Proceedings of the 1996 Winter Simulation Conference
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain

CSIM18 - THE SIMULATION ENGINE

Herb Schwetman

Mesquite Software, Inc.
3925 West Braker Lane
Austin, TX 78759-5321, USA

ABSTRACT

A simulation engine is the collection of components,
features and support functions which are crucial to the
implementation of an efficient discrete event simulation
model. Furthermore, this model can be embedded in a
larger application. A good simulation engine combines
efficiency, functionality and completeness to enable a
model builder to construct a comprehensive, customized
model of either a specific system or a class of systems.
This paper presents CSIM18, a simulation engine which
supports development of applications with efficient, em-
bedded simulation models on a variety of system plat-
forms.

1 INTRODUCTION

Many application developers are finding a need to em-
bed a simulation model into their application. Applica-
tions which help users design or configure complex
systems for which performance is a major design goal
are examples of such applications. This paper presents
CSIM18, a simulation engine which has the features that
developers find useful as they add simulation models to
their applications.

An example of such an application would be a data-
base design and layout program. In many cases, a data-
base management system (DBMS) is used with a high
performance on-line transaction processing (OLTP)
system. A major goal of the system is to give "quick"
responses to each kind of transaction in the stream of in-
coming transactions. The design program then needs to
help the designer layout the database so that the response
time requirement can be met. In order to evaluate a de-
sign, the designer needs to obtain estimates of transac-
tion response times for the design just completed. A
simulation model of the OLTP system with the DBMS
as specified in the design program could provide the
necessary estimates of the response times for each kind
of transaction as the operation of the system is simulated
in a realistic fashion. In this example, the design pro-

gram is the larger application, and the model of the
OLTP system and the DBMS is the embedded simula-
tion model. In many cases, it would be appropriate and
expedient to implement the embedded model with a
simulation engine.

As this application is being designed and imple-
mented, and the need for a simulation engine deter-
mined, a natural question is the one of "make or buy" -
should the project implement their own simulation en-
gine or should they examine the software marketplace,
to see if an appropriate simuiation engine can be pur-
chased? Given the economics of software development,
it is usually advantageous to buy a software component,
if one can be found that (1) fills the need, (2) is com-
patible with the other software tools and components
being used, (3) is supported and (4) is "reasonably"
priced.

This paper first describes a simulation engine and pre-
sents the features which distinguish a good simulation
engine. It next presents CSIM18 and shows why it ful-
fills the need for a simulation engine in many applica-
tions. The paper concludes with some examples of ap-
plications which have incorporated CSIMI18 (or its
predecessors) as the simulation engine for their models.

2 SIMULATION ENGINES

A simulation engine is a set of objects and methods
which are used to construct simulation models which are
embedded in applications. This is in contrast to a simu-
lation environment which is itself the complete applica-
tion. In many cases, an application is tailored to specific
domain. In fact, an application can be quite complex,
and the embedded simulation model is really a just mi-
nor component, usually used to help evaluate some as-
pect of the application.

The key point is that the simulation engine is used to
build a model which is embedded in a larger application.
The model is not the goal; the model is used to support
the goal (the complete application). Some examples of
applications with embedded models will be given in a

518 Schwetman

later section.

There are several features which characterize a "good"
simulation engine; these include:
a.the engine is a complete simulation package; it can

support all of the important discrete-event simulation

paradigms, including the process-oriented paradigm;

b.a model implemented with the engine can be an accu-
rate representations of the "real" system; in particular,
important features of the real system, including com-
plex component interrelationships, unusual scheduling
rules, and varying workload profiles can all be repre-
sented in the model;

¢. models of almost any size can be created with the en-
gine;

d. the engine is efficient; models constructed with the en-
gine execute in an "reasonable" amount of time; in ad-
dition, both large and small models execute effi-
ciently;

e. models based on the engine are compact;

f. models based on the engine are written in standard
programming languages; in particular, developers do
not have to learn a new language which is peculiar to
the simulation model;

g.the model is embeddable; the model can be easily in-
tegrated with the rest of the application;

h. the engine has an easy-to-use interface; and

i. the model can be retargeted to multiple platforms; the
model should not be an impediment to moving the ap-
plication to different systems.

There are some additional features which could sim-
plify the task of the application developer. These in-
clude:

a. Automatic run-length control: methods for determin-
ing when accurate results are achieved

b. Random number streams and random number func-
tions: routines for generating streams of varying val-
ues from many different probability distributions, and

c. Data collection and reporting routines: routines for
collecting data and generating useful ports.

When an application developer is evaluating simula-
tion engines, these and other factors will be used to help
select the best engine for use in the project.

It should be noted that a graphical user interface (GUI)
was not listed as an important feature for a simulation
engine. It is assumed that the larger application has its
own GUI and that a GUI specific to the simulation
model is inappropriate and not needed.

