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This leads to the (stochastic counterpart) approxi­
mating problem

points for generated realizations (sample paths) wis
required.

Drawbacks of the SA method are well known - slow
convergence, absence of a good stopping rule, diffi­
culty in handling constraints. In this talk we dis­
cuss an alternative approach to the above optimiza­
tion problem which became known as the stochastic
counterpart (or sample path) method. In the stochas­
tic counterpart method a (large) sample WI, ... , W n is
generated and the function f(·) is approximated by
the corresponding average function

ABSTRACT

In this talk we consider a problem of optimizing
an expected value function by Monte Carlo simul~

tion methods. We discuss, somewhat in details, the
stochastic counterpart (sample path) method where a
relatively large sample is generated and the expected
value function is approximated by the correspond­
ing average function. Consequently the obtained ap­
proximation problem is solved by deterministic meth­
ods of nonlinear programming. One of advantages of
this approach, compared with the classical stochas­
tic approximation method, is that a statistical in­
ference can be incorporated into optimization algo­
rithms. This allows to develop a validation analy­
sis, stopping rules and variance reduction techniques
which in some cases considerably enhance numerical
performance of the stochastic counterpart method.

minln(x),
xeS

(2)

1 INTRODUCTION

of minimization of a function f( x) over a set S C /Rm .

Suppose that the objective function f( x) is given as
an expected value f(x) := IEp{g(x,w)} with respect
to a probability measure (distribution) P defined on
a sample space (0, F). One can try then to solve the
optimization problem (1) by a Monte Carlo simula­
tion. A classical approach to such an optimization
is the stochastic approximation (SA) method (e.g.,
Kushner and Clark, 1978). In case for every wEn
the function g(., w) is convex, not necessarily differen­
tiable, one can use a closely related stochastic subgra­
dient (stochastic quasigradient) method (Ermoliev,
1988). In order to apply these methods only calcu­
lation of the gradient (in the convex case calculation
of a subgradient) of the functions g(., w) at iteration

Consider the optimization problem

min f(x)
rES

(1)
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which is solved by (deterministic) techniques of non­
linear programming. For such an approach to be ap­
plicable one needs a mechanism to evaluate the ap­
proximating functions in (x), and their derivatives,
for all x in a given region in /Rm . There are ba­
sically two types of techniques which are available
for that purpose, namely the likelihood ratios (LR)
(also called the score function) method and the sam­
ple path generation.

Let us observe at this point that the SA and
stochastic counterpart (SC) methods are asymptot­
ically equivalent provided the expected value func­
tion f( x) is smooth (differentiable), the "true" op­
timal solution XQ is an interior point of the feasible
region S and the SA method is implemented with
the optimal choice of the corresponding step sizes
(Shapiro, 1996). This should be not surprising in view
of asymptotic optimality (efficiency) properties of SA
estimators (Nevl'son and Has'minskii, 1978). It was
discovered recently that by choosing relatively large
step sizes and by averaging the obtained SA iterates
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it is possible (in the smooth case) to achieve asymp­
totic efficiency in an automatic way (Polyak, 1990).
Therefore, for smooth problems, from the asymptotic
point of view both methods are comparable.

There is, however, a number of advantages in
the SC method which (when applicable) make this
method computationally attractive. The involved
constraints can be treated quite efficiently by (deter­
ministic) optimization algorithms. A statistical in­
ference for the SC method is available (e.g., Shapiro,
1996). This statistical inference allows to develop
(statistically based) stopping rules, validation tech­
niques and to construct confidence intervals and,
in some cases, confidence regions for the optimal
value and optimal solutions, respectively (cf. Shapiro
and Homem-de-Mello, 1996). Furthermore, the SC
method can be used together with variance reduction
techniques which in some cases lead to significant im­
provements in the computational efficiency.

2 AN EXAMPLE OF GI/G/I QUEUE

In this section we discuss an example of GI/G/1
queue whose service times depend on a parameter
vector x. Although relatively simple this example
demonstrates various aspects of the method. Let Yi
be the time between arrivals of the (i - 1)th and i th

customers, and for a fixed value of x, let Zi (x) be the
service time of the i th customer, i = 1, 2, ... , and let
Gi (x) denote the i th sojourn time (i.e. the total time
spent by the i th customer in the queue). We assume
that the first customer arrives at an empty queue and
that for every xES the queue is regenerative with
the expected number of customers served in one busy
period (regenerative cycle) being finite. Note that a
recursion relation between the soj ourn times is given
by the Lindley's equation

can be derived and consequently the optimization
problem (4) can be numerically solved by SA type
algorithms (see, e.g., Chong and Ramadge (1993),
L'Ecuyer and Glynn (1994), and references therein).

