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ABSTRACT

In a simulation experiment there are certain null ef­
fects whose true values are known to be zero. This
paper investigates various estimators of the null ef­
fects. We apply these estimators of zero in two ways.
First, null effects estimators are used to construct
confidence intervals. We derive a null effects version
of the batch means confidence interval that has cer­
tain desirable properties. Second, null effects estima­
tors are used as control variates in variance reduction
schemes. The achieved variance reductions are mod­
est, but we present some interesting applications; for
example, the output from one simulation model can
be used to compute control variates for the output of
another.

1 INTRODUCTION

This paper deals with various ways that simulation
output can be used to estimate null effects, i.e., quan­
tities whose true values are known to be zero. We
subsequently apply these estimators of zero in two
ways.

First, we will use the null effects to develop a con­
fidence interval estimator (c.i.e.) for the mean of a
stationary simulation output process. This c.i.e. is
similar to the familiar batch means (BM) c.i.e., but
it is obtained via a different route. (Indeed, this paper
is not intended to change the way in which simula­
tion experiments are run and analyzed but rather to
present an alternative way of thinking about simula­
tion output analysis!) The null effects interval esti­
mation procedure does have desirable properties, one
of which should facilitate in the selection of a batch
SIze.

Next we show how null effects estimators can be
used as control variates (c.v. 's) in variance reduction
schemes. In one scheme, null effects estimators serve
as internal c. v. 's and yield estimators of the mean
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that have smaller variance than the sample mean. A
second application uses the output from a "control"
simulation to compute a C.v. for an estimator from
another simulation. The true mean of the control sys­
tem need not be known. A third variance reduction
scheme indirectly uses null effects c.v. 's to improve
the estimator of the process mean.

2 BACKGROUND AND NOTATION

This section gives some preliminary definitions and
examples. We shall regard the stationary stochas­
tic sequence Y1, ... , Yn generated by running a
discrete-event simulation program as a vector Y ==
(Y1 , ... , Yn )' in R n . This paper demonstrates the po­
tential advantages of viewing the simulation output as
consisting of different components of orthogonal ba­
sic vectors. In order to facilitate the study of various
estimators of the variability of the simulation output,
Y will be projected onto different coordinate systems
that are determined by sets of basic vectors.

Sometimes a basis may be intentionally chosen to
be incomplete; i.e., the basis only spans a proper sub­
space Rb of Rn (b < n). We denote a basis for Rb as b
basic vectors, Wi = (Wi,l, ... ,Wi,n)', i = 1, ... , b, each
in Rn . The i-th component of Y in this basis is the
orthogonal projection of Y and is given by

If E[YiW
] = 0, we call Yiw a null effect. We will see

that choosing a basis with components that are null
effects (referred to here as a null effects basis) has
certain advantages.

2.1 Example 1: Batch Means

BM is a popular method of estimating c.i.e. 's for JJ ==
E[Yj]. The BM basis Wi, i = 1, ... , b, is not a null
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effects basis; its components are 3 APPLICATIONS

Wi . = {I if (i - l)m + 1 ~ j ~ im
,) 0 otherwise,

with m = nib (assume b divides n). This basis is
incomplete if b < n. Further, the subspace spanned
by the basis changes radically when b changes (with
fixed n); see Section 3.1.

3.1 Confidence Interval Estimation

Here we discuss two c.i.e. 's for J.l based on batch
means and Walsh components.

3.1.1 Batch Means c.i.e.'s

The BM 100(1 - a)% c.i.e. for Jl is

2.2 Example 2: Harmonic Analysis (1)

In order to identify specific periodic oscillations in the
output vector, Y can be projected onto the Fourier
basis (Bloomfield, 1976). The basic vectors are (as­
suming n is even):

Since ""iWk = 0 for i =/; k and 2:j Wi,j = 0 for all i
(Chatfield 1980, p. 130), the Fourier basis is orthogo­
nal and E[YiW ] = 0 for all i for a stationary sequence
Y. So the Fourier basis is a complete null basis.

3.1.2 Walsh c.i.e.'s

where the i-th batch mean Yi m _ y.w =, ,
2:~:(i-l)m+lYj/m, i = 1, ... ,b, the sample mean

Yn == 2:7=1 ~/n = 2:~=1 Yiw /b, and t"Yl lI is the upper­
, quantile of the t-distribution with II degrees of free-
dom.

(2)2:~=2 W?
b - 1J.l E WI ± t a / 2 ,b-l

A c.i.e. for J.l based on the Walsh components is

i=I, ... ,~
i=~+I, ... ,n.

