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ABSTRACT

For the validation of trace-driven simulation models
this paper recommends a simple statistical test that
uses elementary regression analysis in a novel way.
This test concerns a Goint) null-hypothesis: the out
puts of the simulated and the real systems have the
same means and the same variances. Technically, the
differences between simulated and real outputs are
regressed on their sums, and the resulting slope and
intercept are tested to be zero. This paper further
proves that it is wrong to use a naive test that re
gresses the simulation outputs on the real outcomes,
and hypothesizes that the resulting regression line
gives a 45 0 line through the origin. The new and the
old tests are investigated in Monte Carlo experiments
with inventory systems. The conclusion is that the
new test has the correct type I error probability, whe
reas the old test (falsely) rejects a valid simulation
model substantially more often than the nominal
alpha level. The power of the new test increases, as
the simulation model deviates more from the real
system.

1 INTRODUCTION

This paper is the companion paper of Kleijnen, Bet
tonvi I, and Van Groenendaal (1996), which has been
accepted (conditionally) by Management Science.
Both papers concern a novel test for the validation of
trace-driven simulations. The Management Science
paper estimates the statistical performance of that test,
using a Monte Carlo study of single-server queueing
simulations (namely, MIG/I), whereas this paper
illustrates that performance through single-item inven
tory simulations (see §3 for details). Moreover, be-
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cause of page restrictions Kleijnen, et al. (1996)
covers only parts of the original working paper; this
paper includes other parts of that working paper, and
adds recent references.

The remainder of this section answers the follow
ing questions:
(i) What is meant by validation?
(ii) What has the literature to say about validation?
(iii) What is the contribution of this paper?
(iv) How is this paper organized?
Hasty readers may skip the next two subsections
(§l.l and 1.2).

1.1 Definition of Validation

This paper uses the following definition in the classic
textbook by Law and Kelton (1991, p. 299): 'Valida
tion is concerned with determining whether the con
ceptual simulation model (as opposed to the computer
program) is an accurate representation of the system
under study'. To illustrate some validation issues,
consider the following practical problem.

The management of a inventory system wants to
control the total costs of their system, which consists
of stock-carrying costs, ordering costs, and lost-sales
costs (no backordering). To solve this problem, the
Management Science/Operations Research (MS/OR)
specialists build a simulation model that represents
this inventory system. Before using that model to
advise management, the MS/OR experts wish to
validate their model; that is, determine whether the
model is an accurate representation of the real inven
tory system.

Obviously, validation should not aim at a perfect
model: the perfect model would be the real system
itself. So, validation is interpreted here as com
paring data on the real and the simulated systems.
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Those data pertain to inputs and outputs; for example,
customer demand per day and order lead times
(which are stochastic inputs) and total inventory costs
per day (which measures the output).

Comparing the output data of the real and simulat
ed systems makes more sense if both systems are ob
served under similar circumstances: the analysts
should not compare total costs during a period that
includes a long lead time in the real system with the
costs during a simulated period with a short lead
time: the former period has more lost sales than the
latter period has.

Hence, for validation purposes the analysts should
feed real-world input data into the model, in histori
cal order (assuming such data are available indeed).
This is called trace driven simulation in computer
performance modeling; we shall use this term
throughout this paper. Law and Kelton (1991, p. 316)
call this the 'correlated inspection approach ' (after
this validation phase, 'production runs' will follow).
After running the simulation program, the analysts
obtain simulation output; they compare that output
with the historical output of the existing system.

Note: After this trace-driven validation, the ana
lysts should use the historical input data to develop a
(sub) model for the input. For example, they may
specify a particular type of distribution (say, the
Gaussian distribution) for the demand variable, possi
bly incorporating autocorrelations and time trends.
After estimation of the parameters of that distribution,
they may apply goodness-of-fit tests to verify whether
this distribution gives an adequate approximation of
this input. See Kleijnen (1974, pp. 68-69).

Note: Regression analysis of trace-driven simula
tions must be distinguished from the following situa
tions. Van Groenendaal and Kleijnen (1996, figure 1),
for example, make a scatter plot of predictions versus
realizations. The two coordinates of a point use the
same deterministic input; different points, however,
correspond with different inputs. Hence points have
different expectations and variances! So it is nonsense
to test the hypothesis of equal means and variances
respectively (see equation 1). It seems reasonable to
compute the coefficient of determination R2 (not p2
or {3o and (31; see equation 2), to quantify the percent
age of variation 'explained' by the model. There is no
statistical test statistic for R2

; it is a mathematical (not
a statistical) measure; see Kleijnen (1987, p. 193).
Also see Mitchell (1996).

