
Proceedings of the 1996 Winter S'ilnulat1:on C10nferen('f!
ed. J. 11. Charnes, D. J. l\Iorricc, D. T. Brunner, and J. J. Sl.vain

ALPHA/SIM SIMULATION SOFTWARE TUTORIAL

Kendra E. Moore
John E. Brennan

ALPHATECH, Inc.
50 Mall Road

Burlington, MA 01803-4562, U.S.A.

ABSTRACT

ALPHA/Sim is a general-purpose, discrete-event
simulation tool. ALPHAlSim allows a user to graphi
cally build a simulation model, enter input data via
integrated forms, execute the simulation model, and
view the simulation results, within a single graphical
environment. In this paper, we introduce ALPHA/Sim
and describe how to use ALPHAlSim to build, simulate,
and analyze a simple manufacturing system. In addition,
we briefly describe some advanced features and list
some sample applications.

1 INTRODUCTION

ALPHA/Sim is a general-purpose, discrete-event
simulation tool. With ALPHAlSim you can graphically
build a simulation model, enter input data (timing del~ys,

routing rules, initial conditions, and other data) via
integrated fonns, execute the simulation model, and
view the simulation results, within a single graphical
environment.

ALPHA/Sim provides a hierarchical modeling
capability that allows models to be built from the
bottom-up, top-down, or both. Models can be built
without seeing or writing a single line of code; it is also
possible to link to external software. ALPHAlSim
automatically collects statistics on populations (queues),
delays, activity rates, and attributes.

ALPHAISim has been used in a wide number of
applications including computer hardware systems,
manufacturing systems, queuing systems, and military
command and control. ALPHAISim currently runs on
the PC (Windows NT) and Sun Workstation (SunOS and
Solaris under the X Window System or Motif).

The modeling paradigm used in ALPHAlSim is based
on Petri nets (PNs). PNs were developed in the early
1960s to model concurrent operations in computer
systems. Over the years PNs have been extended and
applied to a wide range of systems characterized as

S22

being concurrent, asynchronous, distributed, parallel,
and stochastic. PNs are a mathematical and graphical
modeling tool. As a mathematical tool, PNs can be used
to set up state equations, algebraic equations, and
simulation models. As a graphical tool, PNs provide a
visual modeling technique.

In this paper, we present a brief overview of PNs and
describe how to use ALPHAISim to implement a simple
manufacturing model. Specifically, we describe how to
build the graphical model and define attributes, token
types, timing delays, decision rules, output attribute
definitions, and statistics collection. In addition, we
briefly describe some advanced features and list some
sample applications.

2 PETRI NETS

Petri nets (PNs) are a graphical and mathematical
modeling technique originally developed by C.A. Petri
in the early 1960s to characterize concurrent operations
in computer systems (Petri 1962). PNs have been
extended to capture many important aspects of large
scale systems, including attributes, timing relationships,
and stochastic events (Moore and Lynch 1990, Moore et
al. 1986, Murata 1989, Peterson 1981). The greatest
appeal of PNs is their conceptual simplicity.

PNs consist of four primitive elements (tokens, places,
transitions, and arcs) and the rules that govern their
operation (Figure 1). PNs are based on a vision of
tokens moving around a network. Tokens appear as dots
and represent the objects or entities in a system. Places
are shown as circles and represent the locations where
objects await processing. Location can be either a
physical location (e.g., the queue where a message waits
to be processed) or a state (e.g., an idle resource).
Transitions appear as rectangles and represent processes
or events (e.g., processing a message or machining a
part). Finally, arcs represent the paths of objects through
the system. Arcs connect places to transitions and
transitions to places; the direction of the path is indicated

ALPHA/SlA1 Tutorial 523

by an arrowhead at the end of the arc.

• o o
token will select a path based on assigned probabilities.
The constructed decision rule allows the user to specify
the conditions under which the token will select a
particular path, given that the firing rules are met.

(a) Token (b) Place (c) Transition (d) Arc Store Warehouse Store Warehouse

(b) Fill fires. consuming tokens from
Product and Order. and putting one
token in Filled Orders.

(a) Both transitions enabled; Fill will
fire since its priority is higher than
the priority of Store.

