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1 INTRODUCTION

ABSTRACT

Developing efficient methods for solving discrete stoc
hastic optimization problems is an important area of
research because such methods could be used to solve
important problems in many fields, including manu
facturing systems, management science, and logistics.
The discrete stochastic optimization problem can be
represented as follows:

where S is a discrete set, and it is assumed to be finite
throughout this paper, h is a deterministic real-valued
function, and Yx is a random variable that depends
on the parameter xES. For simplicity define the
random variable H(x) = h(x, Yx ) for all xES, and
let S· = {x· E S : f(x·) ~ f(x) for all XES}
denote the set of global solutions to the optimization
problem (1).

Approaches that have been designed to solve
the discrete stochastic optimization problem include
ranking and selection procedures and multiple com
parisons procedures. These procedures can be effi-

cient when the number of alternatives is small. Golds
man, Nelson, and Schmeiser (1991) present demon
strations of three methods for discrete stochastic opti
mization (interactive analysis, ranking and selection,
and multiple comparisons) on an airline-reservation
system simulation problem. For more details on rank
ing and selection and multiple comparisons methods,
see Bechhofer, Santner, and Goldsman (1995).

Recently Andrad6ttir (1995, 1996) has proposed
two methods for solving discrete stochastic optimiza
tion problems. These two methods involve generating
Markov chains. The state that is visited most of
ten by these Markov chains is used as an estimate of
the solution. She has shown that these two methods
converge to an optimal solution almost surely. Alre
faei and Andrad6ttir (1995) have proposed another
method for discrete stochastic optimization that re
sembles the simulated annealing algorithm. They
use the same criterion that Andrad6ttir (1995, 1996)
used to estimate the solution. They have shown that
their method converges to a global optimal solution
almost surely. Gelfand and Mitter (1989) proposed
to solve the discrete stochastic optimization problem
using the simulated annealing algorithm. They show
that this algorithm converges to a global optimal so
lution when the evaluations of the objective function
values include noise that is normally distributed with
mean zero and a small variance. Lee (1995) general
izes some of the results of Gelfand and Mitter (1989)
to the case when the evaluations of the objective
function values include noise which is not necessar
ily normally distributed. Fox and Heine (1995) have
also investigated the application of simulated anneal
ing to solve discrete stochastic optimization problems.
When the set of feasible solutions is very big, the ordi
nal optimization approach proposed by Ho, Sreenivas,
and Vakili (1992) can be used to narrow the focus
on a smaller manageable set that contains a "good
enough" (near-optimal) solution with high probabil
ity. Then the other methods we have mentioned could

(1)min f(x) = E[h(x, Yx )],
xES

In this paper, we present a modification of the
stochastic ruler method for solving discrete stochastic
optimization problems. Our method generates a sta
tionary Markov chain sequence taking values in the
feasible set of the underlying discrete optimization
problem. The number of visits to every state by this
Markov chain is used to estimate the optimal solu
tion. Unlike the original stochastic ruler method, our
method is guaranteed to converge almost surely to a
global optimal solution. We present empirical results
that illustrate the performance of our method, and we
show that these results compare favorably with em
pirical results obtained using the original stochastic
ruler method.
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P{Zk = zlXk =x} = R(x, z), z E N(x).

Assumption 3 The neighbor system N and the
transition probability R are symmetric, i. e.,

Assumption 5 A sequence {Mk} of positive inte
gers satisfies Mk ~ 00 as k ~ 00.

Step 1: Given Xk = x, choose a candidate Zk from
N (x) with probability distribution

(2)maxP(x,a,b),
xES

Instead of solving the original minimization prob
lem (1) directly, Van and Mukai (1992) solve the fol
lowing alternative maximization problem

Assumption 2 For any x, x' E $, x' is reachable
from x; i.e., there exists a finite sequence {ni}~=O for
some l, such that X no = X, X n, x', and xni+l E
N(x ni ), i = 0,1,2, ... ,i-I.

Definition 2 A function R : $ x S ~ [0, 1] is said
to be a transition probability for Sand N if

1. R(x, x') > °<=> x' E N(x), and

2. LX/ES R(x, x') = 1, Ttx E S.

Definition 1 For each xES, there exists a subset
N (x) of S \ {x}, which is called the set of neighbors
o/x.

Assumption 4 The parameters a, b E ~ are selected
to cover the range of the observed objective function
values H(x), where xES.