1.2 Literature on Validation

General discussions on validation of simulation mod
els in MS/OR can be found in all textbooks on simu-

lation, for example, Banks and Carson (1984), Law
and Kelton (1991, pp. 298-324), and Pegden, Shan
non, and Sadowski (1990, pp. 133-162). A well
known article on validation is Sargent (1991). A new
monograph is Knepell and Arangno (1993). Recent
survey articles are Balci (1994), including 102 refer
ences, and Kleijnen (1995), including 61 references.
There are also many publications outside MS/OR,
for example, in agriculture (see Mitchell 1996, and
Muchow and Bellamy 1991) and in the earth sciences
including hydrology, geochemistry, meteorology, and
oceanography (Oreskes, Shrader-Frechette, and Belitz
1994). These contemporary publications all agree that
it is essential to further develop the theory on valida
tion, because of its great importance in the practice of
MS/OR.

Unfortunately, the literature gives neither a stan
dard theory on validation, nor a standard 'box of
tools'. The literature does give a plethora of philo
sophical theories, statistical techniques, and software
practices. The emphasis of the present article is on
statistical techniques.

It might be argued that statistical techniques are
not appropriate in validation. Statistical techniques,
however, have the advantage of yielding reproducible,
objective, quantitative data about the quality of a
given simulation model.

Some authors (for example, Law and Kelton 1991,
p. 319) claim that, when using statistical techniques,
hypothesis tests are inappropriate; instead they advo
cate confidence intervals. Hypothesis tests, however,
are closely related to confidence interval procedures;
see Conover (1980), Kleijnen (1974), and also Law
and Kelton (1991, p. 320). Moreover, the null-hy
pothesis on the means of (say) X and Y may be for
mulated as Ho: E(Y) = E(X) + 0 where 0 is not neces
sarily zero (0 depends on the purpose of the model;
also see Mitchell 1996). This paper, however, concen
trates on tests with 0 = O. Such tests may easily over
look 'small' differences between the real and the
simulated systems (a most powerful test is the t test
for either independent or dependent X and Y, provid
ed the assumption of normality holds; distribution
free tests may be surprisingly powerful; see again
Conover 1980 and Kleijnen 1974.) Ho\\'ever, some
lack of power is acceptable, if in practice only 'large'
differences are important. Anyhow, testing is only
part of the whole validation process (again see the
references above).

Unfortunately, experience shows that the correct
use of mathematical statistics in MS/OR is less sim
ple than might be expected. It is easy to apply the
wrong statistical techniques: there is much statistical
software, but that software does not warn against
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abuse, such as violations of statistical assumptions.
On hindsight the correct use of statistics may seem
easy. Indeed, Balci (1995) states: 'False beliefs exist
about testing ... testing is easy ... no training or prior
experience is required' (also see Mitchell 1996). This
paper will provide a case in point: the wrong regres
sion test has been used in many simulation publi
cations (see the references in the next subsection,
§1.3).

1.3 Contribution by This Paper

This paper is meant to contribute to the practice and
the theory of validation (but it gives no panacea). It
discusses how to validate trace-driven simulation
models, emphasizing the familiar statistical technique
of regression analysis, but advocating a novel test (re
gressing differences of simulated and real responses
on sums).

Validation was interpreted above as comparing
real and simulated outputs. More specifically, the
analysts may compare the total costs (stock-carrying
plus ordering plus lost-sales costs), averaged over all
real and simulated days respectively.

Many years ago, Aigner (1972) already pointed
out that it is wrong to expect unit slope and zero
intercept, when regressing the simulated on the real
outputs. He, however, focussed on econometric simu
lation models; he did not give the statistical test we
shall propose in this paper. Years after Aigner, Harri
son (1990) rediscovered that many authors still pro
pose this bad intuitive idea. Harrison, however, dis
cussed farming systems and synthetic models (includ
ing autocorrelations), not trace-driven discrete-event
simulations; he does not propose the test we shall
develop in this paper. Mayer, Stuart, and Swain
(1994) challenge Harrison (1990), concluding that the
old test is valid for their type of models (with auto
correlations).

