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ABSTRACT

We estimate, by simulation, the cell-loss rate in an
ATM switch modeled as a queueing network. Cell
losses are rare events, so estimating their frequency
by simulation is hard. We experiment with impor
tance sampling as a mean of improving the simulation
efficiency in that context.

1. INTRODUCTION

An Asynchronous Transfer Mode (ATM) communi
cation sw-itch can be modeled as a network of queues
with finite buffer sizes. Cells (or packets) of infor
mation join the network in a stochastic manner and
some may be lost due to buffer overflow. The long
term (or steady-state) fraction of cells that are lost
at a given node is called the cell-loss rate (CLR) at
that node. Typical CLRs are small and the cell losses
also tend to occur in bunches. They are therefore
rare events, so estimating the CLRs with reasonable
precision by straightforward simulation is extremely
time-consuming-in some cases practically impossi
ble.

Efficiency improvement methods have been pro
posed to deal with such a situation. Most of these
methods improve the efficiency by reducing the vari
ance of the estimator, and are called variance reduc
tion techniques. For rare events, importance sam
pling (IS) seems the method of choice. It changes the
probability laws governing the system so that the rare
events of interest occur more frequently, and eventu
ally are no longer rare events. The estimator is also
changed accordingly (multiplied by a likelihood ratio)
so that it remains unbiased.

For general background on efficiency improvement,
consult Bratley, Fox, and Schrage (1987), Glynn (1994)
and L'Ecuyer (.i994). For more on IS, see Glynn and
Iglehart (1989), Heidelberger (1995), Shahabuddin
(1994) and the several other references given there.
Application of IS to the simulation of communication
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systems is studied by Chang et al. (1994), Chang, Hei
delberger, and Shahabuddin (1995), Fleming, Scha
effer, and Simon (1995), among several others. A
somewhat related approach, which also concentrates
the simulation effort on the more interesting events, is
splitting (called "RESTART" by some authors); see,
e.g., Glasserman et al. (1996).

By far the most difficult problen1 in the practical
application of importance sampling is to find an ap
propriate change of measure; that is, figure out how to
change the probability laws so that the variance gets
reduced to an acceptable level. Theoretically, there
always exists a change of measure that reduces the
variance to an arbitrary small value, but it is usually
much too complicated and too difficult to find.

Chang et al. (1994) proposed an approach, based
on the theories of effective bandwidth and large devi
ations, to derive an "asymptotically optimal" change
of measure for estimating the probability p that a
queue length exceeds a given level x before returning
to empty, given that the queue is started from empty,
for a single queue with multiple independent arrival
sources. Roughly, asymptotically optimal means that
the standard error of the IS estimator converges to
zero exponentially fast with the same decay rate (ex
ponent) as the quantity to be estimated, as a func
tion of the level x. For a more precise mathematical
statement, see Chang et al. (1994) and Heidelberger
(1995). An asymptotically optimal change of mea
sure does not (generally) minimize the variance, but
can reduce it by several orders of magnitude.

The probability p just described is closely related
to the CLR, so this change of measure could be used
as well to estimate the CLR in a single queue with
finite buffer size. Chang et al. (1994) extended their
method to intree networks of queues, which are acyclic
tree networks where cells flow only towards the root
of the tree. The arrival sources can feed any node.
For intree networks, they did not prove that their
proposed change of measure is asymptotically opti-
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mal, but conjectured that it is close and gave an up
per bound on the variance. They reported numerical
experiments with single-node and two-node queueing
systems, and indeed observed spectacular variance re
ductions.

This paper reports further experimentation with
this approach, for larger queueing networks of a spe
cific type. Our findings confirlll the large variance re
ductions observed by Chang et al. (1994) in general.
We lllake an heuristic adaptation to a certain class
of non-intree networks and observe large variance re
ductions as well, under certain conditions. The next
section describes the queueing network lllodel. Sec
tion 3 recalls how to compute confidence intervals for
the CLR via the A-cycle method. Section 4 explains
how importance sampling is applied. The numerical
results are reported in Section 5.

