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ABSTRACT

Sequential analysis of simulation output is generally
accepted as the most efficient way for securing
representativeness of samples of collected observations.
In this scenario a simulation experiment is stopped when
the relative precision of estimates, defined as the relative
width of confidence intervals at an assumed confidence
level, reaches the required level. This paper deals with
the statistical correctness of the methods proposed for
estimating confidence intervals for mean values in
sequential steady-state stochastic simulation. We
fonnulate basic rules that should be followed in proper
experimental analysis of coverage of different steady
state interval estimators. Our main argument is that such
analysis should be done sequentially. The numerical
results of our preliminary coverage analysis of the
method of Spectral Analysis (SNHW) and Non
overlapping Batch Means are presented, and compared
with those obtained by traditional, non-sequential
approaches.

1 INTRODUCTION

Sequential analysis of simulation output is generally
accepted as the most efficient way for securing
representativeness of samples of collected observations
[see, for example, Law and Kelton (1992)]. In this
scenario a simulation experiment is stopped when the
relative precision of estimates, defined as the relative
width of confidence intervals at an assumed confidence
level, reaches the required level.

This paper deals with the statistical correctness of the
methods proposed for estimating confidence intervals of
mean values in sequential steady-state stochastic
simulation. The main analytical problems of such
simulation studies were discussed in Law (1983) and
Pawlikowski (1990). They are caused by correlations
between events observed during typical simulated
processes. At least a dozen methods have been proposed
for estimating confidence intervals of mean values from

series of correlated observations collected during such
simulation. A survey of the methods until 1990 can be
found in Pawlikowski (1990). Newer proposals include
those by Fox et ale (1991), Goldsman and Kang (1991),
Howard et ale (1992). So far only a few implementations
of these methods in an automated sequential simulation
framework have been reported [see for example Fox et
al. (1991), Heidelberger and Welch (1983), Pawlikowski
et al. (1994), Rego and Sunderam (1992), Yau and
Pawlikowski (1993)] and incorporated in some
simulation pack ages. The methods are based on different
approximations and their quality should be assessed by
analysing the properties of the final confidence intervals
they generate. A good method should produce narrow
and stable confidence intervals, which should of course
be valid, ie. they should contain the true value of the
estimated performance measure (with the correct
probability). Theoretical studies of various estimators of
confidence intervals, reported before 1990, are surveyed
in Pawlikowski (1990). Newer results can be found for
example in Kang and Goldsman (1990).

Unfortunately, no satisfactorily exhaustive
comparative studies of these methods have been repo~ed

yet, and it is di fficult to find a good method for a specIfic
range of applications. Additionally, most studies relate
to non-sequential simulation experiments run on single
processors. Very little is known about quality of these
methods in sequential simulation, and in fast concurrent
sequential simulations based on Multiple Replications ~n

Parallel (MRIP), when multiple processors cooperate ill

production of data - see Pawlikowski et al. (1994).
The theoretical studies of confidence intervals reveal

general conditions which have to be satisfied to ensure
the validity of the final confidence intervals, but the
correctness of any practical implementation of a specific
method also has to be tested experimentally. In this paper
we formulate a new methodology of such experimental
studies of the methods used in sequential stochastic
simulation for determining the final precision of results,
and present the results of our comparative studies of twO
selected methods: SAlHW (the method of Spectral
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Analysis in its version proposed in Heidelberger and
Welch (1981), and the classical method of (non-over
lapping) Batch Means, both in sequential simulations on
single processors and in sequential simulations on
multiple processors in MRIP scenario. Further directions
of research in this area are indicated in the Conclusions.