Note: Aigner (1972) states that the intuitive idea
dates back to Cohen and Cyert (1961). Harrison
(1990, p. 184) refers to some more publications that
apply this idea. Lysyk (1989) also uses this concept.
Recently, the same idea was proposed in Kleijnen
(1995, p. 155). So it seems high time to get rid of
this concept, and to propose a better analysis. This is
exactly the topic of this paper!

The essential assumption of the new test is nor
mally and independentZv distributed (n. i.d.) outputs of
the real system and the simulated system respectively.
In practical simulations, however, output data may be
non-stationary and autocorrelated. Unfortunately,
most practitioners are familiar only with elementary
statistical procedures that assume identically and

independently distributed (i.i.d.) variables. Fortunate
ly, it might be possible to derive i.i.d variables in
simulation, so that it is correct to apply elementary
statistical theory; for example, Law and Kelton
(1991) give many examples of i.i.d. inputs and out
puts, in their discussion of validation. Anyhow, in
practice, simulationists often use the nj.d. assump
tion, as is illustrated by the many applications (of the
old test) referenced above. In general, terminating
simulations (see Kleijnen and Van Groenendaal 1992,
pp. 187-190) may give i.i.d. outputs, as is illustrated
by the following queueing example.

The real and simulated systems should be obser
ved under similar circumstances (see above); hence
waiting times on a busy day in the real system should
not be compared with waiting times of a simulated
slow day. Those busy days may occur on (say) Satur
days. Suppose the simulation study concentrates on
these days, because complaints are then most outspo
ken. Then there is still variation: some busy Satur
days are busier than others are. Obviously the busiest
Saturday (of all Saturdays in the sample) should be
compared with the busiest simulated day. These Sat
urdays may be assumed ij.d.

Normal distributions may be explained by limit
theorems. For example, trace data are summarized by
one or a few statistics such as the average and select
ed quantiles. The queueing examples in Kleijnen et
al. (1996) demonstrate that low traffic loads lead to
normal output distributions for the average throughput
time per day in terminating simulations. High traffic
loads, however, give non-normality. This non-normal
ity can be removed through transformations such as
the Box-Cox transformation (which includes the loga
rithmic one); see Hoyle (1973). In practice the ana
lysts can indeed test for non-normality: they can
generate a large sample of simulated days.

This paper gives an academic example of the new
and old tests, namely the validation of inventory
simulation models. These models are derived from
data provided by a Monte Carlo laboratory that uses
academic simulation models (details will follow in
§3). Surprisingly, the creation and use of such a labo
ratory seems novel in the research on validation.

Based on these experiments, this paper will give
the following conclusions. (i) The old test (falsely)
rejects a valid simulation model substantially more
often than the nominal alpha level, whereas the new
test has the correct type I error probability. (ii) The
power of the new test increases, as the simulation
model deviates more from the real system. (iii)
Whereas in the queueing simulations in Kleijnen et
al. 1996) the output should be transformed logarith
mically, in the inventory system the original and the
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transfonned outputs give statistical perfonnances that
are very close. This holds for both the novel and the
old tests.

1.4 Organization of This Paper

§2 discusses the regression analysis of simulated and
real outputs in trace-driven simulations. It proves that
the old test is wrong. As an alternative this section
proposes to test the hypothesis that means and vari
ances of real and simulated outputs are equal. That
hypothesis is tested through a novel regression test.
§3 discusses a laboratory for studying various vali
dation tests; this laboratory uses inventory simulation.
§4 discusses future research. §5 gives conclusions.

2 REGRESSION ANALYSIS

This section summarizes Kleijnen et al. (1996). Let Yi

and ~ denote simulated and real outputs respectively
in observation i, with i = 1, ... , n; capital letters de
note random variables. Trace-driven simulation means
that ~ and Yi are dependent; it is realistic to suppose
that the linear correlation coefficient is positive: 0 <
Pxv ~ 1. Assume the n pairs (~, YJ are i.i.d. Finally,
assume these pairs have a bivariate normal distribu
tion. Denote the means by Jl and Jl , and the vari-

2 2 x y
ances by crx and O'y.

