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ABSTRACT

This paper shows how to apply a variant of sample­
path optimization to solve stochastic variational in­
equalities, including as a special case finding a zero
of a gradient. We give a new set of sufficient condi­
tions for almost-sure convergence of the method, and
exhibit bounds on the error of the resulting approx­
imate solution. We also illustrate the application of
this method by using it to price an American call
option on a dividend-paying stock.

1 INTRODUCTION

This paper shows how to use the technique of sample­
path optimization (SPO) to solve stochastic varia­
tional inequalities, which include as special cases sys­
tems of nonlinear equations. This capability extends
the range of application of SPO, since in some impor­
tant cases the functions to be optimized are difficult
to deal with, but their gradients can be approximated.
In this section we review the SPO technique and give
an example of a case in which its usual form is difficult
to apply. The remainder of the paper then shows how
to adapt the method to variational inequalities, and
gives a numerical example illustrating an application
of the new method.

To describe the usual form of SPO, we introduce an
extended-real-valued stochastic process {Ln (x) In =
1,2, ... } where x E IRk. For each n and x, Ln(x) is a
random variable defined on the common probability
space (0, F, P); it takes values in IR U {+oo} U{-oo},
though we generally exclude +00 by requiring the
function to be proper (for maximization): that is,
never +00 and not everywhere -00. We can use the
extended value -00 to model constraints on x, by set­
ting Ln(x) = -00 for infeasible values of x. In the
following we write Ln(w, x) when we want to empha­
size dependence of L n (x) on the sample point w.

We assume the existence of a deterministic func-
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tion L oo such that the L n converge pointwise to L oo

with probability one. A convenient interpretation is
to regard the L n (x) as estimates of L oo (x) computed
by a simulation run of length n. Such convergence is
often justified by regeneration theorems in the case of
dynamic systems, or by the strong law of large num­
bers in the case of static systems. We wish to find
(approximately) a constrained maximizer of L oo (x),
under the condition that one cannot observe L oo but
only the Ln.

The method in its pure form is very simple: we fix
a large simulation length n and the sample point w
(representing the random number streams used in the
sinlulation), compute a maximizer x~ of the resulting
deterministic function L n (w, . ), and take this point
as an estimate of a maximizer of L oo .

This form of the method was proposed in Planl­
beck et ai. (1993, 1996) for use with infinitesimal
perturbation analysis (IPA) gradient estimates; the
key point is that IPA - when it applies - gives ex­
act gradients of the L n , so that one can apply the
powerful technology of constrained deterministic op­
timization. Convergence of the general method is an­
alyzed in Robinson (1996). Similar ideas were pro­
posed by Rubinstein and Shapiro (1993) for use with
the likelihood-ratio (LR) method, and these methods
are also closely related to the retrospective optimiza­
tion proposals of Healy and Schruben (1991) and to
M-estimation and other techniques. Robinson (1996)
gives a brief survey of these and other ideas sinli­
lar to SPO that have appeared in the literature; a
summary of the method's properties can be found in
Giirkan et ai. (1994). Giirkan (1996) and Giirkan
and Ozge (1996) show how SPO can be applied to
the buffer allocation problem in certain tandem pro­
duction lines. Plambeck et ai. (1996) and Giirkan
(1996) report extensive numerical results on the per­
formance of the method on fairly large systems with
various constraints on the variables.

In these experiments the method performed at least
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The rest of this paper has three numbered sections.
Section 2 briefly introduces stochastic variational in­
equalities, and builds a theoretical framework to jus­
tify applying SPO to solve them. Particular cases
covered by this theory include the first-order optimal­
ity conditions for nonlinear-programming problems,
and this in turn includes unconstrained optimization
by computing a critical point of the gradient, In
Section 3 we illustrate the latter case by applying
the method to price an American call option on a
dividend-paying stock, We summarize what we have
done in Section 4, and then conclude with acknowl­
edgments and references.

as well as the stochastic approximation method or its
single-run optimization variant (l\tleketon (1983), Suri
and Leung (1989), Leung (1990)) in cases to which
the latter two methods were applicable. It was also
effective for problems with inequality constraints, in
which stochastic approximation can have difficulty in
maintaining feasibility; see Appendix F of Plan1beck
et ai. (1996) for an exan1ple. In addition, the n1ethod
does not require a predetern1ined choice of step size,
thereby avoiding a potential difficulty of the stochas­
tic approximation approach; see Fu and Healy (1992)
and L'Ecuyer et ai. (1994).

