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ABSTRACT

This paper is concerned with the use of simulation to
compute the conditional expectations that arise in the
nlethod of conditional least squares. Our approach
involves performing simulations at each point on a
discrete grid imbedded within a statistical parameter
space. Our 11lain result concerns the number of grid
points and aillount of sinlulation necessary in order
to obtain a degree of accuracy comparable to that in
the case in the which the conditional expectations are
available in closed fOrll1.

1 INTRODUCTION

In this paper, we discuss a lllethod known as I.l.condi
tional least squares" that is widely used for purposes
of statistical parailleter estimation in the stochastic
process setting; see Hall & Heyde (1980) for an intro
duction to the lllethod. This method requires mini
mizing a function over the parameter space that in
volves conditional expectations defined in terms of
the stochastic process under consideration. In certain
applications, it is natural to compute the conditional
expectations via Monte Carlo simulation. In doing
so, it is clearly practical only to perforln simulations
at a finite number of different parameter values. This
leads naturally to the concept of ~I.grid-based simula
tion ~~, in which simulations are performed at various
points comprising a grid.

In Section 2, we introduce the method of condi
tional least squares in the context of paranleter esti
mation for continuous time Markov chains (CTMCs).
Section 3 concerns the asymptotic analysis of condi
tional least squares under the assumption that the
relevant conditional expectations can be computed
in closed form. Finally, Section 4, we study the
use of grid-based simulation in the CTMC context
and prove our main result (see Theorems 1 and 2).
We show that if the CTMC is observed at n equally
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spaced time points, then one needs to simulate on the
order of n 2 tiIlle units of the CT~IC so as to ensure
that the simulation based nlinilllization gives roughly
the same solution quality as that associated with the
case in which the conditional expectations are avail
able in closed fornl. This is accoillplished by starting
with a coarse grid, and refining it successively as nlore
inforillation on the likely location of the IlliniIllizer
becomes available.

2 PROBLEM FORMULATION

Suppose that \ve observe a stationary finite-state
cantinuous-time l\1arkov chain ..Y == (..tY (t) : t ~ 0),
\vith the intention of using the observed data to Illake
inferences about the generator underlying ..tY. In this
paper, we shall adopt a parametric statistical fornlu
lation for this inference problenl. Specifically, we shall
require that the generator underlying ..\" be a nlem
ber of a parametric family (A( 8) : f) E A) of genera
tors defined on the state space 5 associated with ..Y.
Our goal, then, is to develop a means of estimating
the I.l.true~~ value of the d-dimensional parameter 8,
call it 8* , underlying ..Y. For example, in the context
of the M/M/1/00 single-server queueing 1110del, this
would correspond to atteillpting to estimate the vec
tor 8* == (,,\ '" ,J.l* ), where ,,\ '" and J.l* are the arrival and
service rates for the queue, respectively.

Without any significant loss of generality, we shall
aSSUille that the parailleter set A is the d-dinlensional
unit hypercube. We shall further assume that:

At. i) 151 < 00;

ii) A(0*) is irreducible;

iii) A(·) is three times continuously differen
tiable on A;

iv) { (x, y) : A(8, x, Y) =f. 0 } is independent of
oE A;

v) 8* lies in the interior of A.
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(1)

If ~\" is observed continuously over some finite inter
val [0, t], the method of maximunl likelihood applies
directly here (see, for example, Billingsley 1961). In
particular, let A(B, x, y) be the (x. y) ~th element of
the generator A(B), let },.. = (}'~ : n ~ 0) be the em
bedded discrete-time Markov chain associated with
..t\, and let J(t) be the nunlber of jUlllPS of ..t\" over
[0, t]. Then, the likelihood function Lc(B, t) can be
easily written down explicitly:

J(t)-l

L c ( (), t) = IT A (8, li , li+ 1 )

j=O

Given that L n (.) needs to be ma"Cimized over A in
order to COlllpute the ma"'cimum likelihood estimator,
the nUlllerical challenge is even more daunting.