1. x' E N(x) <=> x E N(x' ), and

2. R(x,x' ) = R(x/,x), lIx,x' E S.

where P(x, a, b) = Prob{H(x) ~ 8(a, b)}, for all
xES, and e (a, b) is a uniform random variable on
the interval (a, b) . The random variable (3 (a, b) is
called the stochastic ruler and it is used as a scale
against which the observations H (x) are measured.
Van and Mukai (1992) have shown that the solution
of the alternative maximization problem (2) is also a
solution of the original minimization problem (1) pro
vided that the interval (a, b) is chosen large enough
(see Assumption 4). Therefore, they propose the fol
lowing algorithm to solve the alternative maximiza
tion problem (2):

Algorithm 1 (Yan and Mukai (1992))

Parameters: N, R, {Mk}, a, b.

Step 0: Select a starting point X o E S and let k = O.

2 THE ORIGINAL STOCHASTIC RULER
ALGORITHM

be used to find a solution over this smaller set.
Van and Mukai (1992) proposed a method for

discrete stochastic optimization that is called the
stochastic ruler method. This method involves com
paring the observed objective function values H(x),
where xES, with a uniform random variable (the
stochastic ruler) defined on the range of the observed
objective function values. This uniform random vari
able is used as a scale against which the observations
H(x) are measured. This method uses an increasing
sequence of observations per iteration and it requires
some restrictive assumptions on the neighborhood
structure. Van and Mukai show that their method
converges in probability to a global optimal solution.
In this paper, we use the idea of the stochastic ruler
method and propose a variant of this method that
appears to behave better than the original method in
practice and also has been shown to converge under
more general conditions. Instead of using an increas
ing sequence of observations per iteration, we draw
only a fixed number of observations per iteration,
and we use a criterion that is similar to the crite
rion of Andrad6ttir (1995, 1996) for estimating the
solution. Furthermore, unlike the original stochas
tic ruler method, our proposed method converges al
most surely to a global optimal solution (the origi
nal method is only guaranteed to converge in prob
ability). We provide a numerical example that veri
fies the validity of our method and we compare the
performance of our method with that of the original
stochastic ruler method.

This paper is organized as follows: In Section 2
we give a brief review of the original stochastic ruler
method. In Section 3 we introduce our modified
stochastic ruler method. In Section 4 we implement
our method to solve a discrete stochastic optimization
problem and we compare the results with the perfor
mance of the original stochastic ruler method. And
finally in Section 5 we give some concluding remarks.

The stochastic ruler method is a random search
method that was proposed by Van and Mukai (1992)
to solve the discrete stochastic optimization problem
(1). To motivate our new method, in this section we
give a brief review of the stochastic ruler method. To
proceed we need the following definitions and assump
tions that were presented by Van and Mukai (1992).

Assumption 1 Assume that E{H(x)2} < 00, Ttx E
S.
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proceed, we use the following transition probability
that also satisfies Definition 2. Let

where R' : S x S ~ ~ is a function such that R'(x, x'}
> 0 ¢::> x' E N (x), and D : S ~ ~ is another function
such that D(x) = LX/EN(x) R'(x, x'), \:Ix E S. Now
we use the following assumption instead of Assump-
tion 3:

Assumption 6 Let R(x, x') be defined as in equa
tion (3) and let N satisfy Definition 1. Then we as
sume that:

Step 2: Given Zk = z, draw a sample h(z) from
H(z). Then draw a sample fJ from 8(a, b). If
h(z) > 8, then let Xk+l = Xk and go to Step
S. Otherwise draw another sample h(z) from
H(z) and draw another sample 0 from 8(a, b).
If h(z) > fJ, then let Xk+l = Xk and go to Step
3. Otherwise continue to draw and compare. If
all M k tests, h (z) > fJ, fail, then accept the can
didate Zk and set Xk+l = Zk = Z.

Step 3: Set k = k + 1 and go to Step 1.

Remark 1 Note that Step 2 can be rewritten as:
Given Zk = z, set

, R'(x, x')
R(x,x) = D(x) , (3)

with probability pz ,k,

with probability 1 - pz ,k ,

where

Pz,k [P{H(z) ~ 8(a, b)}]MJc

[P(z, a, b)]MIc.

Under Assumptions 1 through 5, Yan and Mukai
(1992) have shown that the Markov chain {Xk} gen
erated by Algorithm 1 converges in probability to a
global optimal solution of the discrete stochastic op
timization problem (1).

In practice, the sequence {Mk} plays a very crucial
role in the convergence of Algorithm 1. In particu
lar, if the sequence {Mk} is selected to increase very
rapidly then the algorithm could converge to a local
optimal solution and stay there. On the other hand, if
the sequence {Mk} is selected to increase very slowly
then the algorithm tends to take a longer time to set
tle down. To ease these difficulties, in the next section
we present a new variant of the stochastic ruler alga
rithm that does not require an increasing sequence
of observations to be drawn at every iteration. Fur
thermore, the new method can handle more general
neighborhood structures than the original stochastic
ruler method.