Figure 3: Effect of a Priority Decision Rule

Attributes on tokens are used to specify a set of
characteristics associated with a token (e.g., size, type,
priority, identity, etc.). The values of the attributes may
be changed at transitions. They can also be used to
detennine timing and decision rules. Finally, the values
of the attributes can be passed to external algorithms and
the results incorporated into the PN model.

There are two other types of arcs, in addition to the
standard arc, which provide complex transition logic.
The enable arc is depicted as a line with a solid filled
circle at the end where the arrowhead nonnally appears.
The enable arc enables a transition when the upstream
place has a token, but does not consume the token (the
token remains in the upstream place). The inhibit arc is
depicted as a line with a hollow circle at the end where
the arrowhead normally appears. The inhibit arc
disables a transition when the upstream place has a token
in it (the token is not consumed along the inhibit arc).

Box nodes are used to encapsulate portions of a PN
model and to provide a hierarchical modeling capability.
Box nodes are used to group or cluster PN fragments that
relate to various subsystems, functions, or organizational
units.

Part A

Part A

(b) Arrival of token in one upstream
place-Assemble partially enabled.

(d) Assemble fires, removes one token
from each Part A and Part B and
puts one in Assembly.

Part A

(a) Simple model.

Part A

(c) Arrival of token in second
upstream place-Assemble is
enabled.

PN firing rules specify the behavior of transitions; i.e.,
the conditions under which processes or events can
occur. Three rules govern transition fuing:

1. When all upstream places are occupied by at least
one token, the transition is enabled.

2. Once enabled, the transition fires.

3. When a transition fires, exactly one token is
removed from each upstream place and exactly one
token is placed in each downstream place.

Figure 2 depicts these rules for a transition (Assemble)
with two upstream places (Part A, Part B) and one
downstream place (Assembly).

Figure 1: Depiction of PN Primitives

Figure 2: Transition Firing

Timing rules are associated with transitions and repre
sent the time required to complete some activity. A
timing rule may be stochastic, based on an assigned
probability function, a computed value, or a constant.
Decision rules are associated with places and resolve
cases where more than one transition is enabled by the
same token or set of tokens. There are three types of
decision rules: priority, probability, and constructed.
The priority decision rule (shown in Figure 3) states that,
if all other firing rules are met, the token will leave by
the path with the highest priority. The probability deci
sion rule states that if all other firing rules are met, the

3 BUILDING MODELS WITH ALPHA/Sim

With ALPHAlSim you can: build and debug your
models graphically; build models from the top-down,
bottom-up, or both; easily modify model parameters and
structure; navigate through the model; monitor results at
any point in the simulation run; and save any model
component for reuse in other models.

In the remainder of this section we ill ustrate how to
use ALPHAlSim to implement a simple manufacturing
system which produces two types of parts. Type 1 parts
are turned, milled, and plated, in that order; Type 2 parts

524 Moore and Brennan

are turned and milled. Input parameters include part mix
and part processing times. Output parameters include
buffer sizes (queue lengths), machine utilization, part
latency, and throughput.

3.1 Drawing the Graphical Model

We begin by drawing the graphical model. Figure 4
shows an ALPHAlSim screen. The screen has a menu
bar at the top, an icon palette on the left, and a drawing
window with scroll bars. We create the graphical model
by using the mouse and icon palette to drop icons in the
drawing window and connect them with arcs. Icons are
automatically assigned default names (see Figure 4);
these can be changed to be more meaningful.

Figure 5 shows the complete manufacturing model.
The place-transition combination in the upper left corner
periodically generates new parts into the place labeled
Lathe_Q. Arriving parts wait in the Lathe_Q, until the
Lathe becomes available. They are then turned and enter
the Mill_Q, where they wait for the Mill to become
available. Once the parts are milled, they are passed to
the Plate_Q. Since Type 2 parts are done, they are
immediately routed to the stock of Finished_Type_2
parts; meanwhile, Type 1 parts remain in the Plate_Q
until the Plating_Machine becomes available. Once
plating is complete, the Type 1 parts enter the
Finished_Type_1 stock.

3.2 Defining Token Types

Once we have built the graphical model, we can define
the token types using the Token Type Edit Form. For
this model, we will use two token types: Part and
Machine. Figure 6 shows the Token Type Edit Form for
the Part token type. This form contains a field for
identifying the token type and allows us to define the
attributes associated with the token type. Each attribute
definition consists of a name, class, type, and an initial
range.