.. _ { (2/n) cos(21rijln) ,
WI,) - (2/n) sin(21r(i - ~ )j/n),

2.3 Example 3: The Walsh Basis The asymptotic validity of this c.i.e. is discussed next.

3.1.3 Asymptotic Justification

The Walsh components, Wi, i = 1, ... , b, can be
formed from non-overlapping batches of Y. For in-
stance, If b = 2,_ then WI = (Yl,n/2 +Y2,n/2)/2 and
W2 = (YI,n/2 - Y2,n/2)/2. Further, when b is a power
of 2 and evenly divides n, the BM and Walsh c.Le.'s,
(1) and (2), are equal. We prove this "n-dimensional
Pythagorean theorem" for the special case of b = n
(b ~ n is similar, but tedious): Observe that for the
Walsh basis,

and thus, (1) equals (2). 0

j=k
j i= k.{

n,
0,

~ tl/2
,

n i=1

n

"'" - 2~(Yi - Yn ) ,

i=l

n

"'" }:.2 _ nW 2
~ I 1
i=l

n

""" W' 'Wk .~ ),1, ,I

i=1

n

nL:Wl
i=2

Then

n

~w· 'W'kL..J t,lt,

i=1

So

""1 (1,1,1,1,1,1,1, I)'

""2 (1,1,1,1, -1, -1, -1, -I)'

""3 (1,1, -1, -1, -1, -1, 1, I)'

""4 (1,1, -1, -1,1,1, -1, -I)'

""5 (1, -1, -1,1,1, -1, -1, I)'

""6 (1, -1, -1, 1, -1,1,1, -1)'

""7 (1, -1,1, -1, -1,1, -1, I)'

""8 (1, -1,1, -1,1, -1,1, -I)'

The vectors in the Walsh basis are the columns in
the design matrix for a full factorial experimental de­
sign with n = 2k , including all additive effects and
interactions (Beauchamp 1975, Sanchez 1986). For
example, if a simulation run produces 8 observations,
the (complete) Walsh basis is

The variable ""1 corresponds to the mean effect; ""2,
""4, and ""8 correspond to the main effects in a satu­
rated n = 23 factorial design with an additive model.
The ordering of the Walsh basis is by sequency (i.e.,
Wi has i-I sign changes). For stationary Y, the
Walsh basis is orthogonal and E[Wi] = 0, i =2, ... , b,
where Wi == ~w for all i. So the Walsh basis is a null
effects basis.
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Consider Y as a scaled continuous-time function
by defining Y(t) == YLntJ ' 0 :s t :s 1, where L·J is the
greatest integer function. The projection basis now
consists of b continuous-time functions, {Wi(t), 0 ~

t :s I}, i = 1, ... , b, with Wi(t) == Wi,LntJ. Then

ytw == "";Y = fa! ~i(t)Y(t) dt
WiWi fo wl(t) dt

We apply the weak convergence arguments of
Schruben (1983) and Glynn and Iglehart (1990) to
obtain the asymptotic i.i.d. normality of the Wi'S:
With b fixed, the Walsh basis functions, {Wi(t), 0 ::;
t :s I}, are constant over non-overlapping inter­
vals. If the smallest such interval is selected as a
batch size, then under general conditions, the result­
ing batch means converge weakly to i.i.d. normality;

i.e., ..;rn(Yi,m - J-L) ~ Nor(0,0'2), i = 1, ... , b, where

0'2 == lil11n-+oo nVar(Yn ) and E.. denotes convergence
in distribution as m ~ 00. Since the Walsh ba­
sis components are orthogonal linear combinations
of asymptotically i.i.d. normal batch means, they

are also asymptotically i.i.d. normal; i.e., ..;rnWi E..
Nor(O, (12 /b), i = 2, ... , b.

3.1.4 Practical Considerations

Recall that when b is a power of two and evenly di­
vides n, (1) and (2) are equal. In fact, based on em­
pirical experimentation (not reported here), the per­
formance characteristics of the BM and Walsh c.i.e. 's
are essentially the same in general.

As is well known by simulation users, the main dif­
ficulty in using BM lies in determining the proper b
to use (with n fixed) so that the assumption of i.i.d.
normal batch means is approximately met. Schmeiser
(1982) effectively argues that we rarely need b > 30.
Sequential algorithms for finding an appropriate b
(e.g., Fishman 1978, Fishman and Yarberry 1995, and
Law and Kelton 1982) usually start with a particular
value of b and reduce it while performing statistical
tests of correlation and/or normality on the batch
means.

A possible advantage of the Walsh c.i.e. procedure
is that the Walsh basis is constructive as b increases;
i.e., previous Walsh basic vectors remain in the basis
as more are added. This contrasts with the BM ba­
sis which can change radically as b changes (with n
fixed). Perhaps this observation could be used as the
foundation for a batch size algorithm based on Walsh
components.

We also see that the Walsh basis uses all of the out­
put to estimate each Wi; the Wi'S may converge to
normality more quickly than do batch means. Indeed,

Q-Q plots against normality have indicated consis­
tently better performance for the Wi'S (in terms of
normality) than for the film'S.

3.2 Variance Reduction

Since the null effects have known means of zero,
they make natural C.V. 's to use in variance reduction
schemes for simulation. We give some applications.

