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ABSTRACT

In this paper we present a time parallel simulation
approach and discuss conditions under which this ap
proach is applicable. Our approach involves distribut
ing the available processors among segments of the
time horizon of the simulation. We show that under
certain conditions, sample paths of the system gener
ated by a common sequence of potential events will
couple (Le., become identical) with probability one.
This property will be exploited to efficiently combine
the information collected on different segments of the
sample path and generate a complete valid sample
path. We show that the expected coupling time of
the system (Le., the amount of time required for all
the sample paths of the system to couple) is essen
tial to the efficiency of the approach. We apply our
parallel simulation approach to a class of Markovian
queueing networks and investigate the efficiency of
the method by providing bounds and estimates for
the expected coupling times.

1 INTRODUCTION

The need for efficient simulation of discrete event sys
tems has created a rapidly growing demand for par
allel simulation methods that can effectively distrib
ute the computational load of a simulation experi
ment among multiple processing units. Several par
allel simulation methods have been studied and im
plemented in recent years. Depending on the strategy
these methods choose to make concurrent use of the
available processors, most parallel simulation meth
ods fall into one of the following categories: di.!trib
uted ~imulationmethods, multiple replication~meth
ods, and time parallel ~imulation methods.

In distributed simulation methods the system un
der study is partitioned into subsystems and the avail
able processors are appropriately distributed among
the subsystems. Processors simulate the subsystems
and communicate with each other to guarantee that
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the generated sample paths are valid (see Fujimoto
(1993) for more details on distributed simulation).

In multiple replications methods, every processor
generates sample paths of the system independently
of the other processors. Then, the results obtained
by different processors are averaged to provide esti
mators for the performance measures of interest (see
Heidelberger (1988) for more details on the multiple
replications approach).

A variety of time parallel simulation approaches
have been suggested in recent years for parallel sim
ulation of different classes of discrete event systems.
Greenberg, Lubachevsky, and Mitrani (1990) and
Chen and Serfozo (1995) take advantage of represen
tations of the dynamics of the systems under study
in terms of recurrence relations to achieve parallelism.
Heidelberger and Stone (1990) propose a trace par
titioning approach to perform parallel trace driven
simulation of a cache, and Lin and Lazowska (1991)
suggest a parallel simulation method applicable to a
class of partially regenerative systems.

Andrad6ttir and Ott (1995) have recently pro
posed a, time parallel simulation approach, namely
the time segmentation approach, that can be applied
to a variety of queueing networks. They have applied
this method to Markovian queueing systems that con
sist of either loss stations or communication block
ing stations. They have investigated the efficiency
of the approach by providing bounds and estimates
for the expected coupling times of the systems under
study. The results of Andrad6ttir and Ott (1995)
have been extended and strengthened by Hoseyni
Nasab and Andrad6ttir (1996a,b). They have shown
that the time segmentation method is effectively ap
plicable to different classes of queueing networks.

In this paper we describe how the time segmen
tation method can be applied to simulate discrete
event systems whose sample paths satisfy certain con
structibility conditions on parallel processors. We
also present analytical and numerical results indicat
ing the validity, applicability, and efficiency of the ap-
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proach in the context of parallel simulation of a family
of Markovian queueing networks containing loss and
communication blocking stations.

The outline of the paper is as follows: In Section 2
we present the time segmentation parallel simulation
method. In Section 3 we show that the time segmen
tation method is applicable to a class of Markovian
queueing networks and investigate the efficiency of
the approach by providing bounds for the expected
coupling times. In Section 4 we further study the ef
ficiency of the approach by estimating the expected
coupling times for a number of queueing systems and
providing numerical results directed towards under
standing the dependence of the expected coupling
times on the parameters of the system. We conclude
the paper by a few remarks in Section 5.

2 THE PARALLEL SIMULATION
APPROACH

In this section we describe the time segmentation
method for parallel simulation of discrete event sys
tems and discuss conditions under which this
approach is applicable.