In an effort to develop a more tractable numeri
cal approach to such inference problems, Klimko and
Nelson (1978) proposed the lllethod of conditional
least squares. In particular, for a given ! : 5 ~ lR,
the idea is to define the estimator B~ as the minimizer
of the sum of squares

. exp(!; A(B, ~\( 5),..t\ (5 )ds).

n-l

L n ( B) = IT P (B, 1, ~Yi , ~Yi +1).
i=O

P(B, t) = exp(A(8)t)

or by noting that the transition se1uigroup (P(8, t) :
t ~ 0) is the unique solution of both the backward
Kolmogorov differential equations

However, in contrast to (1), the likelihood function
here is not a si111ple function of the lllatrices (A( B) :
B E A) that are typically directly specified by the
nlodeler. Rather, in order to conlpute L n ( B), it is
necessary to compute the P(B, 1, x, yfs from A(8).
Setting P(8,t) = (P(B,t,x,y) : x.y E 5). this lllay
be acconlplished either by taking advantage of the
fact that

(2)A(B)u(8, t)

!,
u /(8, t)

subject to u(B,O)

Setting g(B, x) = E8[f(~\1) I ..1\0 = x], we note that
the method of conditional least squares requires the
computation of g(8) = (g(8,x) : xES). This can
be aCC0111plished by, for exampIe, solving the linear
systelll of differential equations

in which case g(8) = u((},l). However, our interest
in this paper stems frolll the fact that g(8) can also
be computed via Monte Carlo simulation. The sinl
ulation alternative is particularly attractive, relative
to (2), when 151 is large. The idea that silllulation
has a useful role to play in the statistical estinla
tion context has received significant attention frolll
the statistics and econometric COllllllunities; see, for
exa111ple, Cook and Stefanski (1994), Diggle & Grat
ton (1984), Duffie and Singleton (1993), Ensor (1994),
Lee (1992). Keane (1994), Maa et a1. (1993), Mc
Fadden (1989), Pakes and Pollard (1989), Tholllpson,
Brown and Atkinson (1988).

Before concluding this section, it should be noted
that conditional least squares typically exacts a cost
frolll a statistical standpoint. While more numeri
cally tractable then maxilllulll likelihood, the asynlp
totic variance of 8~ tends to be larger than that of
the maximum likelihood estilllator. Thus, 8~ does
not extract as much of the statistical infor1nation
present in the sample as does the method of nlaxi
mUlll likelihood. This is typical of the trade off be
tween statistical efficiency and COlllputation tractabil
ity that is common to the area of statistical inference
for stochastic processes.

A(B)P(B, t)

I

P I (8. t)

such that P( B, 0)

The lllaximum likelihood estimator for B* is then
taken to be the maximizer of L c (', t) over A.

However, in lllany applications, X is observed
only discretely, see for example Bridges, Ensor and
Thompson (1992). In particular, we shall be con
cerned with the situation in which X is observed
only at the integer times 0,1,2, ... , n. Let Pe(')
be the probability llleasure on the path space of ..I\"
under which ..t\ evolves according to a stationary
process with generator A(B), and set P(B,t,x,y) =

Pe(..tY(t) = y IX(O) = x). If we put .J\j ~ .J\"(i), then
the likelihood function L n (B) associated with the dis
crete salllple (..tID, ... ,..t\"n) is given by

and the forward Kolmogorov differential equations

p' ((), t)

such that P(B,O)

P(B, t)A(8)

I.

3 LIMIT THEORY FOR CONDITIONAL
LEAST SQUARES IN THE CTMC SET
TING

Clearly, significant numerical effort will generally be
required to compute Ln(fJ) for a fixed value of B.

In this section, we fully work out the asymptotic limit
theory for conditional least squares in the CTMC set-
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ting. (The existing literature tends to focus on dis
cussion of the method in a general framework, under
hypotheses that need to be verified on a case-by-case
basis).