3.2.1 Null Effects c.v.'s in a Single Run

When there is positive serial correlation in the sta­
tionary output series Y, it is possible to construct
a linear estimator of J-L = E[Yj] that is superior to
the sample mean WI. Several such estimators have
been proposed (Halfin 1982) but usually in rather re­
strictive situations that require knowledge of the co­
variance structure of Y. Our estimators require lit­
tle knowledge of this structure. We can use c.v. 's of
the form G == WI + kWi, i = 2, ... , b. Of course,
E[G] = E[Wd = J.l. The constant k is chosen in the
hope of minimizing Var(G). For k > 0, Var(G) <
Var(WI ) iff Cov(WI , Wi) < -kVar(Wi)/2.

To illustrate, let n = 4 and C = WI + kW3 . Then
WI = (Y1 + Y2 + Y3 + Y4 )!4 and Wa = (YI - Y2 ­
Ya + Y4 )!4. If we define Ii == Cov(Yi, Yi+i) for all j,
some easy algebra gives Cov(WI , Wa) = (/a - 11)/8.
For many stochastic processes, Ii is decreasing in j;
then Cov(WI , Wa) < 0, and so small enough k will
yield Var(G) < Var(WI ). Now consider a first-order
autoregressive [AR(1)] process, Yi = J-L + a(Yi-1 ­
J.l) +f i, i = 1, 2, ... , with i. i. d. Nor(0, 1 - a 2 ) f i 's, and
initialized in steady state. For the AR( 1), Ii = ali I
for all j. We find Var(WI ) = (1 + a)(2 + a + a 2)/8
and Var(C) = (1 + a)[2 + a + a 2 - 2ka(1 - a) +
k2(2-a)(1-a)]/8. Var(C) is minimized with respect
to k when k = a/(2 - a), in which case Var(C) =
(1/2)(1 +0:)/(2 - a) and Var(C)/Var(WI ) is between
0.964 and 1 for a E [0,1]; so the variance reduction
is modest.

3.2.2 Null Effects External c.v.'s

In external c.v. applications where one (stationary)
simulation is used to produce c. v. 's for a second sim­
ulation, the expected value of the control simula­
tion's variate must be known. Null effects estimators
can therefore be used as C.V.'s when little is known
about either simulation. The effectiveness of the ap­
proach depends on there being positive serial correla­
tion within each of the individual output series (which
is typical of many simulated systems) and positive
correlation between outputs from the two simulations
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(as can often be induced by using common pseudo­
random number streams as input).

3.2.3 Indirect Use of Null Effects c.v.'s

Here we indirectly use null effects c.v.'s to improve
the estimator of the mean. The rationale for select­
ing the form of the C.v. used is as follows. Suppose
a "reasonable" hypothesis involving J.-l is H 0 versus
H A, and we know that H 0 is true for the time series
Y that is used to estimate J.-l. After estimating J.-l, we
alter the time series by computing a null effect (which
makes H A true). The test statistic for the hypothe­
sis test should be highly correlated with an indicator
variable of whether Hoar HA is true (else the test
would not be very powerful). We should therefore be
able to use the test statistic computed from the al­
tered time series as a c.v. for the estimator from the
original series.

For instance, consider the AR(l) process with
n = 4. Suppose the altered output is -w~ y =
(-Y1 , - Y2 , Ya,Y4 )'. This altered series of four obser­
vations could be considered to contain severe initial­
ization bias. A reasonably powerful test for initial­
ization bias is based on the area under the so-called
standardized time series (Schruben, Singh, and Tier-

ney 1983). This test statistic is Y== (3Y1 +Y2 +Ya +
3Y4 )/2, for which E[Y] = 4J.-l. Thus, an unbiased C.v.
estimator for J.-l is C == (Y - Yn )/3. Some algebra
shows that Var(C) < Var(Yn ) iff,o -,2 < 2('1 - ,a)
iff a > 1/2. However, the variance reduction from
this example is again modest. For example, when
a = 0.9, we obtain a variance reduction of about 4%.
This is consistent with the variance reductions found
by Halfin when the covariance structure is known and
an optimal linear estimator is used.

4 CONCLUDING REMARKS

We have demonstrated that viewing a simulated time
series as a vector in n-dimensional space can present
useful insights when different bases for the space
are considered. Relationships between the BM and
Walsh bases yield alternative procedures for estima­
tion and variance reduction.

Some subjects for future research: Techniques for
consistent estimation of the Walsh spectrum (perhaps
similar to spectral windowing) could be applied to
BM estimation, and new procedures for selecting a
batch size might be engineered using the Walsh ba­
sis. Also, although we illustrated some applications
of null effects c.v.'s, no attempt were made to gener­
alize the results, optimize the control, or use multiple
c.v. 's - all ideas that might improve the results.

Certainly, the use of a different basis for the sim­
ulation output vector is one way of viewing the data
differently, and it can lead to some entertaining new
ideas.
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