2 EXPERIMENTAL ANALYSIS OF
COVERAGE

In any performance evaluation studies of dynamic
systems by means of stochastic discrete-event simulation
the final estimates should be determined together with
their statistical errors, which are usually measured by the
half-width of the final confidence intervals. Restricting
our attention to estimators of means, let us assume that
we estimate theoretical mean Jl= EX by

D

X(n) = 1 I Xi
n i=l

where XI, x2, ... , xn are observations collected during
simulation. Then, one should also determine

P (X(n)-d ~ Jl ~ X(n)+d) = 1 - a

Le. the confidence interval (c.i.) of f..l, at a given
confidence level I-a, 0<a.<1. A is the half-width of the
c.i. Typically, this will be A = t",l-al20{X(n)], where

oLX(n)] is an estimator of the variance of X(n), with 1C

degrees of freedom and t",l-al2 is the (l-aJ2) quantile of
the Student t-distribution.

Various estimators of ({X(n)] have been proposed.
This in sequel has created the need for a quali ty
assessment of these estimators.

Let us note that in an ideal case the final c.i. would
contain Jl with the probability I-a, or equivalently, if an
experiment is repeated many times, one would expect to
have Jl contained in about (l-a)100% of final confidence
intervals. Coverage ofconfulence intervals is defined as
the frequency with which the final confidence intervals

(X(n) -A ~ Jl ~ X(n) +A) contain the true value Jl.
While some interesting results have been achieved in
theoretical studies of coverage [see ego Glynn (1982),
Kang and Goldsman (1990), Schruben (1980)],
experimental analysis of coverage is still required for
assessing the quality of practical implementations of
methods used for determining confidence intervals in
steady-state simulation. Of course, such analysis is
limited to analytically tractable systems, since the value
of f.l has to be known.

As for any other point estimate, the coverage can be
determined together with its c.i. :

(c - Zl_oJ2VC~1-C~ • C+ Zl-oJ2VC(1-C» (1)
nc nc

where c is the coverage, Z 1-012 is the (1-012) quantile
of the standard normal distribution and n c is the
(suitably large) number of replicated experiments in the
coverage analysis. In this study, nc is at least 600, so the
use of a normal approximation seems to be justified.

Then, an estimator of a2[X(n) ] used for determining
the c.i. of fl can be considered as valid, ie. producing
valid 1OO(1-a)% confidence intervals of Jl, if the upper
bound of the confidence interval of the coverage c in
Equation (1) equals at least (I-a); see Sauer (1977).

Results of experimental coverage analysis have been
reported in many publications, although majority of these
results are related to simulations on single processors.
Very little is known about coverage of estimators that
could be used in parallel simulation executed in the
MRIP scenario [Pawlikowski et ale (1994)]. It is strange,
but while sequential simulation is generally recognised
as the only way of producing results with the required
precision since It •• no procedure in which the run length
is fued before the simu lation begins can be relied upon
to produce a c. i. that covers the true steady-state mean
with the desired probability level" [Law and Kelton
(1982), Law and Kelton (1992)], even the original
advocates of sequential simulation have applied non
sequential (fixed-sample size) approaches in their
simulation studies of coverage. Certainly, if one accepts
the arguments for the sequential approach as the only
practical one then also such meta-simulation experiments
as those for coverage analysis should be run
sequentially!

In addition, most reported results on coverage were
based on 50-200 replications [see for example Adam
(1983), Fishman (1978), Heidelberger and Welch (1983),
Kelton and Law (1984), Law and Carson (1979), Law
and Kelton (1982), Lavenberg and Sauer (1977), Sauer
(1979), Schriber and Andrews (1981), Schruben (1983)],
which obviously puts in question the statistical
representativeness of such experimental data. In all these
cases, the estimates of coverage were based on only a
few bad confidence intervals, ie. ones which did not
contain Jl.

This issue could be solved by requiring that the
coverage can be estimated only after a minimum number
of bad confidence intervals has been recorded.

It is also generally known that sequential steady-state
simulation can produce very inaccurate estimates if the
stopping criterion is only accidentally temporarily
satisfied. Sensible practise is to ensure that estimates do
not come from simulation runs that are too short. Thus,
this effect should be similarly treated, and eliminated, in
coverage analysis.

Recognising the significance of all these three
factors, we have applied the following rules in
experimental analysis of coverage of interval estimators
from stochastic simulation:
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Rl. Coverage should be analysed sequentially, ie.
analysis of coverage should be stopped. when
the relative precision (the relative half-WIdth of
c.i.) of the estimated coverage falls below an
assumed level.