Our first goal is to verify consistency of 8~ as an
estimator of 8*. Our argument requires that we start
by establishing smoothness of 9 ( .). Letting ei be the
i'th unit vector in lRd • Assume, without any loss of
generality, that ei is an admissable direction from the
point 80 , in the sense that 80 + hei belongs to A for h
sufficiently small. Then we can use Al iv), (1), and
Taylor's theorem to write

h- 1 (P(80 + hei, t, x, y) - P(8o,t, x, y)) (3)

= Eoo [I(X(t) = y) i~(~~~,'tt} IX(O) = x]

where ~ lies on the line segment connecting 80 and
80 + hei and ai L c (~, t) is the i'th conlponent of the
gradient of Lc(·,t) with respect to 8, evaluated at~.

Now,

OiLc(8, t)
Lc(B, t) OJ log Lc(B, t)

J(t)-l 0 A(ll v"}/ )L i U',~i' .. i+l

i=O A(8,} i, Yi+l)

+it OjA(B, Xes), X(s)ds

By Ali) and iii) it f011ows that IaiL c ( ~ , t )I ::; (a +
bJ (t) )Lc (~, t) for deternlinistic constants a and b.
Furthermore, for c arbitrarily snlall, positive, and
deterministic, we can find ho so that for Ih I < ho,
Lc(~, t)/Lc(80 ' t) ::; (1 + c)J(t)d with d > 0 and de
terministic. Since J (t) is stochastically dOlllinated
by a Poisson randolll variable having lllean equal to
sup { - A(80 + hei,X,X) : Ihl < ho,x E S} we nlay
conclude that Eoo(a + bJ(t))(I + c)J(t)d < 00 for c
sufficiently samll, thereby permitting the application
of the dominated convergence theorem in (3). Hence,
P(·, t, x, y) is differentiable on A. One lllay easily pro
ceed to show that P(·, t, x, y) is, in fact, three tinles
differentiable under A1 iii).

Let P(·) and E(·) denote the probability and ex
pectation operators on the path-space of ..:\ associ
ated with A(8*). Also, let 7r = (7r( x) : xEs)
be the stationary distribution of ..tY" under P, and
let P(x, y) = P(8*, 1, x, y). The strong law of large
numbers for irreducible CTMC's guarantees that for
x,y E S,

as n ~ 00. Setting 0(8) = E[(f(JY1 ) - g(8, -,Yo ))2],
we note that

x,y

and hence

sup IOn (8) - o( 8)1
OEA

::; sup { (f(y) - g(8, x))2 : x, yES, 8 E A }

. maxx,y l1rn (x, y) - 1r(x)P(x, y)l.

The supremum of Ig(8,x)1 over 8 E A and xES is
finite because of the continuity of P(·, 1, x, y) over A
(a compact set), and the finiteness of s. In view of
(4), we have therefore proved the following result.

Proposition 1 Under A 1, On (.) converges uni
formly P a.s. to 0(·) over A.

Let 8~ be any (measurable) selection from the set
of global lllinimizers of 0'n ( .). In view of Proposi tion
1, strong consistency of 8~ to 8* follows if we show
that 8* is the unique global nlinimizer of o( .). For
this, we need an identifiability assumption.

Observe that

a(B) = a(B") + 2E [U(Xd - g(B", X o))

·(g(B",Xo) - 9(B,Xo))]

+E[(9(B",Xo) -9(B,XO))2].

Since f (J\1) - 9 (8* ,J\0) is a martingale difference un
der P, the second term on the right-hand side van
ishes. So, under A2, 8* is indeed the unique global
lllinilllizer of 0 ( . ), proving our next result.

Proposition 2 Under Al-A2, 8~ ~ 8* P a.s. as
n ~ 00.

To deal with the central linlit theory for the es
timator 8~, note that since both On (.) and 0(·) are
smooth, it is evident that VOn (8~) = Vo(8*) = 0
(note also conditon Al v)), so that

7rn (x,y) ~ ~ E~:Ol I(..tY"i = X,Xi+1 = y)
-+ 7r(x)P(x, y) P a.s.