3 THE PROPOSED MODIFICATION OF
THE STOCHASTIC RULER ALGO
RITHM

In this section we present a new variant of the stochas
tic ruler method (Algorithm 1) to solve the dis
crete stochastic optimization problem (1). This new
method- requires only a finite number of observations
per iteration instead of an increasing number of obser
vations per iteration. Moreover, in our new method
we relax Assumption 3 to include more general neigh
borhood structures and transition probabilities. To

1. x' E N(x) ¢::> x E N(x'), and

2. R'(x, x') =R'(x', x), \:Ix, x' E S.

As an example that satisfies Assumption 6 consider
R(x, x') = IN(x)l for all x' E N(x). Note that this
choice of transition probability R only satisfies As
sumption 3 if IN(x)1 = IN(x')1 whenever x' E N(x).

Our modified stochastic ruler method is given be
low. Note that {Xk} is the Markov chain that is gen
erated by the algorithm, Vk (x) is the number of times
the Markov chain {Xk} has visited state x up to time
k, and D(x) is defined in equation (3). Then the state

X; that maximizes i;((;:? is used as an estimate of
the solution of the discrete stochastic optimization
problem (1).

Algorithm 2

Parameters: N, R, M, a, b.

Step 0: Select a starting point X o E S. Let Vo(Xo)=
1, and Vo(x) = 0, for all xES, x =F Xo. Let
k =0 and XZ = X o.

Step 1: Given Xk = x, choose a candidate Zk from
N (x) with probability distribution

R' (x, z)
P{Zk=zIXk=x}=R(x,z)= D(x) l

where z E N(x) and R'(x, z) and D{x) are de
fined in equation (3).

Step 2: Given Zk = z, draw a sample h(z) from
H(z). Then draw a sample fJ from 8(a, b). If
h(z) > fJ, then let Xk+l = X k and go to Step
3. Otherwise, draw another sample h(z) from
H(z) and draw another sample fJ from 8(a, b). If
h(z) > (J, then let Xk+l = Xk and go to Step :i.
Otherwise, continue to draw and compare. If all
M tests, h(z) > 8, fail, then accept the candidate
Zk and set Xk+l =Zk = Z.
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Remark 2 Note that Step 2 can be rewritten as:
Given Zk = z, set

1.5

o.~

The objediw tundion values 'Ix) _

with probability Pz,
with probability 1 - Pz, ~----------_ .._-_._.__...._-_ ..-

where pz = [P{H(z) ~ 8(a, b)}]M = [P(z, a, b)]M.

The next theorem has been proved by Alrefaei and
Andrad6ttir (1996). It guarantees that the sequence
{XZ} generated by Algorithm 2 converges almost
surely to a global optimal solution of the discrete
stochastic optimization problem (1).

Figure 1: The Objective Function Values f(x), where
f(x) = E[Yx ] and Yx is a Uniform Random Variable
on the Interval f(x) ± 0.5.

The second neighborhood structure is given by
Theorem 1 Under Assumptions 1, 2, 4 and 6 the
sequence {XZ} generated by Algorithm 2 converges
almost surely to an element of S· (in the sense that
there exists a set A such that P(A) = 1 and for all
w E A, there exists K w > a such that XZ(w) E S· for
all k ~ K w ).

N(x) =

{2,3}
{1,3,4}
{7,8,10}
{B,9}
{x±1,x±2}

if x = 1,
if x =2,
if x =9,
if x = 10,
otherwise.

(5)

4 NUMERICAL APPLICATION

In this section we implement Algorithm 2 to solve a
simple discrete stochastic optimization problem, and
compare its performance with that of Algorithm 1 on
the same problem. In equation (1), let S = {1, ... ,
10}, and let /(x) = E[Yx ] for all xES, where
Yx is a uniform random variable on the interval
/(x) ± 0.5, for all xES, and /(1), ... , /(10) are
0.3, 0.7, 0.9,0.5,1.0,1.4,0.7, 0.8, 0.0, and 0.6, respec
tively. See Figure 1 for the graph of the function.
Let a = -0.5, b = 1.9, and let X o be uniformly dis
tributed on the set S.

We will apply Algorithm 1 to solve this optimiza
tion problem with a number of different choices of
the parameters M, {N(x) : xES}, and {R(x, x'} :
xES and x' E N (x)} that satisfy the conditions
of Theorem 1 (so that Algorithm 2 is guaranteed
to converge). In particular, we use two different
values of the constant M: M = 1 and M = 2.
Also, we use three different neighborhood structures
{N (x) : XES}. The first neighborhood structure is
given by

for all xES. In all cases, we let R(x, x') = TNtxn,
for all xES and x' E N(x). Note that in the third
neighborhood structure (6), we have only one global
minimum at x = 9. On the other hand, in the first
neighborhood structure (4) we have three local min
ima at x = 1,4, and 7 and one global minimum at
x =9, and in the second neighborhood structure (5),
we have two local minima at x = 1 and x =4 and one
global minimum at x = 9. Since the first and second
neighborhood structures result in more local minima,
we expect that Algorithm 2 will converge more slowly
in these settings than when the third neighborhood
structure is used.