The attribute's class is a scalar (single) value, an array
of values, or a matrix of values. If an attribute's class is
array or matrix, we must also specify its size (rows and
columns). The attribute's type refers to its format. Valid
types include: Boolean, integer, real, string, or another
(previously defined) token type. If the type is not
another token type, we have the option of specifying an
initial range for the attribute. Table 1 summarizes the
token type definitions for the manufacturing model.

3.3 Place and Transition Forms

Once we have defined the token types, we can use the
place and transition forms to assign token types to places
and specify timing, routing, and other logical rules.

ALPHA/81M Tutorial 525

~ ~dit !oken Types yaew E~cute !tatiStics Qptions

Done

co]mp,[ete~C1 ModelFigure 5:

Build Mode

f.ile Edit View

Token Type Name:

Attribute Name Qass Rows .Cols Type Initial Range

Figure 6: Token Fonn for the Parts Token

526 Moore and Brennan

Table 1: Token Type Definitions for Model

Token Type Attributes Class Type

id Scalar Integer
type Scalar String

Part
arrive Scalar Real
wait Scalar Real
process Scalar Real
latency Scalar Real

id Scalar Integer
Machine type Scalar String

p_time Scalar Real

Figure 7 shows a sample place form. The top of the
place form lists the input and output transitions, and
allows us to specify the token type and the number of
initial tokens. The middle of the form allows us to
specify statistics collection and set the queuing order
(FIFO, LIFO, or ascending/descending on an attribute
value). The bottom of the fonn allows us to set decision
rules (priority, probability, or constructed) for routing
tokens out of the place.

Figure 8 shows a sample transition form. The left side
of the transition fonn lists the input places; clicking on
one of these places opens the input token profile
displaying the input token type definition. Similarly, the

right side of the fonn lists the output places and clicking
on one opens the output token profile. Ordinarily, the
input attribute values are mapped to the output attribute
values; however, we can assign new values to these
attributes using the area below the output token profile.

The center of the transition fonn is used to set a timing
rule and to specify statistics collection. Regarding the
timing rules, we can choose None, Selected Distribution,
or Constructed. If we choose Selected Distribution, we
are prompted to select one of the available distributions
and provide the appropriate parameters. Table 2 lists
these distributions and their parameters. If we choose
Constructed, we can enter an expression utilizing other
distributions or attribute values. The language used for
the expression is English-like; e.g., the timing rule in the
Interarrival_Delay transition is:

IF (Initial_Token.type =1)
exponential(10)

ELSE exponential(5)

"Initial_Token.type" is the value of the attribute "type"
on the token coming from the place "Initial_Token".
The lower left corner of the transition form is used to set
specific enabling or inhibit logic (using attributes) or
conditions for stopping the simulation.

ALPHA/81M Tutorial 527

Table 2: Built-In Timing Distributions

Distribution Parameters

Constant Value

Exponential Mean

Gamma Alpha, Beta

Nonnal Mean, Std Dev, Min, Max

Triangular Min, Mode, Max

Unifonn Min, Max

3.4 Specifying the Model Logic via the Forms

We use these fonns to associate the token types with
places, and specify the initial tokens, the decision
(routing) rules, timing rules, and output attribute
definitions. First, we associate token types with places
using the Token Id option menu in the Place Fonns. At
this time, we set two initial tokens in Initial_Token (one
for each type of part), and one initial token in each of the
machine places (Lathe, Mill, and Plating_Machine).
Table 3 lists the token type assignments and initial
populations for each place in the model; Table 4 lists the
initial values of the attributes for those places with initial
token populations.

Next, we specify a constructed decision rule for the
place labeled Plating_Q to route Type 1 and Type 2

parts. Figure 7 shows the decision rule used for routing
parts as it appears in the Plate_Q place form.
Alternatively, we can use enabling logic in the Plate and
Done transitions. If desired, we can set a queuing order
in the Lathe_Q and Mill_Q places.