3 CSIM18

CSIM18 is a complete simulation engine. Earlier ver-
sions of CSIMI18 are described in a number of articles
(Schwetman 1986, 1988, 1990, 1994, 1995). These
predecessors to CSIMI18 have been used to model a

large variety of systems, including communications

systems [Edwa92], computer systems, transportation

systems, microprocessors, and fault tolerant systems.

CSIM18 is a library of classes, functions, procedures
and header files which enable developers to implement
efficient models of complex systems. The models are
written in either the C or C++ programming languages.
The library is available on many different system plat-
forms, including PC's with either Windows 3.1, Win-
dows 95, Windows NT, OS/2 Warp and Linux operating
systems. It is also available on almost all UNIX work-
stations, including Sun SPARC (SunOS and Solaris),
DEC Alpha (with OSF/1), HP PA (with HP/UX), IBM
RS/6000 (with AIX) and SGI workstations. There is
also a version for the Power Mac (with the Metroworks
C++ compiler).

CSIM18 supports process-oriented, discrete-event
simulation models. In this kind of model, the complete
system is represented by a collection of simulated re-
sources and a collection of processes which compete for
use of these resources. Typically, such a model is used
to provide estimates of the performance of the real
(modeled) system. The goal is to use the model to "try
out" different system configurations or different work-
loads or different resource scheduling rules, to find the
"best" configuration (or workload or schedule) with re-
spect to the performance goal. In most cases, it is much
"cheaper" to try out configurations in a system model
than it is to use the real system.

The specific classes (simulation components) provided
with CSIM18 (Mesquite 1996) include:

a. Processes: a CSIM process is an independent thread of
execution; the active entities of a model are imple-
mented as processes; since many processes can appear
to be executing simultaneously, processes can mimic
the activities of entities operating in parallel;

b. Facilities (these are called "active" resources in some
simulation systems) - resources are typically "used"
by processes in the model; facilities have one or more
servers; processes queue up for access to a server;

c. Storages (these are called "passive" resources in some
simulation systems) - a storage is initialized with a
number of storage units; processes can "allocate"
some subset of the storage units;

d. Events - events are used to synchronize actions of dif-
ferent processes, and

e. Mailboxes - mailboxes are used to interchange infor-
mation between processes.

In addition, CSIM18 provides classes (simulation
components) to assist the with collection of data in a
model; these include:

a. Tables - used to collect real valued (double) data val-
ues and to report on their statistical properties;

b. Qtables - used to collect integer valued, time depend-

CSIM18—The Simulation Engine 519

ent data values (e.g. queue lengths) and to report on

their statistical properties;

c. Meters - used to measure the flow of entities past a
point in the system and, also, to measure the times
between successive passages of entities past this point;
and

d.Boxes - used to collect data on time spent in a speci-
fied range of process activities.

A standard report can be generated for each facility,
storage, table, qtable, meter and box. Histograms and
confidence intervals can be requested for each table,
qtable, meter and box. In addition, "inspector" functions
are provided to give programs access to every data item
collected for all of the structures with report capabilities.
The developer can use these inspector functions to pro-
duce reports tailored for the specific application.

A "run-length-control" feature can be associated with
the mean value of a table, qtable, meter or box
(Mesquite 1995). This feature allows the modeler to
specify a "stopping rule" for execution of the model.
The stopping rule is based on achieving a specified level
of confidence for some output statistic. A CPU time
limit is also specified, so that the model will cease exe-
cution (with possibly inaccurate results) when this time
limit is exceeded. This run-length-control feature could
be very important for applications which depend on
achieving accurate results in an efficient manner from
the embedded simulation model.

CSIM18 has some other features which will assist the
implementation of embedded models. These include:

a. the "rerun" statement: used to "tear down" a model, so
that a new model can be constructed by the program;
b.the "reset” statement: used to discard results collected

so far from all of the data collection facilities in a

model; this used to allow for a "warm up" interval be-

fore actual data collection is started; and

c. model debugging aids: a selective event trace can be
used to give details on selected (or all) aspects of the
execution of the model; for some platforms, an inter-
active execution monitor lets the developer examine,
interactively, many parts of the model and also lets the
developer "step through" execution of the model.
Models produced with CSIM18 can execute very effi-

ciently. A test program has been written and executed
on many different platforms. The test consists of a
model of an M/M/1 queue with 50% server utilization
operating for 5000 arrivals and 5000 departures. The
model requires 17,485 simulation events. The following
tables shows the timings for executing this model on
several platforms:

System: Dell PC SPARC RS/6000
Processor: Pentium 133 SStation5 PowPC 601
OS: Win95 Solaris AIX

Compiler: MS VC++4.0 g++2.7 xlcxx
User CPU sec: 0.430 1.580 0.450
Events per sec: 40,662 11,066 38,856

CSIMI18 is delivered with a complete set of docu-
mentation consisting of a Users' Guide (for either the C
or C++ version) and a introductory ("Getting Started")
manual, along with installation instructions.

