Il10deling efforts, yield a model of
progran1 perforn1ance, the N-MAP lllethodology pro
duces operable source code which 1l1ay be translated
into native C code for a variety of parallel platforllls
as well as for sin1ulated execution on the local unipro
cessor by means of N-MAP's built-in translation ca
pabilities.

In the follo\ving, a general purpose TW sinlula
tor for tillled Petri Nets is developed in the N-MAP
enVirOnlllent. The principle features of the N-MAP
toolset and l1lethodology are delllonstrated.

3.1 The Time Warp Task Structure

In the N-l\JIAP environn1ent, progranl behavior is de
scribed in the forlll of a task structure specification.
(TSS) which defines the sequential streanl of task and
COlllnlUnication calls to be perfornled on each proces
sor. The syntax of the TSS is basically that of (; with
extensions for representing parallelisll1. The TSS for
the T\V iIllplelllentation under investigation is shown
in Figure 2.

The code seglllent labeled LP defines MAXP logical
processors Ip(O) through Ip(MAXP-1) operating in
an SP~ID nl0de of execution. The for loop \vhich en
capsulates the whole of the TW source code serves to
gather perfOrIl1anCe data over the nUIl1ber of sinlula
tion runs specified in the Illutable RUNS. Each run be
gins with the initialization of the si111ulator and 1110del
(i.e. Petri net) in the code segn1ent INIT.

During initialization the net description file (spec
ified in the l1lutable NETFILE) is read and part.itioned

R,IPll' P'1"
R2· (Plio P 22'

N-MAP
Scenario

Manager

MI:(IlII·1l11····}

M2(1l11·1l22····}
3 IMPLEMENTING TW IN N-MAP

The N-MAP toolset aims at providing the software
developer with an integrated environnlent for the de
velopment of perfOrl1lanCe efficient parallel progralllS.
Starting from a rough description of the progranl 's al
gorithmic structure in the form of skeletal code, the
program is iteratively and incrementally refined by
providing a more and more detailed description of the
program's component behavior and execution time
requirements in each successive development step. Un
der the constant supervision of perfornlance predic
tion tools, the thus emerging progralll source code
is tuned and modified in the direction of the most
promising implementation strategy ultinlately yield
ing a fully functional, performance efficient parallel
program.

In the early development phases of TW implemen
tations, the software developer is confronted with the
difficult problem of choosing the TW implen1entation
strategy which is n10st efficient and suited to the spe
cific sinlulation task at hand from an huge \vealth of
possible inlplenlentation strategies which, each in its
turn, offer a wide spectrunl of possible perfornlance
optimizations. As a testbed for the development of
parallel sinlulation protocols, N-MAP provides tools
for perfornlance prediction which allow the developer
to deternline the influence of perfornlance critical fac
tors and detect sources of performance loss. Fur
thermore, a meaningful TW perfOrlllanCe analysis de
mands an in-depth investigation of all perforn1ance
influencing factors and their interrelationship. For
this, the N-MAP scenario m.anagem,ent COllleS into
play (see Figure 1).

At any point in progranl developnlent, any vari
able used in the progranl source may be declared as a
'mutable and is subsequently handled by the N-MAP
scenario nlanager. Each such mutable nlay then be

640 Fcrscha and Johnson

'* Fr•• up all lIlemory u ••d during .imulation */ INIT
cl.an_up() ;
)

,* Print out p.rtormanc. data */
print_r••ult. ();
)

'* Was a OVT pack.t r.c.iv.d? */ G"VT/FOSS
if (g'Vt-pack.t_r.c.iv.d)

(

a4vllDc._GVTO; '* Calculat. GVT .stimat. *'

'* Pill the output butfer */ OUTPUT
till_OB (LVT) 1

'* S.nd out m•••ag•• in the output butt.r *'
••nd out cont.nt. (OB);

causality violation, the rollback mechanism is invoked
to restore the first consistent state prior to the time
stanlp of the straggler nlessage and antimessages gen
erated in the course of the rollback are inserted into
the output queue. Finally, each incoming nlessage is
inserted into the input queue (IQ) or annihilated.