Table 3: Token Type Assignments and Initial
Populations

Token Type Places # Init. Tokens

Initial_Token 2

Lathe_Q, Mill_Q,
Part Plate_Q, 0

Finished_Type_l,
Finished_Type_2

Machine
Lathe, Mill,

1
Plating_Machine

Table 4: Initial Token Values

Place Attributes Initial Value

type 1 or 2
Initial_Token

all others 0

id Unique integer

Machine "lathe", "mill",
type

"plating"

528 l\loore and Brennan

Finally, we set various output attribute definitions to
collect infonnation on the machines and on individual
parts as they pass through the system. ALPHAJSim
provides four system variables that can be used in
expressions~ these are $time$ (the current simulation
time), $delay$ (the timing delay of an individual
transition firing), $count$ (the number of times a
specified transition has fired), and pop (the current
number of tokens in a place). Since we are interested in
the queuing, service, and system times for the customers,
we will make use of the $time$ and $delay$ variables.
Table 5 lists the expressions that are used in output
attribute definitions; Fig. 8 shows a sanlple output
attribute definition in a transition fonn (lower right). In
addition, we can turn on statistics collection for places
(average population), transitions (firing rates), and
attributes, using the place and transition fonn statistics
panels (see Figs. 7 and 8).

Table 5: Sample Output Attribute Definitions

Transition Attribute Definition

Interarrival- id $count$
Delay arrive $time$ + $delay$

wait $time$ - arrive
Tum

$delay$process

wait $time$ - arrive - process
Mill

process process + $delay$

wait $time$ - arrive - process

Plate process process + $delay$

latency $time$ - $delay$ - arrive

Done latency $time$ - arrive

3.5 Controlling the Simulation Run

Additional fonns are available to set the simulation run
time, the number of replications and random number
seeds, and statistics collection preferences. ALPHNSim
has facilities for collecting aggregate, interval, and
sample statistics. At runtime, ALPHNSim checks all
expressions to make sure that there are no errors and
executes the simulation. The results can be observed on
screen or sent to a file for further analysis. The
simulation can also be run in batch mode.

4 ADVANCED FEATURES

ALPHAISim incorporates a number of additional
features. These include: functions, enable and inhibit
logic, stop when conditions, boxes, show tree, and
various printing and file handling features. ALPHAlSim
includes over thirty built-in mathematical functions as

well as arithmetic and logical operators that can be used
in timing rules, decision rules, output attribute
definitions, and other expressions. In addition, it is
possible to incorporate user-defined functions and
interact with external code. Enable and inhibit logic can
be used in transition forms to specify which
combinations of tokens will cause a transition to fire.
Stop when conditions are logical expressions that can be
used to halt the simulation if a specified condition is
reached. Boxes provide a hierarchical modeling
capability. Show tree allows you to view a model's
hierarchy in a tree structure and provides an easy way to
navigate through a model. The graphical model and the
infonnation contained in the fOnTIS can be printed out to
a laser printer or sent to a file.

5 SAMPLE APPLICATIONS

ALPHAISim and its predecessor, Modeler, have been
used to develop a wide array of discrete-event simulation
models. These include computer components and
systems (e.g., Ethernet system (Brennan, Walenty, and
Moore 1995), client-server system, and high-speed disk
systems), manufacturing systems (Moore and Gupta
1996), large-scale military command and control
systems (Moore and Lynch 1990), and business process
reengineering and workflow models for a charter air
cargo and passenger service system.

The client-server system consists of several data
processing nodes connected via a local area network
(LAN). The model evaluates the impact of changing the
number of hardware components and their capabilities
on throughput and latency for individual processes. It
also identifies bottlenecks in the system, thereby
indicating good candidates for increasing capacity.

The charter air cargo and passenger service model
depicts the workflow for a thirty person office
responsible for handling and scheduling domestic and
international transportation. This workflow is unique in
that the staff's activities are frequently interrupted by
higher priority tasks and phone calls or delayed due to
communications delays. The model was used to
detennine the impact of automation and task redefinition
on staffing requirements and throughput.

6 SUMMARY AND CONCLUSIONS

In this paper, we described a general-purpose, discrete
event simulation software tool called ALPHNSim.
With ALPHAISim you can: build and debug your
models graphically; build models from the top-down,
bottom-up, or both; easily modify model parameters and
structure; navigate through the model; monitor results at
any point in the simulation run; and save any model

ALPHA/SllvI Tutorial 529

component for reuse in other models.
With ALPHAISim' s graphical modeling and

simulation environment it is possible to develop and
exercise simulation models without having to see or
write a line of code. The graphical interface allows you
to design the model using the mouse and icons.
Integrated fonns provide the means for specifying logic
and input parameters for the model. ALPHAlSim also
provides the ability to interface with external software.