2. THE MODEL

We consider an acyclic queueing network whose nodes
are partitioned into four levels. Each node is a single
server FIFO queue with finite buffer size. Levels 2
and 3 have m2 nodes each, while levels 1 and 4 have
mi m2 nodes each. Each level-2 node is fed by n1I
level-1 nodes, while each level-3 node feds n1I nodes
at level 4. The "custolllers" in the network are (in
dentical) cells containing bits of infornlation. They
arrive at levell, then move ahead to levels 2 1 3, and 4,
in succession, before leaving the network. Each level
1 node is fed by mo independent arrival sources. Each
source is assigned to a specific destination at level ~t

so all cells frolll this source have a C0l111110n trajec
tory in the network. The assignlllents of destinations
to sources is fixed (deterlllinistically) beforehand. In
practice, we may be interested in a randolll assign
lllent of destinations to sources, but in that case it is
probably better to stratify the experiment over the
set of possible assignments. Here, we concentrate on
what to do after the assignment has been fixed.

For f == 1, ... ,4, all level-f nodes have the same
buffer size Be and the same constant service time 1/Ce
(so Ce is the service rate). Whenever a cell arrives at
a node where the buffer is full, it is lost and just
disappears.

The m'Oml m2 arrival sources are iid j\Iarkov ll10d
ulated processes. A source is off for a while, then on
for a while, then off for a while, and so on. During
a on period, cells arrive at a constant rate, one cell
per unit of time, whereas during a off period, none
arrives from that source. The durations of off and on
periods are independent geometric random variables
with respective means ~o and ~I· The parameter ~l

is called the average burst size.
We want to estilllate the fraction of cells lost (the

CLR) at a given level of the network (among those
reaching that level), in steady-state. For this, we con
centrate on a selected node of the network, say node
q* at level f*, and trim down from the network all
nodes at level 3 or 4 from which node q* cannot be
reached. An alternative would be to take the aver
age CLR for all nodes at a given level as the estima
tor. With a straightforward simulation approach, this
would yield a better estimator than concentrating on
a single node. But with IS, it seems better to concen
trate on a single node, and increase only the traffic
to that node, to control the variance of the likelihood
ratio.

Other variants of the model (,ould be considered.
For example, each arriving cell could have its destina
tion deternlined randomly, or the destination could be
generated randomly for each on period (or "burst")
of each source. These models may be more difficult
to handle with IS (in general) than the one we con
sider, because the likelihood ratio would tend to have
more terms. Our fixed-assignnlent model is reason
able because in communication networks, a typical
connection between a source and a destination would
last for a period of time several orders of magnitude
larger than the average time between bursts.

3. CONFIDENCE INTERVALS

To COlllpute a confidence interval on J-l, one needs to
estimate the variance of {to For this, we apply a gener
alization of the classical regenerative method, called
the ~4-cycle method, introduced and used by Nicola
et al. (1993) and Chang et al. (1994). Let A be a sub
set of the state space of the system. In this paper,
..4 is taken as the set of states for which the queue at
node q* is elllpty. Let to == 0 and let t l , t2, ... be the
successive times at which the system's state enters
the set A. The system's state at those entering times
ti has a steady-state distribution Jr defined by:

( )
clef. 1 2:n

.
Jr. == hm - P{state E . at tIme til.

n-7OO n
i=1

The process between times ti-l and ti is called the
ith A-cycle. Let "\.""i denote the nunlber of arrivals to
node q* during the ith A-cycle and Yi be the number
of lost cells among those ..Yi arrivals. Let E1I' denote
the mathematical expectation over an A-cycle when
the initial state (at the beginning of the A-cycle) has
distribution Jr. One has:

(1)

In the limit, as the number of A-cycles increases, the
average distribution of the system states at the times
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ti approaches 1r. To reduce the initial bias, one may
warm-up the system by discarding (say) the first no
A-cycles from the statistics. Then, take the averages
of the Yi and Xi over the next n A-cycles, which yields
the estimator:

" E~I Yi
M = "n .

L-i=1 Xi

Under mild conditions which are assumed to hold
here, 1r is also a steady-state distribution in the point
wise sense. The A-cycles are then asymptotically
identically distributed (their initial state follows 7f)
but not independent. To reduce the dependence, and
also improve the normality, one can batch them, as in
the batch means method (Bratley, Fox, and Schrage
1987). One then applies the standard methodology
for computing a confidence interval for a ratio of ex
pectations, using the batch means as observations.