If a GVT calculation packet has been received
during the INPUT phase, the GVT/FOSS code segment
is executed. Using the information contained in the
packet, the LP calculates a new GVT estinlate, up
dates its own information in the GVT packet and
forwards it to its successor (the GVT algorithnl im
plemented is described in detail below). Based on the
new GVT estimate, fossil collection is then perforn1ed
In the state stack.

The following segment GUARD checks if sufficient
men10ry (specified in the mutable MEMORY_LIMIT) is
available to perform the local simulation of the next
event. If not, the sinlulator loops back to INPUT to
await the arrival of further messages or GVT calcula
tion packets until sufficient nlemory is freed through
the occurrence of a rollback (arrival of a straggler
nlessage) or fossil collection (arrival of a GVT calcula
tion packet). In the case that no events are scheduled
for local simulation in the IQ or EVL (i.e. the par
ti tion has become depleted of tokens), the simulator
also loops back to the INPUT segment.

The occurrence of the next scheduled local event
is simulated in the SIM segment and LVT is set to the
occurrence tinle of event in the model. The lllodel re
turns three lists of events to the silllulator: 1) a list of
the new internal events (transition firings) resulting
from the occurrence of the event in the model which
are to be scheduled for future siIllulation, 2) a list of
previously scheduled events (transition firings) which
have now been pre-empted by the occurrence of the
event and 3) a list of new external events (token ar
rivals in other partitions) which lllust be sent to the
respective LPs. The state of the simulator is updated
to reflect the occurrence of the event by inserting the
internal events into the EVL and removing the pre
empted events. External events are inserted into the
OQ or alternately annihilated if a dual message is
present in the OQ (lazy cancellation).

The current state of the simulation is saved in the
LOG segment by copying the EVL to the state stack as
well as the state variables used by the model. If check
pointing is enabled (mutable CHECKP _INTERVAL set to
a value> 0), state infornlation is saved incrementally
on the stack between checkpoints and the complete
state inforn1ation only every CHECKP _INTERVAL Silll
ulation steps.

Finally, nlessages stored in the OQ having time
stamps less or equal to the current LVT are moved
to the output buffer (OB) and sent to the respective

*'

LP

LOOP

INIT

INPUT/* R.ad .11 m••••g•• trolll the input butt.r */
while (man.xt_IB I))

(

/* Straggl.r 1Il•••ag.?
it (t._l•••_than_LVT(IIl»

('* Invok. rollback?
dual.~.l .xist. (Ill, IQ);
it «(po.itiv.(m) "" ldu.l) II (n.gativ.(m) "" dual»

~* Rollback to .arli•• t st.t. b.tor. time.tamp *'
LVTClr•• tor._.arli••t_.tat._b.tor. (t. (m));

'* a.n.rat. antimag. r.sulting from rollback *'
g.n.rat._antim••sag•• (LVT);

'* Ins.rt antim.ssag•• into 00 *'
while (•••next_•• (» chronological_ina.rt (•• ,00);
)

)'* IDIS.rt m.ssag. into IQ or annihilat. */
it (I ramov._duallm, IQ» chronological_insert (m, IQ);
)

/* Initi.liz••imulator and mod.1 */
initial.tat. (NETPILE, EVENT_POOL) ;

/* IDJI.rt initial internal .v.nta into EVL
whil.(i ••next_i.I» chronoloqic.l_ins.rt (i., EV'L);

/* Log this .t.t. on atat. at.ck
log n.w st.t.I);

/* lIIain aimulation loop */
while (av"l' < ENDTDm)

(

proc••• Ip(1) wb.r. (i .. O:KA,XP-ld

(
/* Run a.veral llIimulationa on••tt.r tb. otb.r
tor (run.O; run<RUNS; run++)

'* P.rfol:Dl .merg.ncy fo••il collection it mamory *''* .xhau.ted and ch.ckpointing i. us.d *'
it (p.rceot_.vent._used() >MEJIIORY_LIldIT""CBECltP_INTERVAL)

incr_tos.il_coll.ction() ,
el.e

to•• il_coll.ctionl) ;

'* Set LVT to tlm•• tlUllP and .v.nt and .imulat. */ SIM
LVT • t.(.);
simulate_occurr.nc._ot (e);

/* Ina.rt the int.rnal .v.nt. g.n.rat.d into the EVL */
while (i••next_i. (» chronologieal_ins.rt Ii., EVL) ;