(4) Let arjOn (~) be the second partial derivative of On

with respect to 8i and 8j , evaluated at ~. Then, by



328 Ensor and Gl:vnn

Taylor's theorem, there exists ~ni lying on the line
segment connecting 8~ and 8* such that

( o~.o: (' .): 1 < JO < d)(8* -8*) = oio:(8*)-Oi On(8*)lJ n ":tn. _ _ n

- 2 ( .). 1 <holds for 1 ~ i ~ d. Set Hn - (OijOn ~na . _
i, j ~ d). Then,

The proof of Proposition 1 also carries over to ~how

ing that o~.on (.) converges uniformly P a.s. to O;jo(·)
'J . ~ Ion A. Since 8~ ~ 8* P a.s. as n ~ 0Ci, It 10-

lows that H n ~ H P a.s. as n ~ 0Ci, where
H = (o;jo( 8*) : 1 ::; i, j ::; d). Be.cause. 8.* is the
unique global minimum of 0(·), H IS posItIve defi
nite, and consequently H;; 1 exists for n sufficiently
large, and H;;l ~ H- 1 P a.s. as n ~ lXi. Hence,

But

where D i = 2(f()[i) - g(8*,~Yi-l))V'g(8*,~Yi-l).

Now, (D i : i 2: 1) is a stationary sequence of
square-integrable n1artingale differences, and conse
quently the martingale central lin1it theorenl (CLT)
(see Ethier and Kurtz (1986)) yields

as n ~ 00 \vhere ..:\T(O, C) is a d-dilllensional 11lul
tivariate norlllal randoll1 variable having covariance
n1atrix C == E D 1 Dr. We have therefore established
the following CLT for 8~.

Theorem 1 Under Al-A2,

vn(8~ -8*) ~ H-1N(0,C)

as n ---+ 0Ci.

The above analysis presupposes that g(.) can be
easily evaluated, so that 8~ can be con1puted without
difficulty. As indicated earlier, we are especially con
cerned with problen1s in which g(.) is computed via
sin1ulation, thereby introducing additional error into
our estin1ator of 8*; this is the subject of Section 4.

4 GRID-BASED SIMULATION

Clearly, the conditional expectations associated with
g( 8) can easily be computed via sin1ulation of ~Y.

Specifically, suppose that (ltVj (i, 8, x): i, j ~ 1, 8 E
A, xES) is a collection of independent randon1 vari
ables in which (ltVj (i, 8, .r): i, j ~ 1) is identically

distributed with common distribution Pe(f(}(l) E
· IX o = x). We let. PO and E(.) de~ote th~ prob
ability and expectatIon operator assOCIated wIth the
probability space that supports the W j ( i, 8, x) 's and
the process ~\. Then,

1 m

g(8,x,i,m) = - LWj(i,8,x)
m j=l

is an estimator of g(8, x). Furthermore, On (8) can be
calculated numerically via the Monte Carlo estimator

on(8,i,m) = L(f(y) -g(8,x,i,m))2 1rn (x,y). (5)
x,y

We note that, con1putationally speaking, On (8, i, m)
requires only that g(8, x, i, m) be calculated for states
x E { ~Yo, ... ,~Yn-l }; this observation can result in
significant computational savings when 151 is (very)
large.

However, it is clearly impossible to compute the
function On (., i, m) over the entire parameter space
A. Instead, one needs to restrict attention to a fi
nite subset of A. Our approach will be to generate
On ( ., i, n) on a uniform grid (hence, the term "grid
based sin1ulation"). The grid will then be successively
refined as more inforn1ation becomes available on the
likely location of the minimizer of an ( .).

More specifically, the iteration proceeds as follows.
Suppose that at iteration i, we have a "guess" 8~ (i-I)
available as to the likely location of some point in the
set argn1in{ O:n(8) : 8 E A }. For z > 0, let

I(~) == {(i l , ... ,id ): ij E Z, lijl::;~, 1::; j S d}.

For b positive, we then proceed to generate
a n(8, i, m n (i)) over the grid points 8 E An(i), where

An(i) = (8~(i - 1) + n-(i+l)b I(n 2b )) n A.