We propose the following stringent validation
requirement (assuming positive correlation between
real and simulated responses): a simulation model is
valid if the real and the simulated systems have iden
tical means (say) Jl, and identical variances (say) 0'2:

H d 2 2 ') (1)
0: Jlx = J.ly = J.l an 0'x = cry = 0'''

Because of the well-known relationships

~I = PX),O'y/O'x~ ~o = Jly - ~1J.lx (2)

Equation (1) is equivalent to f3/ = Pxv (> 0) and f30 =
Jl(l - p~) < Jl. .

An ideal, utopian simulation model has ~ = Yj or
perfect fit: Pxv = 1. Hence, the old test hypothesizes
that fitting the regression model y = {3o + {3/x gives (3o
= 0 and f3/ = 1. However, if and only if PX)I = 1,
Equations (1) and (2) together give f30 = 0 and f3/ = 1.
So in practice the old test is erroneous; the empirical
data in §3 show that this error is serious indeed.

Note: In the previous century Galton discovered
that p < 1 causes what he called 'regression toxv
mediocrity' in his study on parents' and children's
heights; see Larsen and Marx (1986, p. 447).

Suppose the real and the simulated means are

positive~ in practice this condition holds for inventory
costs and \vaiting times. This gives 0 < (3/ < 1 and 0
< f30 < J.l.

Note: An application of the old test is provided by
Lysyk (1989). He indeed finds an estimated slope
significantly smaller than unity, and a significantly
positive intercept. Since he expects a unit slope and a
zero intercept, he tries to explain this phenomenon
away. Another recent example is Kozempel, Toma
sula, and Craig (1995, p. 231).

The novel test of the joint hypothesis in Equation
( 1) accounts for dependence between ..r and Y, as
follows. Compute the n i.i.d. differences (say) D; = ..r,
- Yi and sums Qi = Xi + Yi• Regress D on Q:

E(DI Q = q) = Yo + y\q. (3)

It is easy to prove that a common variance of the
correlated nonnal variables X and Y implies zero
correlation between their differences and sums, D and
Q (this result is due to Pitman and Morgan back in
1939; the standard F test for equality of two varianc
es does not apply; see Kleijnen 1987, p. 99). This
zero correlation implies that in Equation (3) 'Y / = O~

common means of X and Y imply E(D)= 0 or in
Equation (3) 'Yo = 0 (see equation 2). Hence the hy
pothesis in Equation (1) gives

(4)

The analysts should simultaneously test the joint
hypothesis in Equation (4), with an experimentwise
error rate CiE not exceeding the prespecified value a.

This joint test can use an F statistic; for the general
fonnula see any textbook on regression analysis or
standard regression software~ for the specific fonnula
see Kleijnen et a1. (1996). (A conservative alternative
to this F test is provided by the t test for Yo = 0 and
YI = 0 respectively, combined with Bonferroni's in
equality.) There is an analogous F statistic for the hy
pothesis f30 = 0 and f3/ = 1 in the old test.

Note: The joint hypothesis in Equation (1) may be
rejected because the first sub-hypothesis (J.l x = J.l

y
) or

the second sub-hypothesis (O'~ = O'.~) is rejected.
Hence, a less stringent validation requirement is that
the real and simulated means are equal, but their
variances may differ (the variances are then treated as
nuisance parameters; the Taguchi approach, however,
does consider the variance to be an important perfor
mance measure). The hypothesis of equal means can
be tested by the well-known paired t test or a distri
bution-free test; see Conover (1980), Kleijnen (1987)
and Mayer et a1. (1994). This variance heterogeneity
may give a slope b/ that is lower or higher than one,
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even if 0 < p < 1; see Equation (2). Yet 0 < {3/ < 1
still holds if (but not if and only it) a r > a v (this
condition means that the simulation reduces the vari
ability, possibly because it does not account for idio
syncrasies in the real system). Common means J.l

implies for the intercept ~o = Jl - ~lJl = Jl(1 - ~l)

(see equation 2). So a simulation model with J.lr = J.ly
and ax 2 a

v
gives simulated responses that -when

regressed on oreal responses- result in a slope less than
unity and in a positive intercept (smaller than the
average simulation response).