'* Remo~ pr.-empt.d int.rnal .v.nt from the EVL */
while (i••next-pr.empt.d_i. (» ramov._ev.nt (i., E'VL),

'* m••rt ext.rnal .~nt. into output qu.u. only it *''* dual do•• not axi.t (lazy canc.llation) */
while (....next_•• ())

it (Idual_updat.(•• ,oo» chronological_in.ert(•• ,oo);

'* Loop back it inautfieient memory */ GUAR.D
it (p.rc.nt_.v.nt._u••d () >IiIEIIIORY_LDlIT) continu.,

/* a.t the n.xt .v.nt to proce•• trom EVL or IQ */'* If no .v.nts to proce.s loop back to INPUT */
it (I ... g.t_f ir.t_KVL_or_IQ (» continu.;

'* Log this .tat. incram.ntally onto the .tack *' LOG
/* it checkpointing us.d and ch.ckpoint not y.t r.ach.d */
it (I ch.ckpoint "" CBll:CltP_INTERVAL) log_incr_state ();

/* Log the compl.t••tat. in.formation onto the .tack *''* it cb.ckpoint reach.d or eh.ckpointing not us.d *'
it (cb.ckpoint II ICBll:CltP_INTERVAL) log_new_state();

Figure 2: The Task Structure Specification for TW

anlong the processors and a pool of free events al
located on each processor. The number of available
events (specified in the nlutable EVENT_POOL) renlains
constant during sinlulation thus providing a nleans for
linliting optinlisnl through the linlitation of available
nlenlory. ~vlodel initialization produces a list of initial
internal events which are inserted into the event list
(EVL) and the resulting initial state is subsequently
logged on the state stack. The nlain silllulation loop is
then executed until GVT reaches the value contained
in the lllutable ENDTIME.

In the INPUT segillent, incoIlling Illessages are read
fronl the input buffer (IB) and their time stanlps are
checked against the current L\,rT. In the case of a

A Testbed for Parallel Simulation Performance Prediction 641

Figure 3: N-MAP Mutables List

LPs in the OUTPUT code segment and the simulator
loops back to the INPUT phase. The current simula
tion run terminates when GVT reaches ENDTIME and
all memory used by the simulation is freed before the
next run begins. Upon program termination, the per
formance data gathered over all runs is averaged and
the results printed.

3.2 Mutables

The mutables used in the TSS are shown in the Muta
bles List (Figure 3). Here, mutables may be assigned
a unique value (left list) or alternately, a subset ofmu
tables selected for variation in a scenario (right list).
The following list summarizes the mutables defined
in the TSS:

• MAXP: number of processors.

• ENDTIME: GVT at which simulation terminates.

• EVENT_POOL: number of events allocated on each
processor during initialization.

• NETFILE: name of the Petri net description file.

• RUNS: number of simulation runs to execute.

• SEED: random number generator initialization.

• GVT_PACKETS: number of GVT packets.

• CHECKP_INTERVAL: steps between checkpoints.

• MEMORY_LIMIT: amount of memory available.

3.3 Execution Time Requirements

A schematic representation of the algorithmic struc
ture and execution time requirements of the TW im
plementation is shown in Figure 4. The tasks defined
in the TSS are grouped according according to their
requirement types and the primary run-time factors
influencing their execution times.

The simulation of the occurrence of an event in the
model as well as GVT calculation are assumed to have
fairly constant execution times. The group of tasks

Figure 4: Algorithmic Structure and Execution Re
quirements of the Time Warp Simulation Protocol

involving list operations can be assumed to be loga
rithmic in their requirements since sorted lists have
been implemented as "skip lists" (Pugh 1990) which
have optimal element insertion/deletion costs of the
order 0 (log 2N)) N being the current list length. Fur
thermore, skip lists have low overall execution times.

A further group of tasks are characterized by vari
able execution requirements since their execution times
are dependent largely on run-time factors, e.g. tasks
which involve interaction with the communication sys
tem or state restoration which is dependent on the
"severity" of the rollback. The last group of tasks
which deal with state saving and fossil collection can
be considered to have linear requirements with re
spect to the number of events processed in the invo
cation of the task. These linear requirements stem
primarily from the fact that during state saving each
individual event to be saved must be duplicated and
placed on the state stack . Similarly during fossil col
lection, each event must be freed individually and re
turned to the pool of free events.