CSIM18 is the newest version of a series of CSIM
simulation software toolkits. CSIM was originally de-
veloped in 1985 at MCC. The preceding version,
CSIM17, was developed and sold by Mesquite Software,
Inc. (under the terms of a license agreement with MCC)
in 1994. CSIMI18 incorporates suggestions, enhance-
ments and improvements from many sources including
customers and developers using CSIM17.

4 EXAMPLES

Several projects have used previous versions of CSIM18
as a simulation engine for embedded models. This sec-
tion describes some of these projects.

4.1 VisSim/Discrete Event

Visual Solutions, Inc., sells VisSim (Visual Solutions
1995), a simulation package for developing continuous,
discrete, multi-rate and hybrid system models and for
performing dynamic simulations. VisSim incorporates
an outstanding graphics user interface which is used to
create diagrams of the systems being simulated. Each
model consists of a collection of components connected
by flexWires. Components can perform many kinds of
activities such as evaluating a mathematical function,
generating a random value, performing an arithmetic or
logical test, and producing different forms of animation.
VisSim add-ons allow users to find optimal solutions to
mathematical programming problems, model fuzzy-logic
systems and do real-time control functions.

Some of the VisSim users expressed a need for dis-
crete-event simulation capabilities in the VisSim mod-
eling building environment. Visual Solutions responded
to this need by engaging Mesquite Software to design
and implement VisSim/Discrete-Event (Visual Solutions
1996), an add-on to VisSim which lets modelers use the
VisSim GUI to construct, test and execute discrete-event
simulation models. CSIMI17 (the predecessor to
CSIM18) is the simulation engine which "powers" Vis-
Sim/Discrete-Event.

Briefly, new VisSim blocks which represent most of
the CSIM classes and methods are added to VisSim.
These blocks are interconnected by VisSim flexWires.
The model consists of one or more of "process dia-
grams". Process diagrams represent creating processes

520 Schwetman

(the source block), terminating processes (the sink
block) and many different kinds of process activity
blocks (such as useServiceStation, allocateStorage,
waitEvent and computeResult). Other blocks represent
serviceStations (active resources), storages (passive re-
sources), events and tables. Some of the standard Vis-
Sim blocks are used to present output results (display
blocks, meters and strip charts) and perform some kinds
of arithmetic operations. Compound blocks, which are
aggregations of blocks, can be used to represent sub-
models.

VisSim/Discrete-Event is a powerful tool for creating
discrete-event simulation models with a block diagram-
ming interface. The models can represent many styles
of process behavior and can be used to model many dif-
ferent kinds of systems. The internal simulation engine,
CSIM17, when combined with the VisSim GUI enabled
this new modeling environment to be created with a rea-
sonably modest effort (about 2/3 of a man-year).

42 ArchGen

CAE + Corporation has developed and is selling a CAD
system called ArchGen (Jain 1995, 1996). ArchGen
captures, validates and optimizes system IC specifica-
tions. It includes a CSIM model for functional and per-
formance simulation with clock edge accuracy. CSIM17
is the simulation engine used in ArchGen.

CAE+ decided to use CSIM because they needed a
model which could be "connected" to the rest of the
ArchGen components, and they needed a model which
has a high rate of executing basic simulation activities
(the IC designer is usually sitting at the workstation,
waiting for the model to produce its estimates of chip
performance). Mesquite Software has worked closely
with CAE+, to insure that the functionality and perform-
ance needed by ArchGen would be available in CSIM.

43 SPE-ED

L&S Computer Technology, Inc. sells SPE «ED (Smith
and Wong 1994), a tool for modeling, at a high level, the
functionality and behavior of large software systems and
for providing estimates of the performance of these sys-
tems in operation. SPE <ED supports the methods and
techniques of performance engineering, to help software
designers translate their designs to efficient implementa-
tions. L&S Computer Technology selected CSIM as the
simulation engine because it was a "excellent fit" with
the needs and capabilities of SPE<ED. In addition,
CSIM was available on the platforms that L&S needed

4.4 Others

A large computer manufacturer introduced a large scale
multiprocessor system and a parallel relational database
management system (RDBMS). The system supports
both high-volume on-line transaction processing and
large, complex decision support queries. The manufac-
turer decide to offer a configuration planning and man-
agement application, to support both layout of the data-
base and performance tuning of the transaction process-
ing software. This application incorporated a simulation
model of the multiprocessor system along with the par-
allel RDBMS and the transaction processing software.
CSIM was chosen to be the basis for the simulation
model. The key reasons for selecting CSIM were that
CSIM could be easily integrated into the rest of the ap-
plication, CSIM provided the necessary functionality for
implementing the model, and CSIM provide efficient
execution of the model. The efficient execution of large
models turned out to be important, because some the
configurations suggested for customers were very large
and the transactions being simulated could be quite
complex.

