
Proceedings of the 1996 TVin.tflT SiTnv1aLion Confe,.enr·f'
ed..J. 1\1. Charnes, D. J. AIorrice, D. T. Brunner. and J. J. S1rain

MODSIM III - A TUTORIAL

Alasdar Mullarney

CACI Products Company
3333 North Torrey Pines Court

La Jolla, CA 92037, U.S.A.

ABSTRACT

This tutorial introduces the MODS1M III language,
showing how its simulation "world view" together with
its object-oriented architecture and built in graphics
contribute to successful simulation model building.

1 INTRODUCTION

Discrete systems simulation is one of the few truly new
capabilities offered by the computing revolution. Com­
puter simulation models provide us with a fascinating
means to develop insight into the behaviors of the com­
plex non-deterministic systems which surround us - in
communications networks, transportation logistics, busi­
ness and manufacturing processes, to name a few.
These systems are costly to develop and modify. Feasi­
bility analysis and performance prediction through
simulation can greatly reduce the risk of failure or
wasteful expense.

Simulation is an exploratory technique. We develop a
model which represents our best understanding of a pro­
posed system or modification. We run the model in the
hope that it will confmn our design intuition. If it does
not we endeavor to understand why, and use this knowl­
edge to refme the model. Ultimately, we will use the
model to explain and justify decisions affecting the real­
world system.

So, simulation serves three principal roles: to help us
articulate a coherent description of a system; to validate
its dynamic behavior to our satisfaction; and, then to
communicate this to colleagues and decision makers.
These steps are commonly iterative. It is usually wise to
begin with a high-level abstraction of the system, al­
lowing the model to evolve as we gain greater under­
standing of system behavior. Furthermore, the system
itself may change in this rapidly changing environment,
requiring changes to the model.

For the simulation study to be effective, the model
behavior should be presented in an understandable way,
typically using animation. Ideally, domain experts

542

should be involved in construction and validation of the
model. Finally, the whole exercise must be completed
within a useful time-frame, or it will serve little purpose.

Before embarking on model development, it may be
prudent to look for a suitable, off-the-shelf, domain­
specific simulator. Frequently, however, unique char­
acteristics or fidelity requirements dictate the need for a
custom model. The characteristics of simulation mod­
eling, then, make some special demands of the model
development environment. The modeler needs help in
the conceptualization of systems with dynamic, inter­
acting, probabilistic behaviors. The model should be
understandable, maintainable, and should lend itself to
incremental addition of detail. The environment should
support graphical interaction for scenario development
and animated model execution.

This tutorial will introduce the benefits of using an
object oriented language specially developed for simu­
lation, and enhanced with comprehensive graphics sup­
port. MODSIM III combines CACI's experience with
simulation programming over three decades with ad­
vances in software engineering to offer the most pro­
ductive environment for the development of large,
complex, evolutionary, custom models.

Examples of MODSIM Ill's simulation features, and
the benefits of object-oriented architecture, are demon­
strated below using code fragments from a hypothesized
airport/airspace planning model. Such a model might be
concerned with the representation of aircraft, flight du­
ration, air traffic controllers, runway allocation proce­
dures, and so on. To be of any interest, such a model
must represent multiple aircraft in flight concurrently,
and delays due to contending requests for resources,
such as runways.

2 DEFINITION BLOCK-AN INTERFACE DE­
SCRIPTION

In support of modular program construction, objects in
MODSIM III are described in two separate blocks of
code. The Defmition block describes the object type by



l\IODSIAI III Tutorial

declaring its variables and methods. This is the object
description as it will be referred to by other objects in
the simulation, and it provides the formal interface
specification. An example of a Defmition block for an
aircraft object is shown below.

Aircraft = OBJECT;
BestCruise: INTEGER;
InFlight : BOOLEAN;
ASK METHOD SetCruise (IN speed:INTEGER);
TELL METHOD Fly (IN distance:INTEGER);

END OBJECT;

The Defmition block for an aircraft object declares
the variables and methods that aircraft objects use in the
simulation model. The information the aircraft knows is
contained in its variables. In this simple case, the air­
craft is responsible for the management of two variables,
which represent its state:

* BestCruise - the optimal speed to cruise at for
given conditions

* InFlight - whether or not the aircraft is actually in
flight.