Note that for the first neighborhood structure (see
equation (4)) it is impossible to select a transition
probability R that satisfies Assumption 3. Therefore,
Algorithm 1 is not guaranteed to converge when the
first neighborhood structure is used. Also, for the
second neighborhood structure (see equation (5)) it
is difficult to select a transition probability R that
satisfies Assumption 3. Therefore, it is difficult to ap
ply Algorithm 1 using the second neighborhood struc
ture. However, we implement Algorithm 1 using the
third neighborhood structure defined in equation (6).{

{2}
N(x) = {9}

{x - 1, x + I}

if x = 1,
if x = 10,
otherwise.

(4)

The third neighborhood structure is given by

N(x) =S \ {x}, (6)



410 Alrefaei and Andrad6ttir

In this case, we let Mit: =llogs(k+10)J for all k; this
choice of the sequence {Mit:} satisfies the guidelines
specified by Yan and Mukai (1992).

Figures 2 and 3 show the results obtained by ap
plying Algorithm 2 to solve this optimization prob
lem with the choices of parameters described above.
In particular, the figures show the number of obser
vations of the objective function vs. the number of
replications that have converged to the global solu
tion out of a total of 100 replications that were used.

80

20
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o 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000

Number (j ~iona

Figure 2: The Performance of Algorithm 2 as a Func
tion of M when the Neighborhood Structure {N(x)}
given by Equation (4) is used.

replications converge after only 2,000 observations
have been made. On the other hand, the number
of convergent replications for Algorithm 1 does not
exceed 60 replications after 50,000 observations have
been obtained. In fact, in another experiment we
completed 100 replications of 10 million iterations of
Algorithm 1 (which required about 40 million obser
vations per replication on the average) and we did not
get convergence for all 100 replications.
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Figure 4: A Comparison Between Algorithms 1 and
2 when the Neighborhood Structure {N(x)} given by
Equation (6) is used, M = 1 in Algorithm 2, and
Mit: =llogs(k + 10)J for all k in Algorithm 1.
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From the results given in Figure 4, we conclude that
in this example Algorithm 2 converges much faster
than Algorithm 1. Also, as expected, it appears to
be better to have larger neighborhoods N(x) where
xES, and smaller number of observations M in Al
gorithm 2 (the results for the neighborhood structure
(6) are better than those for the neighborhood struc
tures (4) and (5), and the results for M = 1 are better
than those for M = 2).

5 CONCLUSION
20

In this paper, we have presented a new search method
designed to solve the discrete stochastic optimization
problem (1). This method resembles the stochastic
ruler method of Yan and Mukai (1992). Unlike the
original stochastic ruler method, the new method re
quires only a finite number of observations to be made
at every iteration instead of using an increasing se
quence of observations per iteration. Furthermore,
this new method can handle more general neighbor
hood structures. It has the feature that it spends
most of the time near the optimal solution. Also, un
like the original stochastic ruler method, our method
converges almost surely to a global optimal solution.

200,00050,000

OL.-- --L-- ----I- -----Io --J

o

Figure 3: The Performance of Algorithm 2 as a Func
tion of M when the Neighborhood Structure {N(x)}
given by Equation (5) is used.

Figure 4 includes a comparison between Algorithms
1 and 2 when the third neighborhood structure is
used . Note that for Algorithm 2 all 100 replications
converge to the true optimizer after 10,000 observa
tions have been drawn. Furthermore, 90 of these



Optimization via the Stochastic Ruler Alctllod 4:11

In practice, in our exampIe, it seems to be better
to use a small number of observations per iteration
to give the method more freedom to move around
the state space aggressively and locate the solution
very quickly. Also, it is better to use larger neigh
borhood sets when there are many local minimal so
lutions. However, we expect that may be better to
use smaller neighborhood sets if the objective func
tion is unimodal or has a fair amount of structure.
In our example, the new method shows better per
formance than the original stochastic ruler method.
In order to further investigate the efficiency of the
proposed method, we are interested in implementing
our method to solve more realistic discrete stochas
tic optimization problems (such as the buffer alloca
tion problem). We are also interested in investigating
the application of our method to solve discrete opti
mization problems in both transient and steady-state
simulation.
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