Existing sufficient conditions for the convergence
of SPO can be found in Robinson (1996). A brief
summary of these conditions is as follows: we re­
quire L oo to be a proper deterministic function with a
nonempty, compact set of maximizers, and the L n to
be (with probability one) proper, upper semicontinu­
ous functions such that the sequence {-L n } epicon­
verges to - L oo . Epiconvergence is a type of conver­
gence often used in optimization, which is indepen­
dent of the usual pointwise convergence. Kall (1986)
gives a good review of epiconvergence and its connec­
tions to other ideas of convergence. Under the con­
ditions just n1entioned, Robinson (1996) shows that
with probability one, for large n the set M n of maxi­
mizers of L n will be nonempty and compact, and the
distance from any point of lvln to som.e point of the
set Moo of maxin1izers of L'':0 will be small. Thus, for
large enough n, if we maximize L n we are guaranteed
to be close to a maximizer of L oo .

Unfortunately, for some problen1s found in appli­
cations it is difficult or impossible to maxin1ize Ln.
For example, Figure 1 shows the graph of L 50 for an
option-pricing problem described further in Section
3. This function is an average of step functions, and
even though it would look better if we used more than
50 replications, it would still be discontinuous and ex­
tremely unpleasant to maximize. On the other hand,
Figure 2 shows (also for 50 replications) the graph of
a function 150 that is quite sn100th. The In, which
we shall show in Section 3 how to compute, have the
property that In almost surely converges pointwise,
as n --+ 00, to the derivative dL oo of L oo .

Therefore, in this case a reasonable strategy seems
to be to try to find a zero of In for large n, in the
hope that it might be close to a zero of dL oo , which
under suitable conditions would be a maxin1izer of
L,'X). The theory that we shall present in Section 2
shows when this procedure can be justified. Thus,
by using this new theory we can apply SPO to this
problem, whereas the version requiring maximization
of the L n would have been very difficult or impossible
to apply,
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and that if (2) holds then Xo == Ile (zo) satisfies (1).
Therefore for purposes of computation (1) and (2)
are equivalent; we shall work with (2). For additional
information and further references on normal maps,
see e.g. Robinson (1995).

The new form of spa works in the setting of
a vector-valued stochastic process {In (x) I n ==
1, 2, ... }, and a vector-valued function f 00 (x), where
the parameter x takes values in II{ k. Again, for all
n ~ 1 and all x E lR k, the random variables f n (x)
are defined on a common probability space (Q, F, P).
The aim is to find a point Xo satisfying (1) for f == 100'
provided that one exists. We proceed by fixing a large
simulation length n and the sample point w, finding
a point x~(w) solving (1) for f == In (again, provided
that one exists) and taking this point as an estimate
of xo. We shall give conditions below that ensure the
existence of these quanti ties.

In the particular special case of an unconstrained
simulation optimization problem, C would be IRk and
100 would be the gradient of the limit function L,XJ'

We are concerned here with stochastic variational
inequalities: that is, problems of the form (1) in which
the function f is an (unobservable) expectation or
steady-state function, and in which we can only ob­
serve f approximately by computing a sequence {In}
of functions (e.g., by simulation) with the property
that the In almost surely converge to I in a sense
that will be made precise below. We shall show how
one can use the sample-path technique on this prob­
lem when the set C is polyhedral.

Our technique will be first to convert the vari­
ational inequality (1) into an equivalent equation
which, however, will involve a function that is contin­
uous but is generally nonsmooth even if I is slnooth.
Then we introduce some technical terminology that
will permit us to state the nlain theorenl. That the­
orem gives conditions under which solutions of vari­
ational inequalities involving the approximate func­
tions In will converge to solutions of the problem that
we really want to solve. We conclude this section by
commenting on some special cases, one of which in­
volves the numerical exanlple that we present in Sec­
tion 3.

To convert (1) into an equivalent equation, we in­
troduce the normal m.ap induced by f and C, defined
by le(=) == f(Ile(z)) + z - Ile(z), where Ile is the
Euclidean projector on Cf. The function Ie is then
well defined on IIc1 (<I» 1 and it is clearly continuous
if I is. Further, it is easy to show that if Xo satisfies
(1) then Zo == Xo - f( xo) satisfies

how in a very special case this problem reduces to
that of solving systems of nonlinear equations. Then
we show how this problem can arise in a stochastic
context, and we extend the spa approach to provide
a simple algorithm to solve such problems. Finally,
we state a theorem giving conditions under which this
approach is justified.