We described how to use this tool via a simple
example of a manufacturing system. This example
illustrates the key features of ALPHAJSim. In addition,
we briefly listed some of the advanced features of the
tool. We also listed a number of sample applications and
briefly described two of these, namely a client-server
perfonnance model and a business process workflow
model.

ACKNOWLEDGMENTS

ALPHAISim is a trademark of ALPHATECH, Inc.
Motif is a registered trademark of Open Software
Foundation, Inc. Sun as is a trademark of Sun
Microsystems, Inc. Sun Workstation is a registered
trademark of Sun Microsystems, Inc. UNIX is a
registered trademark of UNIX Systems Labs, Inc.
Windows NT is a trademark of Microsoft Corporation.
X Window System is a trademark of the Massachusetts
Institute of Technology.

REFERENCES

Brennan, J.E., M.E. Walenty, and K.E. Moore. 1995.
Simulating a UNIX processor using Petri nets and
ALPHAlSim. In Proceedings of the 1995 Summer
Computer Simulation Conference, ed. T. I. Oren and
L. G. Birta, 63-69. Society for Computer Simulation,
San Diego, CA.

Moore, K.E. and S.M. Gupta. 1996. Petri net-based
analysis and simulation of traditional and flexible
kanban control policies, ed. K. Stelson In Proceedings
o/the Japan-USA Symposium on Flexible Automation.
American Society of Mechanical Engineers, New
York, NY.

Moore, K.E. and J.P. Lynch. 1990. Stochastic, timed,
attributed Petri net (STAPN) modeling of
antisubmarine warfare C 3 architectures. In
Proceedings of the 1990 Symposium on Command and
Control Research, 311-325. SAlC, McLean, VA.

Moore, K.E., R.R. Tenney, P.A. Vail. 1986. Systematic
evaluation of command and control systems.
Technical Report TR-284, ALPHATECH, Inc.,
Burlington, MA.

Murata, T. 1989. Petri nets: properties, analysis and

applications. Proceedings of the IEEE 77: 541-580.
Peterson, J. L. 1981. Petri net theory' and the modeling

ofsystems. Englewood Cliffs, NJ: Prentice-Hall.
Petri, C.A. 1962. Kommunikation mit automaten.

Institut ftir Instrumentelle Mathematik, Schriften des
lIM Nr. 3, Bonn, Gennany. Also, English translation,
"Communication with automata." Technical Report
RADC-TR-65-377, vol. 1, Suppl. 1, January 1966,
Griffiss Air Force Base, NY.

AUTHOR BIOGRAPHIES

KENDRA E. MOORE is the Simulation Products and
Services program manager at ALPHATECH, Inc., in
Burlington, Massachusetts. She received her MS degree
(1989) in operations research from the Department of
Industrial Engineering and Information Systems at
Northeastern University in Boston, Massachusetts. She
is currently pursuing a PhD in operations research at
Northeastern; her research is focused on using Petri nets
to model flexible manufacturing systems. She has a MA
degree (1985) in philosophy of religion from Columbia
University in New York City, and a BA degree (1981) in
philosophy and religion from Stephens College in
Columbia, Missouri. Since joining ALPHATECH in
1985, Ms. Moore has been actively involved in
developing and applying simulation and modeling
techniques and tools. Her areas of interest are Petri nets,
discrete-event simulation, optimization, manufacturing
systems, business process reengineering, and
perfonnance analysis.

JOHN E. BRENNAN is a senior simulation engineer at
ALPHATECH, Inc., in Burlington, Massachusetts. He
holds a BS degree (1981) from Catholic University in
Washington, DC and an MS degree (1989) in operations
research from the College of Business and Management
at the University of Maryland at College Park. Since
joining ALPHATECH in 1994, he has been involved in
modeling and analysis of hardware and software
architectures to support business process reengineering.
Prior to joining ALPHATECH, Mr. Brennan was an
engineer with the American Red Cross Biomedical
Services division involved in systems design and
analysis to support process improvement efforts in the
collection, testing, manufacture, and distribution of
blood and blood products. His areas of interest include
simulation, decision support systems, process
improvement, and health care applications.