We next select 8~ (i) to be any point in the set of
global n1inimizers of { an (8, i, m n (i)) : 8 E An (i) },
and move on to the next iteration. The algorithnl
is initiated by setting 8~ (0) == 0, and is tern1inated
at iteration k with the final computed paran1eter es
tinlator {in == 8~ (k). Our choice for the sequence
{ mn(i) : i ~ 1 } is mn(i) == [n 4(i+2)b] (where [.]
denotes the greatest integer).

Let II . II be the norn1 on JRd defined by Ilxll =
maXl<i<d IXi I· Our main mathematical result of this
sectio; is the following.

Proposition 3 Assume Al-A2. For each fixed k 2: 1
and b > 0,

as n ---+ 00.
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Proof. Let Qni = O'(..tY"o, •.. ,..t\1, tVj(l,(),x) : () E
A, x E S,j 2=: 1, 1~ i). Then,

P(II()~_()~(i)ll~n-j6,l~i~k) (6)

=E[)] I(118~ - 8~(i) II:::; n-
i6

)

·P(1I8: - 8:(k) II:::; nHI9n'k_d].

On the event { II ()~ - ()* (k - 1) II ~ n (k -1)6 }, the
convex hull of An (k) contains ()~. Hence, there exists
a point ()~c(k) E An(k) for which II ()~ - ()~c(k) II ::;
n-<5(k+1). We next observe that a sufficient condition
for ()~(k) to be within n- 6k of ()~ (in the nornl II . II)
is that ()~c (k) have a strictly smaller objective value
(with regard to the objective function an (., k, m n (k))
than all those points () E An (k) such that II ()~ - () II >
n- k <5. We now proceed to establish that this event
occurs with high probability under our hypotheses.

Observe that for any positive deterministic a, there
exists deterministic no such that for n > no,

{ On ((), k, m n ( k)) > On ( ()~c ( k), k, m n ( k )),

() E An(k), II () - ()~ II > n- k
<5 }

2 { on(()) > On(()~c(k)) + an- 2k
<5, () E An(k),

II () - ()~ II > n- k6
}

n{ IOn(()) - on((), k, mn(k))1 ::; n- 2(k+l)<5,

() E An (k) }.

Hence, for n sufficiently large,

p(crn(8,k,mn(k)) > crn(8:c(k),k,mn(k)), (7)

8 E An(k), 118 - 8~ II> n-k619n,k_l)

~ I(crn (8) > crn(8~c(k)) + an- 2H ,8 E An(k),

118 - 8~ II > n-
k6 )

. IT P(lcrn(8)-crn(8,k,mn (k)) I
8EA n (k)

:::; n-
2
(k+

1
)6 1 9n'k-l).

(We used above the fact that ():c (k) is Yn,k -1 mea
surable and the independence of the Wj (i, (), x) 's.)
Since 8: is a minimizer of an (.), Van (():) = 0 so
Taylor's theorem (see, for example Sen and Singer
(1993)) yields

crn(8) = crn(8~) + ~(8 - 8:fHn(~n(8))(8 - 8~),

where ~n ( ()) lies on the line segment connecting () and
()~, and H n (x) is the Hessian of On (.) evaluated at
x. Now, as asserted earlier, H n (·) is a continuous
matrix function which converges uniformly on 1\, as
n ~ 00, to the limiting continuous nlatrix function
H(·), where H(·) is the Hessian of a( .). Furthermore,
()* is the unique global minimizer of 0(·), so H(·) is
positive definite in a neighborhood of ()*. Now, the
minimal and maximal eigenvalues of a positive defi
nite matrix are continuous functions of their matrix
argunlent. As a consequence, the minimal and lllax
imal eigenvalues of Hn (.) converge uniformly to the
corresponding eigenvalues of H(·). Thus, it is evident
that there exists positive constants f, C, J such that
for any x E lRd

, II () - ()* II < f,

for n large enough P a.s. (We also use here the fact
that our norm can be bounded above and below by
constant nlultiples of the Euclidian norn1-) Now, for
k > 2, the dialneter of An(k) shrinks as n ~ 00.