3 IMPLEMENTATION BLOCK-WHAT THE
METHODS DO

The aircraft behaviors are described in its methods.
These methQds are named in the object description pro­
vided by the Definition block. The logic of what they
do and how they affect the state variables of the object
are described in the Implementation block, shown be­
low:

OBJECT AircraftObj;

ASK METHOD SetCruise (IN speed:INTEGER);
BEGIN

BestCruise := speed;
END METHOD;

TELL METHOD Fly (IN distance:INTEGER);
BEGIN

InFlight := TRUE
WAIT DURATION distance/BestCruise;
END WAIT;
InFlight := FALSE;
OUTPUT ("Arrived Safely at", SimTime);

END METHOD;

END OBJECT;

The behaviors that objects can perform are the meth­
ods described in the Implementation block. In this case
the aircraft is capable of the behaviors described in the
following two methods:

* ASK METHOD SetCruise - When the aircraft is
requested to perform this behavior, it registers the
new value for its optimal cruising speed, instantane­
ously, that is, simulation time does not elapse.

* TELL METHOD Fly - When requested to per­
form this behavior, the aircraft calculates the re­
quired flight time to cover this distance at its
cruising speed. This particular activity then pauses
in execution until this period of time has elapsed
within the simulation model, before completing the
remainder of the behavior - in this case printing a
notification that it has arrived safely. Unlike ASK
methods, TELL methods are used to describe be­
haviors that elapse simulation time. While this
method is paused, waiting for time to pass, other
methods of other objects may be executing.

A key benefit of using MODSIM III in building com­
plex simulations is the easy modeling of these behaviors.
In a large modeL many objects will have behaviors that
must take account of the passage of time. Often, these
behaviors wi 11 be concurrent, or overlapping in time.
For example, our model will want to represent multiple
"instances" of the aircraft object type. These instances
can be created as needed; each can be given its own
identifier, has its own state variables and can execute its
methods as requested.

For a simple example of concurrent behaviors, let's
look at how an aircraft dispatcher in our model might
order two aircraft to fly to different destinations:

ASK JumboJet TO SetCruise(600);
TELL JumboJet TO Fly(3000);

ASK Biplane TO SetCruise(100);
TELL Biplane TO Fly(200) IN 1.0;

Using TELL methods, the flight times of both the
JumboJet and Biplane aircraft can be modeled concur­
rently.

In this example, the aircraft object named JumboJet
will elapse 5 hours flying a distance of 3000 miles at
600 mph. One hour after the JumboJet takes off (... IN
1.0), the Biplane aircraft will take off and fly 200 miles
at 100 mph. It will complete its flight two hours before
the JumboJet arrives at its destination. MODSIM III is
responsible for sequencing the execution of the methods
of both object instances, including the pauses to repre-



544

sent the flight times, so that the events of taking off and
landing are played out in the correct order in the model.
ASKing the object does not elapse any simulation time.

4 TIMING AND INTERACTION

Besides executing concurrently, time elapsing behaviors
may interact. To make the model more realistic, we
want to consider the effect of changing the cruising
speed of an aircraft while it is in flight - perhaps in re­
sponse to a change in weather conditions. Such a
change invalidates the original computation of flight
time, and a new arrival time must be determined based
on the new cruising speed and the distance remaining.
Let's look at how the logic, or implementation, of the
methods of our aircraft objects can be refmed to incor­
porate this modified behavior. The method which is re­
sponsible for registering a change in cruising speed can
INTERRUPT the time-elapsing method, Fly, if appro­
priate. On recognition of this INTERRUPT, the re­
maining time to WAIT is reevaluated. To see the
changes that we've made, compare this code with the
original Implementation block for the aircraft object,
presented earlier.

OBJECT AircraftObj;

ASK METHOD SetCruise (IN speed:INTEGER)~

BEGIN
BestCruise := speed;
IF InFlight

INTERRUPT SELF Fly;
END IF;

END METHOD;

TELL METHOD Fly (IN distance:INTEGER);
BEGIN

InFlight := TRUE;
WHILE distance> 0.0

speed := BestCruise;
start := SimTime;
WAIT DURATION distancelBestCruise;
ON INTERRUPT

elapsed := SimTime-start;
distance := distance-(elapsed*speed);

END WAIT;
END WHILE;
InFlight := FALSE;
OUTPUT ("Arrived Safely at", SimTime);

END METHOD;

The aircraft's cruise speed can now be changed while
in flight - the arrival time will be recomputed each time
this occurs.

AJullarne.1"

Look at how the Fly method describes the entire flight
from take off to landing, allowing multiple speed change
events, in a logical activity description. Contrast this
with multiple, disconnected, event sub-routines in a
conventional programming language which does not
support the concept of time-elapsing behaviors.