The ingredients of the (deterministic) variational
inequality problem are a closed convex set C (in gen­
eral, a subset of a Hilbert space, but here a subset of
~k) and a function f from an open set <I> meeting C
to ~k. The problem is to find a point Xo E C n <1>, if
any exists, satisfying

For each x E C, (x - Xo, f(xo)) 2: 0, (1)

where (y, z) denotes the inner product ofy and z. Ge­
ometrically, (1) means that f(xo) is an inward normal
toCatxo.

The problem (1) models a very large number of
equilibrium phenomena in economics, physics, and
operations research. A survey of some of these can
be found in Harker and Pang (1990). In problems
arising from applications the convex set C is fre­
quently polyhedral. As a simple example, consider
the problem of solving systems of k nonlinear equa­
tions in k unknowns: to put this in the form (1) we
need only take C == 1R k, so that the requirement is
to find x° E <I> such that f (x 0) == O. Another very
commonly occurring special case arises from the fact
that the first-order necessary optimality conditions
for a nonlinear-programming problem with continu­
ously differentiable objective and constraint functions
can be written in the form (1).

However, not all variational inequality problenls
arise from optimization, just as not all systems of
nonlinear equations do. For example, in models of
economic equilibrium, the lack of certain symmetry
properties results in a model that is said to be non­
integrable; in such a case, it is not possible to find
the equilibrium prices and quantities by substitut­
ing an associated optimization problem for the vari­
ational inequality. For discussion of an actual model
of this type that was heavily used in policy anal­
ysis, see Hogan (1975). The theory that we shall
develop does not require any symmetry properties,
so it applies to non-integrable models. In fact, one
of the possible future applications that we have in
mind is the solution of stochastic economic equilib­
rium models involving expectations or steady-state
functions; in such cases one might hope that simu­
lation together with gradient-estimation techniques
could provide an effective alternative to discrete sce­
nario representations of uncertainty, with their asso­
ciated data-management problems.

le(zo) == 0, (2)
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By finding a zero of 100 (a critical point of L oo ), we
are solving the first-order necessary optimality condi­
tions, which is the approach taken by most deter­
ministic optimization algorithms. Of course, such
a critical point mayor may not be an n1aximizer,
and additional work is generally necessary to deter­
mine whether the appropriate second-order condi­
tions hold. In the unconstrained case this an10unts
to checking for negative definiteness of the Hessian at
the critical point. In some cases, notably when the
problem is unconstrained and the objective function
is known to be locally concave near the critical point,
no second-order analysis is needed.

It turns out that continuous convergence plays
a crucial role in the convergence analysis of this
method. This notion of convergence is equivalent to
uniform convergence to a continuous lin1it on con1pact
sets. For an elementary treatment of the relationship
between different types of functional convergence 1 see
Kall (1986), and for a comprehensive treatment of
continuous convergence and related issues, see Rock­
afellar and Wets (1996).

Definition 1 A sequence In of extended-real-valued
functions defined on IR k converges continuously to an
extended-real-valued function 100 defined on IR k (writ-

ten In ~ /(0) if for any x E IRk and any sequence
{xn} converging to x, one has In(x n) --+ 100 (J:) ..4
sequence of functions from IRk into IR m converges con­
tinuously if each of the Tn component functions does
so.

The fact motivating our use of continuous conver­

gence is that if In ~ /00 and X n --+ x, and if for
each n, X n solves (1) with / = In, then x solves (1)
with I = /00' This is very easy to check directly
from (1). Thus, if the problems with I = In have
solutions, and if those solutions converge, then their
limit will solve the problen1 with / = /00'

We present next a theoren1, for the case in which
C is polyhedral, giving sufficient conditions for these
approximate solutions to exist and to converge. In
order to state this theorem we need a technical prop­
erty that generalizes nonsingularity. We explain it
very briefly here, and then mention SOll1e important
special cases in which the property is easier to under­
stand. For additional examples in more general cases
we refer to Robinson (1995).