Rl. An estimate of coverage has to be calculated
from a representative sample of data, ie. the
coverage analysis can start only after a
minimum number of bad confidence intervals
has been recorded.

R3. Results from simulation runs that are
abnormally short should be not taken into
account.

Details of our implementation of these rules for
studying the quality of the final steady-state int~rval

estimators of means in traditional simulation on SIngle
processors as well as fast concurrent simulation on
multiple processors is discussed in the next section.

3 NUMERICAL RESULTS

Implementing the rules of coverage analysis fonnulated
in the previous section, we must select (i) the rninimum
number of bad confidence intervals, Nmin, which have
to be recorded before the sequential analysis of coverage
can start, and (ii) the minimum sufficient length of
simulation to produce valid steady-state estimates. The
way in which we approached these problems is
illustrated in Fig.l and 2.

The results presented there are for SNHW, the
method of Spectral Analysis in its version proposed in
Heidelberger and Welch (1981). Our implementation of
this method for simulations on single processors
followed exactly procedures specified in Pawlikowski
(1990), including the procedure described there for
detecting the length of the initial transient period. Its
generalisation for simulations in the MRIP scenario was
described in Pawlikowski et al. (1994).

All reported results were obtained by stopping
simulations when the final steady-state results reached a
(relative) precision of 5% or less, at the 0.95 confidence
level. All series of replicated simulations were executed
using strictly non-overlapping sequences of pseudo-ran
dom numbers generated by a linked sequence of
congruential generators listed in Law and Kelton (1992).

The results presented in Fig.l and 2 were obtained by
running multiple independent replications of sequential
steady-state simulation of MID/l/oo queuing system on
p=1 and 4 processors, respectively. The estimated
parameter is the mean time that a customer spends in the
queue. In all four cases the analysis of coverage was
initiated after observing Nmin bad confidence intervals.
This happened after about 300 independent replications

in the case of N min=30 [Fig.l(a) and 2(a)] and after
about 2000 independent replications in the case of
Nmin=200 [Fig.l(a) and 2(a)]. At this stage the lengths
of executed simulations were analysed, and the results
obtained from simulation runs shorter than Lmin (one
standard deviation below the average number of
observations needed to stop sequential simulation with
the required precision at the assumed confidence level)
were discarded (hence the sudden improvement in
coverage). Lmin was also later used as the criterion for
rejecting/accepting results from any additional
replication in cases where sequential analysis of
coverage had to be continued.

One can see that in all four cases filtering out too
short simulation runs removes significant noise. On the
other hand, continued instability of the coverage
observed after Nmin=30 bad confidence intervals have
been collected shows that, possibly due to strong
asymmetry of the sample distribution, many more than
30 bad confidence intervals had to be recorded to secure
representativeness in the analysed data. This conclusion,
on the basis of similar results we obtained for other
queuing systems, suggested that many more replications
were needed than used in previous studies. For this
reason, in our further analysis of coverage we assumed
Nmin=200.

The results of sequential coverage analysis for
SA/HW in simulations executed on a single processor, as
well as for simulations in MRIP scenario for P=2 and 4
processors, are presented in Fig.3 (a)-(c), respectively.
The performance of the SNHW method improves with
the number of processors or, equivalently, the number of
independent simulation engines, used in the MRIP
scenario. Another attractive feature of SAlHW is its
good performance when simulating heavily loaded
systems, ie. in the region where other methods usually
fail. The "safe" degree of parallelisation for SAIHW has
yet to be determined.

For comparison, Fig. 3(d) shows results one could
obtain applying traditional fixed-sample-size approach,
and estimating the coverage on the basis of fust 200
replications. It is evident that the results obtained from
traditional analyses of coverage cannot be considered as
reliable.