3 AN INVENTORY LADORATORY

To illustrate the validation issues discussed in the
preceding sections, it might seem illuminating to
apply the old and the new tests to (say) an inventory
system in practice. Suppose historical data on inputs
(demands or lead times) were collected, and used to
drive the simulation model, followed by the statistical
tests of the preceding section. Suppose further that
the simulation model were not rejected. What lesson
would have been learned from such a case study?
Maybe this result would only mean that the tests have
not enough power. In other words, more might be
learned initially from applying the statistical valida
tion tests to a number of examples with known prop
erties, so that it is possible to conclude whether re
jecting a simulation model is correct or not! So in
stead of studying a real system, we construct a Monte
Carlo laboratory that represents the following single
item inventory systems.

Demand per day is nj.d. with mean 500 and stan
dard deviation 50. Initially, lead time is a shifted
Poisson with mean 5, that is, to a constant lead time
of one we add a Poisson variable with mean four
(this mean, however, will be changed below). There
are lost sales (no backorders). If physical stock plus
receivable orders drop below the reorder point (say)
ROP, then an order is placed. ROP is selected such
that a prespecified service level is realized. The order
size is selected such that the total inventory costs are
minimized; the fonnulas for ROP and EOQ (econom
ic order quantity) are rather complicated; the exact
specification, however, is unimportant for this study
so we refer to Kleijnen and Van Groenendaal (1992,
pp. 95-96). ROP and EOQ are fixed by the cost pa
rameters (stock-carrying costs $1 per day per unit,
lost-sales costs $100 per unit, and ordering costs
$10,000 per order).

Trace-driven simulation means that the simulation
and the real system share some input; we decided to
use the same demand history. If we used a trace with
data on both demand and lead times, then the simula-

tion model would be perfect (see §2). So we suppose
that the analysts do not know the historical lead
times; instead they use a distribution function for
these times.

We assume terminating simulation: a simulation
run ends after 365 days have been simulated. Each
run starts with the same initial stock; no orders are on
their way. (On hindsight, it would have been more
real istic to take the stock at the end of one year as
the initial stock for next year; but this example is
only a laboratory anyhow.)

The real and simulated outputs are the real and
simulated total inventory costs per year (denoted by X
and Y). We suppose that the analysts have n = 10
years of data available (we also experimented with 25
years of data, but this situation gave the same qualita
tive conclusions). A higher sample size n increases
the power of the validation tests. We use three classic
values for the type I error rate of the validation tests:
a is 0.01, 0.05, and 0.10. Obviously, a higher ex in
creases the power of the validation tests. To reduce
information overload and to save space, we shall
present results for a single a value, namely 0.10.

Note: To decrease both the type I and the type II
error probabilities, the analysts might increase the
sample size n (also see Balci 1994). In practice, how
ever, the number of observations on the real system is
usually fixed (and small).

We take 500 macro-replications to estimate the
performance of the tests; by definition, each macro
replication either rejects or accepts a specific simula
tion model (resulting in a binomial variable).

Some of our experiments give estimates of the
type I error of the validation tests: in these experi
ments we have the analysts use the correct lead time
distribution with the correct parameter (so the mean is
5). Yet their simulation is not perfect, since they use
pseudorandom number streams that differ from the
steams used by the 'real' system when sampling lead
times (not demands). Both streams use Turbo Pascal's
standard generator (multiplier 134775813, additive
constant 1, multiplier 2 32

). Hence the real and simu
lated output variables X and Y have the same distribu
tion so the hypothesis in Equation (1) holds. Yet the
realized outputs x and y differ, so the realized correla
tion r ry is smaller than one. The probability of a vali
dation test rejecting this (valid) simulation model
should be a.

Our computer programming ensures that lead
times and demands use non-overlapping pseudoran
dom number streams (the demand history, once sam
pled, is saved). We select the seed through the com
puter clock.

To study the type II error of the validation tests,
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increases, the power of the test increases too. This
(good) behavior is found for all type I error rates a
and sample sizes n studied (but not displayed in the
figure).

The figure is asymmetric: a mean simulated lead
time (say) one unit too high has a very different
effect on the total inventory costs than has a mean
lead time one unit too low (lost sales against stock
carrying). We also studied mean simulated lead times
that are wrong on a logarithmic scale; they gave a
more symmetric figure (not shown).