An alternative approach is to generate a large sam­
ple of interarrival and service times and then to solve
a constructed approximation of (4) by deterministic
methods of nonlinear programming. Suppose that
the service times can be generated in the form Zi =
TJ(Ui , x), where U1 , ... , is a sequence of iid random
numbers and TJ( U, x) is a known function. For exam­
ple, if the service times have an exponential distribu­
tion with mean x, then one can take TJ( U, x) = -x In U

with Uj having the uniform (0,1) distribution. After
a sample of Y1 , ... , Yn, and U1 , ... , Un, is generated the
long-run average functions in (x) and their gradients
can be calculated, at any given point x, by using Lind­
ley's equation (3), separately for every busy period,
and consequently the corresponding sample path ap­
proximation of the program (4) can be constructed.
It is worth noting that constructed in that way, the
approximating functions in (x) are typically nondif­
ferentiable, piecewise smooth functions. Moreover, in
some cases when the interarrival and service times
distributions contain atoms, these nondifferentiabil­
ities are carried over to the steady state, and hence
the mean steady state function f(x) is not everywhere
differentiable (Shapiro and Wardi, 1994).

A somewhat different approach to construction of
a stochastic approximation of I(x) is based on a LR
transformation. Denote by r( x) the number of cus­
tomers served in one busy period. It is well known in
the renewal theory of regenerative processes that, for
a given x and r = rex), G i =Gi(X), the mean steady
state sojourn time f(x) can be written in the form

(5)

Under standard regularity conditions, the long-run
average functions

n

in(x) = n-1 E Gi(X)
i=l

converge (pointwise) w.p.I, as n ~ 00, to the ex­
pected value (mean) steady state sojourn time f(x).
Consider the optimization problem (6)

provided both expectations in the right hand side of
(5) exist.

Suppose now that the service times Zl, ... , are iid
and have a (common) pdf p(z, x) depending on the
parameter vector x. Then it is possible to show
(Asmussen and Rubinstein, 1992, Rubinstein and
Shapiro, 1993) that f( x) can be represented in the
form

/(x) = ]EPa n=;~l.C; Lt(x)}
lEpa {L:;=l L t (x)}

where Zi, ... , is an iid random sample of service times
generated from a (fixed) pdfpo(z), G; and r· are the
sojourn times and the number of customers served in
one busy period, respectively, corresponding to the
service times Z;, and Lt (x) is the likelihood ratio

(4)minf(x) + 1/J(x),
xeS

where 1/J(x) is a (deterministic) cost function. By
using Lindley's equation (3) a recursive relation be­
tween the gradients of the sojourn time functions
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process

Lt(:c) = IT p(z; ,.:c).
i=l PO(Zi)

Typically one takes the dominating pdf in the form
Po(z) =p(z, xo) for a chosen value Xo of the parame­
ter vector.

By generating n busy periods (regenerative cycles)
and replacing the expectations in (6) by their sample
,:verages, one obtains a (regenerative) LR estimator
In(x) of I(x). Note that once a sample of the ser­
vice and interarrival times is generated and the cor­
responding sojourn times Gi, ... , are calculated, the
function In (.) is given explicitly through the corre­
sponding LR process Lt (·).

It should be noted that the above LR construc­
tion depends on two crucial assumptions, namely on
identifiability of the regenerative cycles and a pos­
sibility of moving the parameter vector x into the
corresponding pdf p(z, x). In more complex situa­
tions it may happen that the regenerative cycles are
too long or cannot be easily identified (the system is
never empty). Note also that in order to keep the
variance of the obtained LR estimators under control
the reference value Xo of the parameter vector, used
in the dominating pdf Po(z) = p(z, xo), should be
carefully selected (see Rubinstein and Shapiro, 1993,
for a discussion of this problem).

3 OPTIMIZATION ALGORITHMS

An important issue in an implementation of the SC
method is the choice of a deterministic optimization
algorithm. In case the considered problem is convex,
it is suggested in Plambeck, Fu, Robinson and Suri
(1996) to use a bundle type optimization procedure.
An alternative approach is to apply a steepest descent
method with an approximate line search, say by using
Armijo step sizes (cf. Wardi, 1990). In this respect
let us make the following observations.

Usually calculations of the average-function in (x)
value, and its gradient \7in (x), at an iteration point
x = x k, are expensive with the time effort is pro­
portional to the used sample size n. By the Cen­
tral Limit Theorem, the involved stochastic error is
inversely proportional to.[n. Therefore, typically,
in simulation based optimization one cannot hope to
achieve an accuracy often attainable in determinis­
tic optimization. Increasing the sample size does not
help much since in order to improve the accuracy, say
by one digit (10 times), one would need to increase
the sample size 100 times.

Often the average-functions in (x) are piecewise
smooth nondifferentiable functions. Consequently

Sbapiro

reliable estimates of the second order derivatives
\72 f(x), of the expected value function f(x), are ei­
ther unavailable or are too expensive to calculate.
Therefore applicable algorithms are usually first­
order optimization routines. In any case it does not
make sense to try to solve the constructed stochastic
counterpart problem (2) with high accuracy. Espe­
cially at first iterations, when the iterates are far away
from the optimal solution, the sample size can be rel­
atively small and can be increased gradually as the
algorithm proceeds. In this respect steepest descent
type algorithms offer more flexibility in updating the
sample sizes than bundle type methods. It is shown in
Shapiro and Wardi (1996) that, under mild regular­
ity conditions, such steepest descent type algorithms
produce iterates which converge with probability one
to the set of "true" optimal solutions as the sample
sizes are increasing to infinity.