Judging from the structure of the TW implemen
tation under investigation, it appears as if optimiza
tion efforts should be concentrated primarily on re
ducing state saving/fossil collection costs as well as
lowering the probability and severity of rollbacks.

642 Ferscba and Johnson

3.4 Limiting Available Memory

As a mechanism to limit the optimism in TW, the
potential performance gain of memory based throt
tling (Das and Fujimoto 1994) is investigated, here in
the context of a distributed memory implementation
of TW. In this approach, whenever an event occur
rence is to be simulated, an artificial throttle (mu
table MEMORY_LIMIT) will delay the execution for a
constant amount of CPU time. For example, a value
of 0.7 for MEMORY_LIMIT will cause the effect of throt
tle to set in when 70% of available memory has been
used. Thus, the willingness of the simulator to exe
cute the next event occurrence is related to the degree
of memory exhaustion.

3.5 Checkpointing Interval

The checkpointing method implemented here saves a
complete copy of the event list and state variables ev
ery CHECKP_INTERV simulation steps. Between check
points, only those events which have been added to or
removed from the event list and state variables which
have changed as a result of the simulation of an event
are stored on the state stack in a form suitable to
allow for subsequent restoration of any intermediate
state in the case of a rollback.

The cost and memory requirements for incremen
tal state saving in the case of Petri net simulation
(Chiola and Ferscha 1993) is much lower than for
complete state saving since each simulation step (tran
sition firing) alters only a small portion of the event
list and state variables. Especially when a large num
ber of transitions in the partition have been scheduled
for firing in the event list (resulting most likely from
a large token population), incremental state saving
costs can be considerably lower. For very large check
pointing intervals, however, the coast forward costs
incurred during rollbacks may serve to mitigate the
positive effect of incremental state saving.

3.6 GVT Calculation

Figure 5: Structure of a GVT Packet

The GVT calculation method implemented uses one
or more GVT packets which circulate on complete,

closed pre-defined paths among the processors. Fig
ure 5 shows the structure of a GVT packet. To ac
count for unprocessed "in transit" messages, outgo
ing messages are stamped with a sequence number for
each output channel (Lin and Lazowska 1990). Upon
receipt of a GVT packet, each processor posts mes
sage receipt confirmations in the GVT packet on a per
channel basis by writing the sequence number of the
last packet received on that channel which does not
break the complete series of sequence numbers. Each
processor can then calculate the set of unconfirmed
messages by inspecting the message receipt confirma
tions posted in the GVT packet by the other proces
sors and then calculate the minimum of its present
LVT and the time stamps of all unconfirmed mes
sages (minLVT) and post this in its respective column
in the GVT packet. A GVT estimate is calculated by
taking the minimum of all minLVTs in the GVT packet
before forwarding the GVT packet to its successor on
the path.

The increment field of the GVT packet contains
an integer which is relatively prime to the total num
ber of processors, MAXP, and which each processor
adds to its own processor number (modulo MAXP) to
determine its successor processor in the path. Each
GVT packet in the network has a different increment
so that no two GVT packets circulate along the same
paths. Thus, in a network of 8 processors, the GVT
packet with increment 1 travels on the path 1-2-3
4-5-6-7-0-1 whereas the packet with increment 5 is
forwarded along the path 5-2-7-4-1-6-3-0-5.

In a network of MAXP processors and using one
GVT packet, each processor must wait MAXP-1 GVT
calculation steps until it again receives the GVT cal
culation packet. By allowing 2 GVT packets to circu
late in the network, the latency between the receipt of
GVT packets is reduced and the frequency of GVT
progression is increased on each processor thus al
lowing for more frequent fossil collections. For large
processor counts or for simulations with large mem
ory requirements, a more frequent GVT calculation
(i.e. more GVT packets) may be advantageous de
spite increased communication costs. In other cases,
however, a single GVT packet may provide for best
performance.