Suppose S is a discrete event system and suppose
that we would like to generate long sample paths of
a simulation model of S. Let N(t) be a function of
time t that uniquely determines the state of the sys
tem at time t. Now suppose we would like to use
P processors concurrently to generate a sample path
of S. Let T be the length of the required sample
path, partition the interval [0, T] into P subintervals
[to, t 1 ), [tl' t~), ... , [tp_ 17 tp], and assign one processor
to each subinterval. Furthermore, suppose it is pos
sible to generate valid sample paths of the system in
parallel using a common sequence of potential events
(Le., given a sequence of events, a scheduled event in
the sequence will be executed in a sample path if the
event is feasible for the sample path). We start the
simulation of the sample path on the first subinterval
from the true initial state of the sample path. In other
subintervals, the corresponding processors start sim
ulating two sample paths, sample paths land u (call
them the bounding sample paths), using a common
sequence of potential events. Let Nl(t) and Nu(t) de
note the state of the system at time t in sample paths
land u, respectively. Suppose sample paths land u
can be chosen and the simulation can be conducted in
such ways that by the time sample paths land u cou
ple (Le., the first time Tc when Nl(Tc) = Nu(Tc)), any
other sample path that has been constructed with the
same sequence of potential events as land u will have
coupled with sample paths land u. Finally, suppose
that if two sample paths that have been constructed
with the same sequence of potential events couple,

then they will stay coupled for the remainder of the
simulation period. For i = 2, ... , P, if there exists ~. c
such that ~ = inf {t E [ti-1, ti) : Nl(t) = Nu(t)} (~

is the coupling time of sample paths land u on the
interval [ti-1, ti)), then the above assumptions clearly
imply that Nl (t) = N(t) = Nu(t), for all t E [~, ti)'
Therefore the information collected from either one of
the bounding sample paths on the interval [~, ti) is
valid data for the true sample path as well. Also, note
that if sample paths land u in the interval [ti - ~, ti -1)
are coupled prior to the end of the subinterva.l, then
the real initial state of the sample path on the in
terval [ti-1, ti) is the same as the terminal state of
the coupled sample paths on the interval [ti-~, ti-l).
Therefore, we can redo the simulation of the sample
path on the interval [ti-1'~) with the true initial
state (using the same sequence of potential events as
the bounding sample paths of the interval) and collect
the required data. If sample paths land u in interval
[ti-~, ti-1) are not coupled prior to time ti-lJ then
we repeat what we did to sample paths land u by
initiating two sample paths in the interval [ti-l, ti)
starting at the initial states Nl(ti-1) and Nu(ti-1),
which are the terminal states of sample paths land
u on the interval [ti-~, ti-1), respectively. By going
through the above process (possibly repeatedly) and
putting together the data collected on all the subin
tervals, we will finally generate a complete observa
tion of the true sample path on the interval [0, T].
Note that the simulation is conducted in such a way
that the sequence of potential events used for gener
ating a complete observation of a true sample path
is the same as the sequence obtained by putting to
gether the sequences of potential events on the con
secutive subintervals of the simulation.

As we mentioned before, the magnitudes of the
coupling times are essential to the efficiency of the
method. Note that if the bounding sample paths of a
subinterval couple, then the part of the sample path
generated after the coupling time on that subinterval
is absolutely valid. Therefore, in general, the shorter
the coupling times of the bounding paths the more
efficiently we can construct the true sample path. In
the best case scenario (i.e., when the bounding sam
ple paths of all subintervals couple on the first run
of the simulation), the total simulation time will be
of order 'JJ or less. In the worst case scenario (i.e.,
when no bounding sample paths ever couple), the to
tal simulation time will be of order T; that is the
same order of magnitude as the simulation time of a
single processor simulation of the system.

In the next section we will show that the time
segmentation approach is applicable to a large class
of queueing networks and investigate the efficiency of
the method when applied to these systems.
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3 APPLICABILITY AND EFFICIENCY OF
THE APPROACH

The parallel simulation approach described in Sec
tion 2 is applicable to a variety of discrete event sys
tems. In this section we show that the time segmen
tation approach can be applied to simulate a family
of queueing networks with loss and communication
blocking stations. We will also investigate the effi
ciency of the approach by studying the magnitude
of the expected coupling times of the systems under
study. Before stating our results we need to define the
system under study and introduce some notation.

Suppose S is a network of n queueing stations.
For i = 1, ... , n, let Si and Bi denote the number of
servers and the buffer capacity at station i, respec
tively, and let G, = B, +Si. Suppose the service times
at all servers of station i are independent and expo
nentially distributed with rate ~, i = 1, ... , n, and
let jobs arrive from the outside to stations 1, ... , n ac
cording to independent Poisson processes with rates
AI, ... , An, respectively. For i = 1, ... , n, suppose Pij

is the probability that a job will attempt to join the
queue at station j, immediately after a service com
pletion at station i, j = 1, ... , n, and let P"n+ I denote
the probability that ajob will depart from the system
upon a service completion at station i. Furthermore,
suppose every station i E {I, ... , n} operates under
one of the following two mechanisms:

1. Station i is a lo~~ station if arriving jobs (from
other stations in the system or from the out
side) that find a full buffer at station i leave
the system immediately.