Notice that the analysts make no specification er
rors, when specifying the distribution type of the de
mands. Kleijnen et al. (1996) do study specification
errors in their queueing simulations.

The analysts might apply a normali=ing trans-
formation to the outputs, such as the Box-Cox trans
fonnation. Such a transfonnation may make the new
test better realize the prespecified type I error proba
bility. In this inventory laboratory, however, the loga
rithmic transfonnation hardly affects the estimated
perfonnance of the two tests: the output is a sum, so
apparently some limit theorem applies.

}lote: The old validation test showed a certain
'perverse' behavior in the queueing simulations re
ported in Kleijnen et al. (] 996); also see Harrison
(] 990, p. 187). In the inventory simulations, however,
this behavior is not found.

4 FUTURE RESEARCH

Topics that require more research are:
(i) The novel test assumes n. i.d. observations on the
real and simulated outputs (and so does the old test).
How can this assumption be satisfied in simulations
with autocorrelations and time trends? Autocorrela
tions might be removed through batching and similar
approaches, which are popular in simulation (see
Kleijnen and Van Groenendaal 1992, and also Mayer
et al. 1994, pp. 99-100). Time trends might be re
moved through techniques used in econometrics; also
see Barlas (1989, p. 68), who gives a system dynam
ics example that seems to allow subjective graphical
analysis only, since the time series (simulated and
real) show 'highly transient, non-stationary behavior'.
Also see the use of 'differencing' in Box and Jenkins
(1976, pp. 378-379). In other words, the academic
examples in this paper and its companion paper
(Kleijnen et al. 1996) need to be supplemented with
practical applications.
(ii) A specific type of non-normality, namely binary
output variables may be important in practice. An
example is the probability of buffer overflow.
(iii) The proposed statistical test of trace-driven simu-

1.00 --=-"......--_......,...\-------------~

\
\

\ /
\ /

\ /
\ /
\ I
\ I
\ I
\ /
\ /
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I

\...''- 1/
' .................

0.80

0.50

0.70

0.20

we create a gap between on one hand the 'reality' of
the laboratory and on the other hand the simulation
model of the analysts. This gap implies that the
means and/or variances of the real and simulated
outputs X and Y are different. There are infinitely
many ways to create such gaps; we select a few
ways, as follows.

We have the analysts use the wrong mean lead
time. Rather arbitrarily, we have them use a mean
lead time ranging between three and seven. We in
crease means with steps of size 0.2.

Both the old and the new validation tests operate
on the same data (~, 1';); this improves the compari
son of the two tests.

This design turns out to make the laboratory give
clear results: see Figure 1. This figure shows that the
old test (falsely) rejects a valid simulation model sub
stantially more often than the nominal a value,
whereas the new test has the correct type I error
probability.

0.10

0.00 L----L..._....L...----l_--'-_....L....----L_-..L.-_...L----...L._---'

3.00 3.40 3.80 4.20 4.80 &.00 6.40 6.80 8.20 8.80 7.00

Figure 1: Estimated Probability of Rejecting the Sim
ulated System, as a Function of the Deviation be
tween the Means of Simulated and Real Lead Times,
for the New and Old Validation Tests with a = 0.10

Note: The power of any statistical test can be
maximized over the whole domain of the parameters
being tested, by simply always rejecting the null-hy
pothesis (that is, the simulation model is always
rejected). Obviously, such a procedure is inferior.
Therefore the first condition for any test is that its
type I error probability is acceptable.

The figure further shows that as the analysts' error
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lations is only part of the total validation and verifi
cation (V & V) process. This test needs to be incor
porated in this total process.

5. CONCLUSIONS

This article focussed on statistical hypothesis tests for
the validation of trace-driven simulations. It proved
that it is wrong to expect unit slope and zero intercept
when regressing simulated on real outputs. Therefore
this paper applied a novel test: regress the differences
of simulated and real responses on their sums.

Both tests were evaluated and illustrated by apply
ing them in a Monte Carlo laboratory with academic
inventory systems.

These experiments gave the following conclusions.
The old test rejects a valid simulation model substan
tially more often than the a value indicates. The
novel test does not reject a val id simulation model
too often (its type I error probability equals the nomi
nal value a). The power of the new test increases, as
the simulation model deviates more from the real
system.
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