Coverage analysis of different methods proposed f?f
estimating confidence intervals of mean values In
sequential steady-state stochastic simulation is illustrated
here by the results obtained for the method of non
overlapping batch means (BM); see Fig.4 (a) and (b).
The method was implemented following procedures
specified in Pawlikowski (1990), including the pro~e~~e

described there for detecting the length of the InitIal
transient period. In the case of simulations executed on a
single processor, SAIHW and BM offer similar (bad)
coverage. When more processors are used under MRIP,
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Figure 1: Coverage as a Function of Sample Size for SNHW in Steady-State
Simulation of an MID/1/°o Queuing System for p=O.5, P=l processor
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Figure 2: Coverage as a Function of Sample Size for SNHW in Steady-State
Simulation of an MID/l/oo Queueing System for p=0.5, P=4 processors



386 l\lcNickle, Pawlikowski, and Ewing

1.0

~

ClJ

"&. 0.9~
~
~

~

0.8
0.0 0.2

- Actual coverage
.• Required coverage

0.4 0.6 0.8 1.0

Load
(a) Sequential Analysis, P=l, Nmin =200

1.0

~

~

f 0.9~
~
~

~

0.8
0.0 0.2

- Actual coverage
.• Required coverage

0.4 0.6 0.8 1.0

Load
(b) Sequential Analysis, P=2 Nrnin=200

- Actual coverage
.• Required coverage

~":,:":,,:,,:,,:~~,,,,,,"--r...-.•••••••••

0.4 0.6 0.8 1.0

Load
(c) Sequential Analysis, P=4, Nmin=200

1.0

~
0()
ea
&. 0.9~

~
0
~

0.8
0.0 0.2

1.0

- Actual coverage
.• Required coverage

0.4 0.6

Load
Cd) Fixed-Sample-Size Analysis based on 200 Replications

Figure 3: Coverage of SA/HW in Steady-State Simulation of an
MID/I/oo Queueing System

.............................................•

0.8 -r--~--r--- ...............--...-_-_---.;w-.c- _
0.0



Experimental Evaluation of Confidence Interval Procedures :387

- Actual coverage
•• Required coverage

0.4 0.6 0.8 1.0

Load
(a) Sequential Analysis, P=I, Nmin=200

1.0

~
CI)

f 0.9~..
~

~

0.8
0.0 0.2

- Actual coverage
.• Required coverage

0.4 0.6 0.8 1.0

Load
(b) Sequential Analysis, P=2, Nmin=200

1.0

~r
&. 0.9~..
8

0.8
0.0 0.2

- Actual coverage
•• Required coverage

0.2 0.4 0.6 0.8 1.0

Load
(c) Fixed-Sample-Size Analysis based on 200 Replications

0.8 -+--........---.-~..---.- .......---.--......----

0.0

I.U

~r
t 0.9..
~

~

Figure 4: Coverage of BM in Steady-State Simulation of an MID/I/oo
Queuing System

using SAIHW one can obtain much better results. This
has been consistently observed both when simulating
MJMII/oo and MID/I/oo buffers. Fig. 4(c) again shows
results one could obtain applying the traditional fixed
sample-size approach, estimating the coverage on the
basis of frrst 200 replications. These results are much too
optimistic if compared with the ones obtained on the
basis of representative samples from sequential analysis

of coverage. Our experimental comparative studies of
different methods proposed for estimating confidence
intervals of mean value in sequential steady-state
stochastic simulation are continued.
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4 CONCLUSIONS

We have formulated basic rules that should be f~llowed
in proper experimental analysis of cover~ge of dIffere~t

steady-state interval estimators. Our maIn ar~ument IS
that such analysis should be done sequentially. ,The
numerical results of our preliminary coverage analysIs ~f

the method of Batch Means and Spectral AnalysIs
(SA/HW) have been also presented and c~mpared with
those obtained by traditional, non-sequentIal approach.
As advocated in Law (1983), to draw more general
conclusions about performance of interval estimators
used in various methods of sequential steady-state
simulation one needs to consider a number of different
simulation models. Unfortunately until now no such
standard set of reference models for coverage analysis
has been wider adopted, in spite of that the issue being
raised already in 1981 in Schriber and Andrews (1981).
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