2. Station i is a communication blocking station if
arriving jobs from the outside that find a full
buffer at station i leave the system immedi
ately, and arriving jobs from other stations in
the system that find a full buffer at station i
get rerouted (independently of the past), after
undergoing another service completion in the
station of their most recent service completion.

The definition of communication blocking given
above is different from the standard definition used in
the literature. In the standard communication block
ing mechanism, jobs will not start receiving service at
a station unless there is room for them in the station
that they are visiting next. However, it is not clear
how the standard communication blocking mecha
nism works when we have queueing stations with mul
tiple servers, multiple sources of arrivals, or multiple
destinations for the departing customers. When the
service times are exponentially distributed, the two
definitions of communication blocking are equivalent

if every station has only one server, one source of
arrivals, and one destination for the departing cus
tomers.

For all t ~ 0, let N(t) = (N1(t), ... , Nn(t)), where
N, (t) is the number of customers at station i at time
t, i = 1, ... , n. It is clear that {N(t)} is a continuous
time Markov chain. Our goal is to show that the time
segmentation approach can be used to simulate long
sample paths of the Markov chain {N(t)} efficiently.

For i = 1, ... , n, let Ti,o" Tl and T denote the time
of the next arrival at station i, the time of the next po
tential service completion at station i, and the elapsed
simulation time. Suppose we can generate four inde
pendent sequences {Ut(k)}, {Uf(k)}, {Ul(k)}, and
{U[(k)} of independent U[O, 1] distributed random
variables, for i = 1, ... , n. These sequences will be
used to generate the sequence of interarrival times at
station i, the sequence of potential service completion
times at station i, the sequence of numerical marks
that will be used to determine whether a potential
service completion is an actual service completion at
station i, and the sequence of destinations of the jobs
that are departing station i, respectively. Finally,
for i = 1, ... , n, let nt, ni, nt, and ni be the num
ber of uniform random numbers from the sequences
{U,a(k)}, {Ul(k)}, {U,d(k)}, and {U[(k)} that have
been used to generate observations of the correspond
ing random variables, respectively.

We are now ready to state our algorithm. The
empty sum in the following algorithm is defined to be
zero. Algorithm 3.1 is a combination of Algorithms
2.1 and 3.1 in Andrad6ttir and Ott (1995).

Algorithm 3.1

Step 0: Initialization.
For m = 1, ... , M, ~elect initial states Ni

m such
that 0 ~ N,m ~ G" i = 1, ... , n. For i =
1, ... , n, generate Ui

a(1) and Ul (1), and let T/ =
_log(U;(l» and T.o, = _log(U:(l)). Let T =0,

'i"'i ' Ai
nf = 1, ni = 1, nt = °and ni = 0, i = 1, ... , n.
Go to Step 1.

Step 1: Identifying the nezt event.
Let T- = miIl\=I, ...,n{1iCl ,1i'}. 1fT- = 1iD.,
where i E {I, ... , n}, then let e- = i and go
to Step~. Otherwise, if T- = Tl, where i E
{I, ... , n}, then let e- = i and if station i is a
loss or communication blocking station, go to
Step 3 or 4, respectively.

Step 2: Arrival at station e- .
Let T = T-. For m = 1, ... , M, if N:: < Ce' ,

then let N;: =N';: + 1. Let n:. =n:. + 1 and
log(U fA (n fa ))Tea. =T- - l' I'. Go to Step 1..'
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Step 3: Departure from a lOll ,tation e· .
Let T = T· and n:. = n:. + 1. IIUd.(nd.) <e e _

m&Xm=l,. ..•M {N;':} /se·, then let n=. = n=. + 1

and let j E {I, .. ". n + I} be ,uch that E~:~ Pee ,Ie

<U:. (n:.) ~ E~=l Pe·,1e (iIU:. (n:.) = 0, then
let j = 1). Otherwi8e, let j = o.

• Departure from the ,y,tem.
II j = n + I, then for m = 1, ... , M, if
U:.(n:.) ~ N:./s e., then letN:; = N:;
1.

• Departure at e· and arrival at j.
1/1 ~ j ~ n, then for m = 1, ... ,M, if
U:. (n:.) ~ N:: / Se., then let N';: =N';: 
1. If al,o NY' < Cj, then let Nf7L =N'!' +
1. 3 3

Let n:. =n:. + 1 and T:. = T. _log(U;. (n:.» .
' •• 1-'.-

Go to Step 1.

Step 4: Departure from a communication blocking
,tation e· .
Same al Step 3, e~cept for the following:

• Departure at e· and arrival at i.
II 1 ~ j ~ n, then for m = 1, ... ,M, if
U:. (n:.) ~ N';: / See and NY' < Cj, then
let N';: =N';: - 1 and NY' = NY' + 1.