Because MODSIM III provides you with a rich set of
features to manage the complex scheduling, interaction
and synchronizing of time-elapsing behaviors, you get
increased readability and consistency in your models,
factors that translate directly to increased productivity
and maintainability.

Unlike making calls on a subroutine library, MOD­
SIM III understands the meaning of these simulation
features. Thus it can diagnose inadvertent misuse early ­
for example, WAIT statements are not allowed in ASK
methods that are always instantaneous. Not only does
such checking save time in building and running a
model, but it can help avoid debugging subtle logic er­
rors in simulations with complex interactions.

These specialized features for modeling concurrent
and interacting behaviors distinguish MODS1M III as a
simulation model development tool. In addition, MOD­
SIM III includes a rich collection of simulation building
block objects. These library objects are designed to ful­
fill many common simulation modeling requirements.
MODSIM III uses the power of object oriented software
architecture to allow these pre-built library objects to be
readily adapted to special needs.

Consider contention for resources, an issue which is
at the heart of many discrete system simulations. Spe­
cific allocation policies are a basis for common behav­
ior. Objects incur delays in competing for resources;
they queue for resources on some priority basis; they
may choose to abandon requests after a time-out inter­
val. Every simulation model will want to report to some
degree on measurements of resource utilization, waiting
time statistics, and so on.

MODSIM III provides a prebuilt Resource object as
one of many objects in its simulation support libraries.
In our airport model, for example, runways are clearly a
resource. We could use an instance of ResourceObj
taken directly from MODSIM Ill's library to model
runway allocation, enqueueing and dequeueing the air­
craft on a frrst-come-frrst-served basis, and recording
statistics.

We need to make one important change, however. To
avoid the danger of wake turbulence effects, it is impor­
tant that a light aircraft not use a runway immediately
following a large aircraft; it should delay a short time to
allow wake vortices in the air to dissipate. This is where
inheritance comes in. It allows us to describe a Runway
object in terms of the existing ResourceObj provided by



l\10DSIA1 III Tutorial

MODSIM III. We only need to specify the differences
between the new RunwayObj and ResourceObj.

Inheritance is one of the chief benefits of object ori­
ented software construction, and the basis for providing
libraries of useful objects which can be readily adapted
to specialized needs.

In the example below, we have imported a resource
management object from the MODSIM III library, de­
fmed an enumerated variable called AircraftCategory
and show the Definition block for Runway. By declar­
ing our Runway object to be derived from the library­
supplied resource management object, it inherits all the
built-in capabilities for enqueueing requests and main­
taining utilization statistics. The Give method is de­
clared as overridden, meaning that a different
implementation, for just this method, will be substituted
in the Implementation block (not shown). The Runway
object also has an extra variable to 'remember' the last
aircraft type. Our specialized implementation logic can
now be designed to impose appropriate delays before
giving the runway to aircraft of different categories.

FROM ResMod IMPORT ResourceObj;
TYPE

AircraftCategory = (Light, Heavy);

Runway = OBJECT(ResourceObj);
lastuse : AircraftCategory;
OVERRIDE

TELL METHOD Give(IN number : INTEGER)~
END OBJECT;

The Runway object, derived from MODSIM Ill's re­
source management object has been customized to meet
special modeling requirements.

Inheritance provides a disciplined way to selectively
modify and extend object characteristics. As a specifi­
cation mechanism, it maintains a clear distinction be­
tween those properties which continue to be available
unchanged, and those enhancements designed to meet
special needs - this is very valuable as software evolves
through versions and upgrades.

New object types, derived through inheritance from
existing objects, continue to conform to common inter­
faces, but incorporate additional capability. This is an
excellent match to the evolutionary nature of successful
simulation models; with increasing understanding of the
system comes a desire to add details in areas of special
focus.

The reuse of libraries of pre-built objects holds out
the promise of real productivity gains in software devel­
opment. Without a means to adapt such objects to spe­
cial needs, this promise is rarely fulfilled. The
extensibility offered by inheritance, coupled with the

modular separation of interface defmitions from actual
implementation code are the mechanisms needed to sup­
port practical reuse of object libraries.

Object orientation offers other benefits to model de­
velopment. The controlled access to object data struc­
tures through the object methods is just what is needed
to build robust objects which can be the basis of reuse.
Look back at the modified aircraft object implementa­
tion: any request to change the aircraft speed can now
ensure a reevaluation of the flight time-which is faithful
to the way things happen in the real world.

Taken together, support for object modeling concepts,
along with concurrent time based behaviors, are what
make MODSIM III an effective simulation productivity
tool.