4 SCENARIO EXECUTION ON THE CS-2

Figure 6 shows N-MAP's Scenario Editor. The mu
tables which have been chosen for variation in the sce
nario (GVT_PACKETS, CHECKP_INTERV, MEMORY_LIMIT)
are displayed in the left listbox of the window. Each
mutable is assigned a list of values which it is to as
sume in the scenario in a separate dialog window.
The values may be given as a simple white space sep-

A Testbed for Parallel Simulation Performance Prediction 643

0.9
0.7 GJO)

0.5 o<'i ~
0.3 ~e~

0.1 .~iO\.e

~~~

a) 1 GVT Packet

b) 2 GVT Packets

60.0

90.0

30.0

o
100 200

300 400
CheckPOint In 500

tervaJ

Execution Time (sec)

90.0

60.0

Execution Time (sec)

30.0

o
100 200

300 400
CheckPOint I 500

DtervaJ

Execution Time (sec)

60.0

c) 4 GVT Packets

90.0

30.0

o

Figure 9: Results of Scenario Execution on CS-2

avoided through the use of checkpointing. The ac
tual checkpointing interval used (100-500) appears
to have little effect on performance. Point investi
gations for the mutable settings GVT_PACKETS = 1,
MEMORY_LIMIT = 0.5 with CHECKP_INTERVAL = 1000,
2000, 5000 showed significant performance loss only
after an interval of 2000.

In most cases, performance drops only slightly by
using more GVT_PACKETS although an increased num
ber of packets, providing for a more frequent GVT
calculation, does serve to improve performance in cases
of high memory requirements (CHECKP_INTERVAL=O)
and where memory is very limited (MEMORY_LIMIT <
0.5). For this particular simulation task partitioned
and mapped onto 32 processors, however, the GVT
calculation frequency achieved with one GVT packet
appears quite sufficient.

5 CONCLUSIONS

Mutable Values
GVT...PACKETS 124
CHECKP-INTERV o 100 200 300 400 500
MEMORY..LIMIT 0~1 0.3 0.5 0.7 0.9

Figure 6: N-MAP Scenario Editor

arated list of values or alternately as a range of values
by specifying an upper and lower bound and an incre
ment which may be additive or multiplicative. The
following values have been chosen for investigation:

Figure 7: Scenario Variation of Mutable Values

The Petri net chosen as the simulation task (Fig
ure 8) consists of 64 "regions" linked together in a
ring fashion. Each region Ri can be considered to
emulate the behavior of a more complex Petri net
partition containing one input place Pi, one output
transition Ti and a subnet Wi. Both 7i and Wi are
infinite servers with exponentially distributed service
times Aext = 0.1 and Aint = 1.0 respectively. Initially,
each place Pi contains n = 8 tokens.

The results of scenario execution are shown in Fig
ure 9. The best results are obtained for the mutables
setting GVT_PACKETS=1, CHECKP_INTERVAL=100 and
MEMORY_LIMIT=O.5.

The use of checkpointing (CHECKP_INTERVAL>O)
is the most important factor contributing to perfor
mance improvement. The resimulation cost incurred
during rollback or are obviously insignificant com
pared to the state saving and fossil collection costs

Figure 8: A Petri Net Simulation Task Consisting of
64 "Regions" Mapped onto 32 Processors

The availability of performance prediction methods
and tools for parallel simulation protocols is without



644 FersclJa and Johnson

any doubt critical for the future success and general
acceptance of parallel siI11ulation in practice. For a
sinlulationist it is of ut 1110st iIllportance, to to be
able to evaluate the suitability of a certain parallel
simulation protocol for a specific siIllulation task, for
a certain nlultiprocessor systeI1l and a certain oper
ational environnlent before substantial prograI11I1ling
efforts are invested.

A performance prediction nlethodology and set of
tools, the N-~IAP testbed, has been developed, eas
ing perfornlance engineering endeavors of PS proto
cols fronl the early design phase in order to avoid late
and costly re-engineering. As a testbed, N-wIAP in
a fully graphical user interface offers very early per
forIllance based inlplenlentation design decisions, sys