Algorithm 3.1 generates multiple sample paths of
the Markov chain {N(t)} simultaneously. To gener
ate the potential service times at station i for all the
sample paths, we generate exponentially distributed
service times with rate SiJ.£i. Since the number of
busy servers at station i may be less than Si, we
determine whether a potential service completion is
an actual service completion depending on the num
ber of busy servers in station i of each sample path
through thinning by rejection. Our approach is re
lated to the methods proposed by Cassandras and
Strickland (1989) and Vakili (1991) for using a com
mon sequence of potential events in parallel simula
tion of multiple discrete event systems.

Suppose we are generating two sample paths of
the system, sample paths A and B, using Algorithm
3.1. Let NiA(t) and NiB(t) denote the number of
jobs at station i at time t in sample paths A and
B, respectively, for i =1, ... , n. Let TeA,B be the cou
pling time of sample paths A and B, that is TeA,B =
inf {t ~ 0 : NiA(t) =NiB (t), i = 1, ... , n}. Let sample
path 1 be the sample path that initiates at the state
where all servers are idle and sample path 2 be the
sample path that initiates at the state where all buffers
are full. Finally, let Te

1•2 denote the coupling time of
sample paths 1 and 2.

The following two propositions show that sam
ple paths of the queueing system 5 generated by Al
gorithm 3.1 satisfy the conditions that are required
for the time segmentation approach to be applicable.
The proofs of Propositions 3.1 and 3.2 are given in
Hoseyni-Nasab and Andrad6ttir (1996a).

Proposition 3.1 (Monotonicity Property) Sup
po,e S i, a queueing ,y,tem of la" and communica
tion blocking ,tationl. Let A and B be two ,ample
pathl of 5 generated concurrently by Algorithm 3.1
and Iuppo,e NiA(O) ~ NiB(O), for i = 1, ... , n. Then
N,A(t) :5 NiB(t) for i = 1, ... , n and all t ~ O.

Proposition 3.2 In 5, if {N(t)} i, an irreducible
Markov chain, then E {Te

1,2} < 00. Al,o, for any
two ,ample path, A and B we have TAt B < T 1•2 (and
hence E{TcA,B} < 00). c - c

Proposition 3.1 indicates that sample path B that
is initially above sample path A will never go be
low sample path A. This clearly implies that once
two sample paths couple, they will stay coupled af
terwards. Proposition 3.2 indicates that all sample
paths generated by Algorithm 3.1 will couple with
probability one and no later than the coupling time
of sample paths 1 and 2. Moreover, the expected cou
pling time of all sample paths is finite. Considering
the discussion in Section 2, Propositions 3.1 and 3.2
guarantee the validity of the approach. It is clear that
sample paths 1 and 2 serve as the bounding paths on
every subinterval of the simulation and the simulation
of a long sample path of the queueing system Scan
be carried out by assigning the available processors
to subintervals of the time horizon of the simulation
and following the procedure described in Section 2.

As we discussed in Section 2, the magnitude of
the expected coupling time of the system is essential
to the efficiency of the time segmentation approach.
In particular, it is important to understand how the
expected coupling time of the system changes with
respect to changes in the parameters of the system.
The following proposition is one of our results that in
dicates that, under certain conditions, the expected
coupling time of the queueing network S grows no
faster than linearly with rtspect to the number of sta
tions in the system. The proof of Proposition 3.3 can
be found in Hoseyni-Nasab and Andrad6ttir (1996a).

Proposition 3.3 For the queueing network 5, ,up
pOle Ci :5 C < 00, for i = 1, ... , n. Moreover, luppo,e
that the Markov chain {N(t)} il irreducible and that
there eziltl a real number p ,uch that 0 < P < 1, and
that for every ,tation i at lea8t one of the following
two condition8 il 8ati~fied (for all n ~ 1):

1. .Ai > P and of > p' or
- Ai+'i~i+ j~iPji'j~j - ,
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Let Tc denote the coupling time of $ample path$ 1 and
~. Then

E{Tc } ~ nM,

where M i$ a quantity depending on C and p.

In addition to the dependence of the expected cou
pling times on the number of stations in the system,
we have studied the dependence of the expected cou
pling times on the buffer sizes, traffic rates, routing
probabilities, and the types of the stations (loss vs.
communication blocking) in the system. Our results
indicate that the time segmentation approach can be
efficiently used to simulate a large variety of queueing
systems. More details on this issue can be found in
Andrad6ttir and Ott (1995) and Hoseyni-Na.sab and
Andrad6ttir (1996a,b).