For this explanation we need SOll1e definitions.
First, the normal cone Nc (x) of C at x is the set

{y* I for each c E C, (y*,c- x) ~ O}

provided that x E C, and it is empty otherwise. If
x E C then the tangent cone ofC at x, written Tc(x),

is the polar of Nc (x): that is, the set of all y such
that (y*, y) ~ 0 for each y* E Nc (x). Second, the
critical cone defined by C and a given point z E IRk
IS

I{ (=) =Tc (IIc (=))n {y* E ~ k I (y * , z - IIc (=)) =O}.

Now fix any z and write!{ = !{(z). As!{ is polyhe­
dral it has only finitely many faces; for each nonempty
face F the normal cone of !{ takes a constant value,
say N p, on the relative interior of F. Then the set
(J"p = F + Np is a nonempty polyhedral convex set
of dimension k in ]R k. The collection NK of all these
(J"p for nonell1pty faces F of !{ is called the normal
manifold of !{. In each of these (J'p the projector IlK
reduces to an affine map (generally different for dif­
ferent (J"F). If M is a linear transformation from IR. k
to ffi.k, then we say that the normal map MK is co­
herently oriented if in each (J"F the determinant of the
affine ll1ap obtained by restricting A1K to (J'F has the
san1e nonzero sign.

As a simple illustration of this property, we can
consider the case in which !{ happens to be a sub­
space (the "strict complementary slackness" situation
in the optimization literature). Then the coherent
orientation requirement reduces to nonsingularity of
the section of M in !{. In particular, if C = IRk (the
case of nonlinear equations), then !{(z) = lR k for each
z E IR. k, and then NK (z) has only one cell, namely IR k

itself. Then JvIK is coherently oriented exactly when
M is nonsingular. In general, the coherent orienta­
tion condition is a way of generalizing nonsingularity
to the case of a nontrivial set C.

Theorem 1 Let <l> be an open subset ofIR.k and let C
be a polyhedral convex set in IRk. Let xo be a point of
<l>, and suppose /00 is a function from <l> to lR k. Let
{In I n = 1,2, ... } be random functions from <I» to]Rk
such that for all x E <l> and all finite n the random
variables In (x) are defined on a common. probability
space (0, F, P). Let Zo = Xo - 100 (xo) and assum,e
the following:

a. With probability one, each In for n = 1,2, ... is

continuous and In ~ 100'
b. Xo solves the variational inequality (1) defined

by 100 and C.
c. f 00 has a strong Frechet derivative dloo (xo) at

Xo, and dfoo (XO)K(zo) is coherently oriented.
Then there exist a positive number .\, a compact

subset Co c Cn<p containing Xo, a neighborhood V C
<I> of Xo, and a set ~ C 0 of measure zero, with the
following properties: for n = 1,2, ... and W E 0 let

~n(W):= sup Illn(w,x) - loo(x)IL
xECo
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and

Xn(w):={xEcnVI

for each c E C, (In(w, x), c - x) 2: O}.

For each w ~ ~ there is then a finite integer
N w such that for each n ~ N w the set ~Yn (w) lS a
nonempty, compact su.bset of the ball

B (x 0, A~n (W )) = {x I II x - x 0 II :s A~n (W ) } .

In the rest of this section we discuss some work
in the literature related to Theorem 1 and point out
similarities and differences. First, I\:ing and Rock­
afellar (1993) gave various convergence and asynlp­
totic properties for solutions to stochastic generalized
equations, of which the variational inequalities that
we treat here are a particular case. Among other
things they proved under certain regularity conditions
that the limit superior of a localization of the per­
turbed solution set was nonempty and contained in
the solution set of the limit problem; this corresponds
in our case to a proof that the solutions of the prob­
lems involving the In have cluster points, and that
each such point solves the limit problenl. They also
showed under additional assumptions that the solu­
tions of the perturbed problems converged in proba­
bility to the solution of the limit problem, with the
speed of convergence dependent on the goodness of
the approximation. Our conditions are in sOlne ways
nl0re restrictive than theirs, but we are able to estab­
lish almost-sure convergence and to bound the error
of the approximate solutions by a constant multiple of
the error in the approximation. Under considerably
stronger assumptions than ours, they also obtained
asymptotic results about the distribution of errors, a
question which we do not treat at all here.

Shapiro and Wardi (1994, 1995) used conditions
somewhat similar to those of Theorenl 1 (in the spe­
cial case C = IR k) to prove the convergence of stochas­
tic gradient descent algorithms. However, there are
significant differences: for example, they made no as­
sumption that the limiting function had a nonsingu­
lar derivative, but they derived no bounds on the re­
sulting solutions. Also, they assumed that the func­
tions involved were gradients or elements of general­
ized gradients. As we have indicated above, we have
in mind applications in which it is important that the
functions not be restricted to be gradients.