A research project at a large university built a software
system for designing and evaluating fault-tolerant com-
puter systems. It used CSIM as the simulation engine
for the models of failures and repairs in the systems be-
ing designed.

A consulting firm built a model of inventory manage-
ment system for a warehousing operation. They used
CSIM as the basis of the model used to "try out" differ-
ent management rules. The application was written in
Visual Basic for execution on a PC with Windows. The
Visual Basic application connected to the model which
was implemented as a DLL written in Visual C++ and
the CSIM17 library.

5 SUMMARY

CSIM18 is a simulation engine. It can be used to im-
plement simulation models which will be embedded in
domain specific applications. Rapid development of
customized applications has been greatly enhanced by
the emergence of application development environments
such as Microsoft Visual C++, Borland C++, Microsoft
Visual Basic and other similar products. One project has
recently developed an application based on an Excel
spreadsheet, with a link to a CSIM model.

The predecessor of CSIM18, CSIM17, has been suc-
cessfully used to develop realistic models of many dif-
ferent kinds of complex systems. Some examples of ap-
plications incorporating CSIM models have be given in
this paper. CSIM18 offers several new features which

CSIM18—The Simulation Engine

will be essential to developers. The functionality, com-
pactness and efficiency of CSIM18 mean that models
based on CSIM18 will enhance the surrounding applica-
tions.

ACKNOWLEDGMENTS

CSIM is copyrighted by Microelectronics and Computer
Technology Corporation (MCC). CSIM17 and CSIM18
are supported and marketed by Mesquite Software, Inc.
under a license from MCC. Dr. Jeff Brumfield devel-
oped the new data collection and presentation functions,
including the run length control algorithm, in CSIM18.

REFERENCES

Edwards, G. and R. Sankar. 1992. Modeling and simu-
lation of networks using CSIM. Simulation 58(2): 131
- 136.

Jain, P. 1995. A comprehensive pre-RTL design meth-
odology. In Proceedings of the 1995 International
Verilog HDL Conference. 1EEE Computer Society
Press.

Jain. P. 1996. Specification validation of embedded
system ICs. In Proceedings of Embedded Systems
Conference 1996. Miller Freeman, Inc.

Mesquite Software, Inc. 1995. Confidence intervals and
run length control in CSIM18. Internal Report. Aus-
tin, TX.

Mesquite Software, Inc. 1996. CSIMI8 Users Guide.
Austin, TX.

Schwetman, H. 1986. CSIM: A C-based, process-
oriented simulation language. In Proceedings of the
1986 Winter Simulation Conference, ed. J. Wilson, J.
Henriksen, and S. Roberts, 387 - 396. Washington,
DC.

Schwetman, H. 1988. Using CSIM to model complex
systems. In Proceedings of the 1988 Winter Simula-
tion Conference, ed. M. Abrams, P. Haigh, and J.
Comfort, 246 - 253. San Diego, CA.

Schwetman, H. 1990. Introduction to process-oriented
simulation and CSIM. In Proceedings of the 1990
Winter Simulation Conference, ed. O. Balci, R.
Sadowski, and R. Nance, 154 - 157. New Orleans,
LA.

Schwetman, H. 1994. CSIM17: A simulation model-
building toolkit. In Proceedings of the 1994 Winter
Simulation Conference, ed. J. Tew, S. Manivannan,
D. Sadowski, A. Seila, 464 - 470. Orlando, FL

Schwetman, H. 1995. Object-oriented simulation mod-
eling with C++/CSIM17. In Proceedings of the 1995
Winter Simulation Conference. ed. C. Alexopoulos,
K. Kang, W. Lilegdon, D. Goldsman, 529 - 533.
Washington, D.C.

[uiy)
to
—

Smith, C and B. Wong. 1994. SPE evaluation of a cli-
ent/server application. In Proceedings of Computer
Measurement Group. Orlando, FL.

Visual Solutions, Inc. 1995. VisSim users’ guide. West-
ford, MA.

Visual Solutions, Inc. 1996. VisSim/Discrete-Event
user’s guide. Westford, MA.

AUTHOR BIOGRAPHY

HERB SCHWETMAN is founder and president of
Mesquite Software, Inc. Prior to founding Mesquite
Software in 1994, he was a Senior Member of the Tech-
nical Staff at MCC from 1984 until 1994. From 1972
until 1984, he was a Professor of Computer Sciences at
Purdue University. He received his Ph.D. in Computer
Science from The University of Texas at Austin in 1970.
He has been involved in research into system modeling
and simulation as