5 GRAPHICS AND SIMULATION

Through inheritance, the objects in your simulation can
acquire a rich set of graphical properties and behaviors.
You can use this to provide an interactive, graphically
managed model that speeds up analyses and produces
easy-to-understand results. Adding graphics is easy.
You use a graphical editor to configure the appearance
of icons, menus, dialog boxes and presentation charts.
Minimal code then connects these to the entities and
variables in the model. Adding graphics can enhance
the appeal of a model in three principal areas:

5.1 Graphical Scenario Layout

Interactive graphical editing lets you defme a scenario to
simulate by selecting icons from the palette, positioning
them on the screen, and configuring parameters through
dialog boxes.

5.2 Dynamic Analysis

With a scenario on the screen, you can begin the simu­
lation and see an animated picture of the system under
study. In addition, you can study plots that are drawn
while the simulation is running. You can pan and zoom
on areas of special interest. These results, shown dy­
namically, will suggest alternatives that can be tried im­
mediately. Interacting with the model in this way
increases understanding of the system under study and
speeds your analysis. Often errors that may have other­
wise been difficult to fmd, will be obvious. Dynamic
analysis contrasts sharply with the old iterative approach
to simulation, where the following steps were repeated:
prepare data, simulate, examine results, modify data,
simulate, ...



546 1\ Iullarne:v

5.3 Communication of Results

Through animation, you can dramatize the effect of al­
ternative system configurations, spot unexpected be­
havior, and back up your recommendations. It's the best
way to sell your ideas.

6 DEVELOPMENT ENVIRONMENT

MODSIM is a complete development environment. The
MODSIM III simulation support, Compilation Manager,
Object Manager and the Debugging Manager provide a
complete environment for the successful development of
advanced models.

6.1 Compilation Manager

The MODSIM compilation manager automatically de­
termines which modules have been edited since the last
compilation and recompiles only those modules and any
other modules that depend on them. No make files are
required.

6.2 Object Manager

MODSIM III provides a browsing tool for MODSIM III
objects, variables and procedures. The Object Manager
provides a concise representation of complex objects
including aggregation of fields and methods and inheri­
tance diagrams. For object types, all the fields and
methods are displayed. Methods are followed by a con­
densed parameter list; fields have their types indicated.
You can see all the attributes and capabilities this object
has either defmed or acquired through inheritance.

Further detail is provided by an inheritance diagram
of this object, the module in which it is defmed, any
replaceable types it has declared and any type substitu­
tions that have been made in ancestor objects. Clicking
on a displayed ancestor selects this object type for
browsing. A record is kept of all objects visited, making
it easy to return to a previously browsed object.
Browsing methods show you which ancestor originally
defined the method, which ancestor implementation the
object will invoke and a full parameter list.

6.3 Debugging Manager

Selective runtime checking of object referencing, invalid
parameters, array bounds, and memory use are invalu­
able aids to software development. Models are large,
complex programs, and debugging support for both
simulation and programming errors are crucial to suc­
cess. With debugging support enabled, a runtime error
automatically drops you into debugging mode, allowing

you to see where the error occurred and letting you ex­
amine variwhere the error occurred and letting you ex­
amine vari-ables. A traceback shows you the calling
chain that led to the current method or procedure, so you
can browse up and down the execution stack examining
the sequence of procedure and method calls that pre­
ceded the error. The debugger supports a wide range of
capabilities that are essential to interactive symbolic
debugging. In addition it has special knowledge of
MODSIM Ill's simulation constructs and can display the
pending list, simulation time, and memory usage infor­
mation.

7 MODSIM III AVAILABILITY

MODSIM III is developed and supported by CACI
Products Company. MODSIM programs, including
graphics, are completely portable across PC's running
Windows95 or Windows NT, and all major UNIX plat­
forms, with straightforward recompilation.

MODSIM III is available to your organization for a
free trial in your environment, on your computer. CAeI
provides everything you need for a complete evaluation
at your site: training, software, documentation, sample
models and immediate support when you need it. In
addition, CACI regularly offers time-tested training
courses.

For more information contact us at:

CACI Products Company
3333 North Torrey Pines Court
La Jolla, CA 92037

Tel: 619-457-9681
Fax: 619-457-1184
Email: modsim@caciasl.com

AUTHOR BIOGRAPHY

Alasdar Mullarney is the Chief Technology Officer at
CACI Products Company. During his 16 years with
CACI he has made significant contributions to CACI's
SIMSCRIPT 11.5 simulation language and graphics. He
has drawn on this experience to lead the design and de­
velopment of MODS1M III. He received his Ph.D. from
Trinity College, Dublin in 1976.