Shapiro (1995) investigates the convergence of ap­
proximate solutions of quite general problems by in­
troducing a "stopping criterion" to measure the qual­
ity of approximation. However, he assumes the ex­
istence of solutions to the approximating problems,
whereas under the hypotheses of Theorem 1 we can

prove the existence of such solutions as \:yell as bound­
ing their distance from the true solution. On the
other hand, Shapiro (1995) also gives results on the
asymptotic distribution of solutions, as did King and
Rockafellar (1993). We do not give such results.

As we have shown in Theorenl 1, we can find
approximate solutions of stochastic variational in­
equalities by a variant of sample-path optimization,
provided that a generalized nonsingulari ty condi­
tion holds. Moreover, as n --+ 'XI the distance of
the approximate solutions fronl an exact solution is
bounded above by a constant multiple of the uniform
norm of In - f o:J on a conlpact set containing the true
solution. In the next section we illustrate an applica­
tion of this general result.

3 APPLICATION: OPTION PRICING

In this section we present a small numerical exanl­
pIe illustrating how to apply SPO to the pricing of
an Anlerican call option on a dividend-paying stock.
Such an option is a derivative security giving the
holder the right to exercise the option (by buying
an underlying asset) at the exercise price I{ at any
tinle up to the expz'ration date T. Under certain as­
sumptions about markets, including the absence of
transaction costs, it is never optimal to exercise an
American call option prematurely (i.e .. before T) un­
less the stock pays a dividend during the life of the
option contract (see Hull (1993) and Stoll and Wha­
ley (1993)). In such a case, in order to obtain the
right to receive the dividend it nlay be optimal to ex­
ercise the option just prior to an ex-dividend date t 1,

provided that the stock price then exceeds a threshold
price . Note that the choice of a threshold price is un­
der the control of the option holder. We can value the
option by finding its greatest expected return over all
possible choices of threshold price.

Early examples of using Monte Carlo simulation
in option pricing can be found in Boyle (1977), Hull
and White (1987), and Johnson and Shanno (1987).
In these studies, simulation was employed as a "black
box" without providing any sensitivity infornlation.
More recently, Fu and Hu (1995) and Broadie and
Glasserman (1996) have improved this approach by
using gradient estinlation methods. Welch and Chen
(1991) formulated the pricing of an American call op­
tion on a dividend-paying stock as an optimization
problem. Fu and Hu (1995) adapted this viewpoint
and applied stochastic approximation to value this
option.

Following the notation and discussion in Fu and
Hu (1995), we define the variables that will be used
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in the rest of this section as follows:
So = the initial stock price,
St = the stock price at tinle t,
l' = the annualized riskless interest rate (compounded
continuously) 1

(I = volatility of the stock price process,
D = the dividend anl0unt,
JT = the net present value of the return on the option.

Among these variables St and JT are randolll and
the rest are deterministic. We aSSUllle that after the
ex-dividend date the stock price drops by the div­
idend amount: i.e., St+ = St- - D. The salllple

1 1

option value for the American call is then given by

where [A is the indicator function of the set ~4. in the
sense of probability theory, and (.)+ = lllax{ . ,O}
(the "plus function n

). We assume that except for
the downward jUlllP at the ex-dividend date the stock
price changes continuously according to a function
h(w;S,t,1',(I) which gives the stock price at tinle t
net of the present value of the dividend, given the
stock price S at time °and the randolll vector w'. In
this work we use the particular form of h that arises
when the stock price fluctuations are described by the
lognorlllal distri bution, nalllely

h(w· 5 t r (I) = Se(r-C1~ /2)t+CTu. I Vt (4), , , , ,

where w is a standard N(O, 1) randolll variable. For
N (0, 1) randolll variables WI and 1.1.)2 \ve have

and
ST == h(W2;St+,T-t 1 ,r,a-).

1

'rVe construct the functions L n by drawing n sanl­
pIes from the standard nornlal distribution and aver­
aging the resulting values of JT. For a fixed, finite
set of samples, L n is therefore a deterlllinistic step
function of the threshold price s. As can be seen in
Figure 1, the L n are unsuitable for optinlization. We
therefore applied the general approach of Section 2
(with C1 = Itt) by using an unbiased gradient esti­
mator for dE[JT]/ds =: lev provided in Fu and Hu
(199.5) to construct approxinlating functions In. Fig­
ure 2 shows a representative of 150, which is quite well
behaved. We next discuss briefly the construction of
the In and sonle of their properties.