4 VALIDATION ANALYSIS AND STOP­
PING RULES

Suppose that we are given a point x· which is sug­
gested as an approximation of an optimal solution Xo
of the program (1). Can we evaluate a quality of this
approximation? Closely related to this question is a
choice of stopping criteria for a considered algorithm.
In this section we discuss some statistical tests for
validation of optimality of the solution x·.

Suppose that the expected value function I( x) is
differentiable at the point x·. Also, assume that the
feasible set S is defined by constraints as follows

S ={x E JRm: Ci ( x) = 0, ~ = 1, ... ,k, } ,
Ci ( x) ~ 0, l = k + 1, ... , I

where Ci (x) are (deterministic) continuously differen­
tiable functions. By the first-order optimality condi­
tions we have that if Xo is an optimal solution of the
problem (1), then (under a constraint qualification)
there exist Lagrange multipliers Ai such that Ai ~ 0,
i E J(xo), and

\7 f(xo) - E Ai \7 Ci(XO) =0, (7)
iEI(xo)

where J(x) = {i : Ci(X) = 0, i = k + 1, ... , I} denotes
the index set of inequality constraints active at x and
I(x) ={I, ... , k}UJ(x). Consider the polyhedral cone

C(x) = {z E JRm: Z =LiE!(Z) cti\7ci(X), }.
(ti ~ 0, l E J(x)

Then the optimality conditions (7) can be written in
the form \7 f(xo) E C(xo).
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Suppose now that the gradient \7 f(x*) can be
estimated by a (random) vector in(x*) such that
in(x*) -+ \J f(x*) w.p.! as n ~ 00 and in(x*) has
(approximately) a multivariate normal distribution
with mean vector J.l =\] f(x*) and a covariance ma­
trix On. For example, if the gradient of f( x) is esti­
mated by the gradient in (x*) = \]in (x*) of the corre­
sponding average function, then asymptotic normal­
ity of ;n (x*) follows by the Central Limit Theorem.
Note that in this case the covariance matrix On can
be consistently estimated from the same sample.

. By using the estimator in (x·), we can test the hy­
pothesis:

Ho : \7 f(x·) E C(x*)

against the alternative

In order to test the (optimality-conditions) hypoth­
esis H0 one can use the following procedure (cf.
Shapiro and Romem-de-Mello, 1996). Suppose that
the covariance matrix On is nonsingular, and hence is
positive definite, and that a consistent estimator On
of On is available. Then

is an asymptotic analogue of the Rotelling's test
statistic which is used in multivariate analysis. It is
possible to show that if all Lagrange multipliers corre­
sponding to the inequality constraints active at x· are
positive (strict complementarity condition), then the
test statistic T has approximately (asymptotically) a
noncentral chi-square distribution with m - s degrees
of freedom, where

s =card(I(x·)) = k + card(J(x*)),

("card( I)" denotes cardinality of the set I) and the
noncentrality parameter

In particular, under Howe have that '" = 0 and
hence the null distribution of T is (asymptotically)
central chi-square with m - s degrees of freedom.
Therefore for a calculated value T of the test statistic
we can calculate the corresponding p-value, that is
p = Prob{x~_, ~ T}. This p-value gives an indica­
tion of the quality of the suggested solution x· with
respect to the stochastic precision. A large (close to
one) p-value means that such precision was reached,
so the algorithm cannot proceed further, whereas a
small (close to zero) p-value indicates that either the

current solution is far from the optimal or the deter­
ministic error starts to dominate.

The test statistic T can be calculated at each (at
some) iteration points and can be used in developing
stopping criteria for considered algorithms. Numer­
ical experience reported in Shapiro and Romem-de­
Mello (1996) suggests that this test statistic is useful
although alone does not give a good stopping rule
and should be combined with other criteria. It may
happen that the covariance matrix On of \]in (x), at
a current iteration point x = x k, is large and conse­
quently the corresponding T-value is small although,
in fact, X/c is far away from xo. In that case the algo­
rithm reached its stochastic precision and either the
sample size should be increased or some variance re­
duction procedure should be implemented.

On the other hand a reason for large T-value can
be a small value of the covariance matrix On. In
that case the deterministic error of the implemented
optimization algorithm dominates the corresponding
stochastic error and the algorithm can be stopped by
a deterministic criterion.

It is also possible to construct a confidence region
for V' f(Xk) - P(V' f(Xk)), where P(V' f(xle)) denotes
a point of the cone C(x Ie) closest to V' f( X Ie), with
respect to the metric induced by the inverse of the
covariance matrix. This can give an indication of the
order of the stochastic error and hence to help in the
choice of the generated sample size.
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