4 NUMERICAL RESULTS

In this section we present our numerical results aim
ing at better understanding the dependence of the
expected coupling times of queueing networks on the
parameters of the systems under study.

Our first set of numerical results has been ob
tained by simulating a network of n tandem com
munication blocking queueing stations with Si = 1,
Bi = 10, JJi = 1, for i = 1, ... , n, .AI = 1, .Ai = 0, for
i = 2, ... , n, Pn,n+l = 1, Pi,n+l = 0, for i = 1, ... , n-1,
and n E {1, 2,5, 10,20, 100}. Note that for n > 2
this queueing system does not satisfy the conditions
of Proposition 3.3. All clock times are independent
and exponentially distributed. In each simulation
two bounding sample paths are generated using Al
gorithm 3.1, one starting with all servers idle and
one starting with all buffers full. The confidence in
tervals for the expected coupiing times are obtained
by generating 100 independent replications of the two
sample paths. The results of our experiments are pre
sented in Table 4.1.

The results in Table 4.1 suggest that for this class
of queueing networks, the expected coupling times do
not grow linearly with respect to the number of sta
tions in the system. The growth rate of the expected
coupling times appears to be beyond linear but no
more than quadratic. This indicates that the condi
tions of Proposition 3.3 are at least to some extent
necessary. To further investigate this issue we con
ducted simulations of two different variations of the
queueing system of our first set of simulations. We
slightly modified the parameters of the system in such
a way that the modified systems satisfy the conditions
of Proposition 3.3. Tables 4.2 and 4.3 show the re..
suIts of simulations of two sets of queueing networks

Table 1: Dependence of the Expected Coupling Times
of Tandem Networks of Communication Blocking Sta
tions on the Number of Queueing Stations in the Sys-
tem when Al = 1, Ai =0, for i > 1, Pn,n+l = 1, and
Pi,n+l = 0, for i < n

Number of Coupling Times
Stations, n (95% Confidence Interval)

1 34.91 (± 2.92)

2 66.09 (± 5.60)
5 174.23 (± 12.97)
10 435.92 (± 26.64)
20 1,286.84 (± 92.71)
100 12,061.88 (± 772.24)

Table 2: Dependence of the Expected Coupling Times
of Tandem Networks of Communication Blocking Sta
tions on the Number of Queueing Stations in the Sys
tem when .AI = 1, .Ai = 0.1, for i > 1, Pn,n+l = 1,
and Pi,n+l = 0, for i < n

Number of Coupling Times
Stations, n (95% Confidence Interval)

1 34.91 (± 2.92)
2 69.44 (± 5.17)
5 106.13 (± 6.40)
10 132.29 (± 4.89)
20 159.18 (± 6.20)

100 181.39 (± 3.65)

that are different from the previous example in that
.Ai = 0.1, for i > 1 (in Table 4.2), and Pi,n+l = 0.1,
for i < n (in Table 4.3), respectively. It is clear that
even for large n these networks satisfy the conditions
of Proposition 3.3. Tables 4.2 and 4.3 indicate that
for the modified systems the expected coupling times
grow sublinearly with respect to n. A thorough study
of the conditions that affect the behavior of the ex
pected coupling times is a subject of our current re
search.

5 CONCLUDING REMARKS

In this paper we presented a method for parallel sim
ulation of discrete event systems, namely the time
segmentation method, that is applicable to several
classes of queueing networks. We presented our ap
proach in a general setting for discrete event systems
whose sample paths satisfy certain constructibility
conditions. We showed that the efficiency of the ap
proach is closely related to the expected coupling time
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Table 3: Dependence of the Expected Coupling Times
o!Tandem Networks of Comnlunication Blocking Sta
tions on the Number of Queueing Stations in the Sys
tem when ~1 = 1,~, = 0, for i > 1, Pn,n+l = 1 and
Pi,n+l = 0.1, for i < n

Number of Coupling Times
Stations, n (95% Confidence Interval)

1 34.91(± 2.92)
2 59.18 (± 5.04)
5 114.86 (± 6.24)
10 150.75 (± 6.08)
20 184.42 (± 5.53)
100 284.79 (± 4.22)

of the sample paths of the system under study. We
applied the time segmentation method to a family
of Markovian queueing networks containing loss and
communication blocking stations and investigated the
validity and efficiency of the method through a vari
ety of numerical and analytical results.

Our current research is directed towards under
standing the behavior of the expected coupling times
with respect to changes in the parameters of the sys
tems under study, investigating further applications
of the time segmentation approach, and studying the
performance of the time segmentation approach in
comparison with other parallel simulation methods.
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