In Shi (199.5) a discontinuous perturbation analy­
sis (DPA) gradient estinlator is derived for general

step functions of one variable, and in Fu and Hu
(1995) a smoothed perturbation analysis (SPA) gra­
dient estimator is derived specifically for the gradient
of E[JT] with respect to various parameters of the
option. Each of these approaches results in the same
unbiased gradient estimator for dE[JT]/ds, which is
sho\vn in (5). Denoting by p the probability density
function of wand set ting T =T - t 1, we have

( dJT) = _rToh-1(y*) (h- 1 (. *)) (5)
ds PA e os p y

[(h(w; 5 - D, T, 1', (I) - [{)+ - (5 - [{)e rT
]

where y. = (s-D; So _De- rt1
, t 1 , 1', (I) and the short­

hand notation h -1 (y*) stands for

h( .; So - De- rt1 , t 1, 1', (1)-1(5 - D).

For y > 0 and the choice of h given by (4), we have

-1 1 Y 2h( . ; S, t, r, 0") (y) = O".jt[ln S - (r - 0" /2)t],

\"hile for 5 > D the partial derivative in (5) is

1

For 5 E (D, +00), the expression in (5) is therefore a
continuous function of the threshold price s.

'rVe constructed the approximating functions In
by averaging the values of (dJT / ds) P A . One can

show that In ~ leo and that 100 is continu­
ously F-differentiable. Hence if there is an s* with
dE[JT(S* )]/ds = 0 and d2 E[JT(S* )]/ds2 < 0, then
Theorenl 1 shows that for sufficiently large sample
sizes n, the In will have zeros and these zeros will be
close to a locally unique lllaximizer 5* .

In this exampIe we used for the function h. the par­
ticular fornl (4) arising from the geometric Brownian
motion, since this is a popular stock price process in
the finance conlmunity. Other forIllS could also be
used, provided that they satisfy conditions to ensure
the unbiasedness of the gradient estimate; see Fu and
Hu (1995) and Shi (1995).

We now present the results of a small numerical
experinlent. The data used are taken from Stoll and
Whaley (1993): So = 50.0, [{ = 50.0, T = 90.0,
t1 = 60.0, D = 2.0, l' = 0.10, (I = 0.30. This is a
problem with only one dividend; hence one can use
the analytical formula to find the optimal threshold
price and the option value. Stoll and Whaley (1993)
found these to be s* = 51.82 and E[JT] = 2.93.

The same problem is considered in Fu and Hu
(1995); they applied stochastic approximation and re­
ported that "convergence within a penny of the actual



Sample-Path Solution of Stochastic variational Inequalities 343

option value is achieved within 1000 simulations." Fu
and Hu (1995) used 9 replications, which means that
their total simulation budget was 9, 000.

We applied SPO by finding a zero of In using the
nonsmooth Newton method of Qi and Sun (1993).
Results are presented in Table 1. The true solution
is found within one penny with a simulation budget
of 7,000 (two iterations, each with a sample size of
3,500). The table also gives results for larger sam­
ple sizes n. In addition, we used a very large sample
size of 500,000 and found the exact solution (reported
above). In each case the nlethod converged in 2 itera­
tions. Thus, on this problem SPO perfornled at least
comparably to stochastic approxinlation.

Table 1: Results of SPO for Option Pricing
n Option value Threshold price # Iter

35E2 2.937 51.850 2
50E2 2.931 51.803 2
10E4 2.939 51.828 2

4 CONCLUSIONS

In this paper we have shown how to use a simulation­
based method called sample-path optimization (SPO)
for solving stochastic variational inequalities. We pre­
sented a new set of sufficient conditions for the con­
vergence of the method, and by applying these to the
special case of nonlinear equations we showed how
the method can be applied to the pricing of certain
American call options. As an illustration we pre­
sented the results of a small numerical experinlent.
On that small problem SPO performed at least as
well as stochastic approximation. However, the SPO
technique appears to be applicable to a considerably
larger class of problems than is stochastic approxi­
mation. Therefore, the sufficient conditions that we
have given here may help in the solution of problems
that are difficult to handle with current techniques.
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