tenlatic investigations of perfornlance sensitivities us
ing an autonlated scenario manager, and a I11axinlUI1l
of code reuse when trying different TW optil1lization
using an automated version I1lanager. N-NIAP is pub
licly available.

To denl0nstrate SOI1le of the features of the testbed,
we have investigated the perfornlance effects of GVT
C0I11putation, of throttling the optiI1lisnl via the avail
able nleI110ry, and of the choice of the size of the
checkpointing interval in a distributed nlenlory iI11
plementation of TiI11e Warp. Perfornlance scenarios
were defined and executed on the rVleiko C~S-2.

ACKNOWLEDGEMENTS

This work was partiaIl:y supported by the Oesterre
ichische Nationalbank under grant No. 5069, and the
Human Capital and ~Iobility progranl of the ED un
der grant CHR.X-CT94-0452 (MATC~H).

REFERENCES

Akyildiz, I. F., L. Chen, R. Das, R. 1\1. FujiI110to, and
R" F. Serfozo. 1993. The effect of I11enl0ry capac
ity on Tinle vVarp perfornlance. Journal of Par
allel and Distributed Com.puling, 18(4) :411-422.

Chiola, G., and A. Ferscha. 1993. Distributed Si111
ulation of til11ed Petri nets: Exploiting the net
structure to obtain efficiency. In Proceedings of
the 14th Int. Conf. on Application and Theory
of Petri lVets 1993, ed. lVI. Ajnl0ne fvlarsan, 146
165. Lecture Notes in C0l11puter Science, Springer
Verlag, Berlin.

Das, S., R.. FujiI110tO, I\:. Panesar, D. A.llison, and
j\1. Hybinette. 1994. GT\V: A. Tinle Warp system
for shared I11eI110ry 111ultiprocessors. In Proceed
ings of the 1994 Hi'inter Si'm,Hlatlon Conference,
ed. J. D. Te\v and S. l\Ianivannan, 1:3:32-1:339.

Das, S., and R. :,,1. Fujil110to. 1994. An adaptive
I11eI110ry nlanageI11ent protocol for Tinle \Varp par-

allel simulation. In Proc. of the 1994 A CAl Sig
·m.etrics Conf. on lvfeasurement and lvlodeling of
(10m.puter System.s, 201-210. ACM.

Ferscha, A. 1996. Parallel and distributed simulation
of discrete event systems. In Parallel and Dis
tributed Computing Handbook, ed. A. Y. Z0I11aya,
100:3-1041. NlcGraw-Hill.

Ferscha, A. and G. Chiola. 1995. Adaptive dis
tributed simulation of Petri net models. In Pro
ceedings of 1995 Summer Com,puter Sim.ulation
Conference (SCSe '95).

Fujimoto, R. TvI. 1990. Performance of Time Warp
under sythetic workloads. In Proceedings of the
SCS lvfulticonference on Distributed Simulation,
ed. D. Nicol, 23-28.

Fujimoto, R.. M. 1993. Parallel discrete event sinlu
lation: Will the field survive? ORSA Journal of
Co·mputing,5(3):218-230.

Gupta, A., I. Akyildiz, and R. Fujimoto. 1991. Per
fOrl11anCe analysis of Tilne Warp with I11ultiple
h0l110geneous processors. IEEE Transactions on
Software Engineering, 17( 10): 1013-1027.

Lin, Y-B. 199:3. Will parallel simulation research sur
vjve? ORSA Journal of Computing, 5(3):236-238.

Lin, Y-B. and Lazowska, E. 1990. Determining the
global virtual tinle in a distributed simulation. In
1990 International Conference on Parallel Pro
cessing, (111)201-209.

Pugh, W. 1990. Skip lists: A probabilistic alternative
to balanced trees. Co'm,m,unications of the A CAI,
33 (6) :668-677.

Ronngren, R., R. Ayani, R. M. FujiI110tO, and S. R.
Das. 1993. Efficient inlplementation of event sets
in Time Warp. In Proceedings of the 1'h Work
shop on Parallel and Distributed Simulation, ed.
R. Bagrodia and D. Jefferson, 101-108. IEEE
Computer Society Press, Alamitos, Calfornia.

AUTHOR BIOGRAPHIES

ALOIS FERSCHA is an Associate Professor at the
Departnlent of Applied Conlputer Science and 1nfor
nlation SysteI11S at the University of Vienna, Aus
tria. His current research interests include perfor
nlance modeling and prediction, computer aided per
formance engineering of parallel software, distributed
simulation and neural networks.

JAMES JOHNSON has been a Research Assistant
the Department of Applied Computer Science and In
forl11ation Systems at the University of Vienna since
1994. His research interests are in tools for computer
system performance analysis.