Co~sequently, on { II ()~ - ()~(k - 1) II::; n-b(k-l) },

and for n large enough,

for f) E An (k), k 2=: 2. In view of the fact that
II f)~c(k) - ()~ II ::; n-b(k+l) it follows from (8) that
for k 2: 2, there exists a Yn,l measurable random
variable Nk that is finite P a.s. such that

I(crn (8) > cr n (8: c (k)) +an-2k6 , (9)

8 E An(k), 118 - 8: II > n- H
)

=I(n2: Nk)

on { II ()~ - f)~(k - 1) II ::; n-<5(k-l) } (if we choose
a small enough b. For k = 1, we use the fact
that an (.) converges uniformly to a(·) outside any f
neighborhood of f)~ and use the estimates (8) inside
the f-neighborhood, to arrive at (9).

Turning now to the second factor on the right-hand
side of (7), observe that the Wj (i, 8, x)'s are a family
of uniformly bounded random variables (bounded by
max( I f(x) I) : xES). It is easy to see that
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i> ( IuntO) - UntO, k, m n (k)) I < n- 2(k+1J6

1 9n'k-l) (10)

~ II i>( Ig(O, x) - g(O, x, k, m n (k)) I
xES

~ bn-2(k+I)6)

for bchosen small enough and deterministic (see (5)).
But for p > 0,

i>( Ig(O,x) - g(O,x,k,mn(k)) I (11)

~ bn- 2(k+Il6 )

=l-i>(lg(O,x)-g(O,X,k,mn(k))1

> bn- 2(k+l)6 )

> 1 - b-Pn 2(k+l)bp

·t Ig(9, x) - g(8, x, k, m' n (k)) IP
~ 1 - b-P n 2(k+l)b Pc(p)

. max ( I f(x) I
P

: x E S)m n (k)-p/2

== 1 - b-Pc(p)n- 26p nlax ( I f(x) IP : xES)

,6. -?b== 1 - rn ". P~

the Burkholder inequality was applied in the second
inequality; see Hall & Heyde (1980L p. 23. Applica
tion of (7), (9), (10), and (11), together with repeated
conditioning in (6), yields the inequality

P (II 8~ - 8~(i) II::; n- ib
, 1::; i::; k)

~ P(N1 ::; n, ... ,Nk ::; n)

.(1 _ rn- 2bP )ISI·IAn(k)l·k

~ P(N1 ::; n, ... ,Nk ::; n)
I I "0 d.(1 _ rn-26p) S ·(2n- +1) k.

By choosing p sufficiently large and letting n ----+ 00,

we obtain the desired result. 0

We note that by choosing k{' > t, Proposition 3

and Theorem 1 combine to yield a CLT for fin.

Theorem 2 Assume A1-A2 and suppose kb > t.
Then

as n --+ 00, where Hand C are as in Theorem 1.

In terms of the computational effort required to
calculate iin , note that the i'th iteration requires
simulation at (2n 26 + l)d points. Each simulation at
the tth iteration, for a given point, requires n4(i+2)6

replications. Thus, the total work required at itera
tion i is of the order of n 26d+ 4(i+2)b. Summing over
the k iterations, \ve conclude that the total work is
of order n 26d+ 4(k+2)b. But k and b can be chosen ar-
bitrarily, subject to the constraint kb > t. Hence,
by (for example), choosing the number of iterations k
large, and b = (~ + 7J) / k for 7J positive, we note that
we can make th~ exponent 2fJd + 4(k + 2)b as close
as we wish to 2. Thus, roughly speaking, the com
putational effort required to compute iin is of order

.)

n--.

This should come as no surprise. In the limit,
an accuracy of order n -1/2 in the location of the
minimizer requires that we perfornl "function evalua
tions~~ that have accuracy n- 1 (because of the locally
quadratic structure of the objective function). To
obtain simulations of accuracy n -1 requires a run
length of order n 2 •

While the analysis of this paper is asymptotic, it
does suggest that in inlplenlenting grid-based simu
lation, it is inlportant to slowly refine the grid (i.e. k
large), and that using a course grid ({, small) reduces
the impact of dimensionality considerations (i.e. the
impact of d being large).
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