Suppose we take b batches of k = n/b successive
observations (.oX-i , Yi) each. For 1 ::; j ::; b, let (.oY j , }~j)

be the mean within batch j, and put

The Zj have zero expectation and variance

which can be estimated by

S~ = S~ - 2{LSxy + {L2Si

where ..Y~ S~, Y, S~, SXY denote the sa.mple ll1ean
and variance of the Xj's, the sanlple nlean and vari
ance of the Yj's, and the sample covariance between
the .oYj's and Yj's, respectively. Assuming that the
Zj are iid normally distributed and denoting t =
Y" - /-LX, one obtains that

Vbt VbX({L - M)

Sz Sz

has a Student-t distribution with b - 1 degrees of
freedom, which is approximately standard normal for
large enough b. From this, one can compute a confi
dence interval on /-L in a standard way.

4. APPLYING IMPORTANCE SAMPLING

To estimate the CLR /-L at node q*, the straightfor
ward approach is to simulate until n cells reach node
q*, and define iJ, as the fraction of those lost due to a
full buffer. This estimator turns out to have relative
error (the standard deviation divided by the mean)
RE[iJ,] = O((nM)-1/2)), which is unbounded as J-t -+ 0,
so one must find a better estimator.

We will use IS, with the methodology developed
by Chang et al. (1994) for choosing the change of

measure. We now explain how this can be applied
to our model. The two quantities to estimate are the
numerator and denominator in (1). The denominator
E7t" [-"X"d is easy to estimate just by simulating several
A-cycles without IS. The numerator is more difficult
because it involves rare events, and IS will be used
for it, as follows.

Let 0 and 1 denote the states off and on of a
source. Due to the geometric assumption, each source
evolves as a discrete-time Markov chain with state
space {O, I} and transition matrix R with elements
Tij given by Tal = 1/~o~ TOO = 1 - Tal, TIO = 1/~l,
TIl = I- T IO· Its arrival rate is p = ~I/(~I + ~o)·

Let S* denote the set of sources feeding q*. To in
crease the traffic at node q* (and get more cell losses),
we change the matrix R for all the sources in S*, so
they spend lllore till1e in the on state. At the begin
ning of an A-cycle with IS, the transition matrix R
for the sources in S* is replaced by

where () 2: O~ and 1\0 and K I are (positive) normal
izing constants ensuring that the lines sum up to 1.
We will explain later on how to choose e. Note that
e> 0 increases the average input rate from the source
while e = 0 leaves it (and R) unchanged. This new
ll1atrix R is in effect until buffer q* fills up or empties
again~ whichever COllles first. When q* fills up, the IS
is turned off (R is replaced by R) until the end of the
A-cycle. We call this an ..4-cycle with IS.

For a given initial state ~ let Edenote the expecta
tion over an ..-i-cycle with IS. Let Ntj be the number
of till1es a source in 5* goes from state i to state
j while using the new probabilities i\j, during the
A-cycle, for i = 0,1 and j = 0,1, and let NT =
Noo + NOI + N IO + NIl ~ the total number of transi
tions generated from R. The likelihood ratio associ
ated with this change of measure is then

( )
Noo ( ) N0

1
( ) N10 ( ) N

ll

L = ~oo ~Ol ~10 ~11
rOO Tal TIO TIl

If V is a random variable computed during an A
cycle, then

E[V] = E[LV],

so computing LV over an A-cycle with IS yields an
unbiased estimator of E[V].

Generally, the variance of L may increase expo
nentially fast with NT, so (intuitively) one would like
to keep NT small while still making cell losses fre
quent enough. This is why the A-cycle methodology,
with short A-cycles, is to be preferred over using IS
with longer simulations.
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One simulates two "versions" of each .A.-cycle, one
with IS and the other without, both starting frolll
the same initial state. Thus, the A.-cycles come in
pairs. For the ith A-cycle pair, the simulation with IS
provides an estimation lVi == L i Yi of the numerator,
where L i and Yi are the value of the likelihood ratio
and the number of cell losses for this cycle, while the
no-IS one provides an estimator Xi of the denomina
tor. The final state of the no-IS A-cycle, which obeys
approximately distribution 1f, is taken as the initial
state for the next pair of A-cycles.

For f* == 1 or 2, one has an intree network, for
which all sources feed q*, so B can be chosen as pro
posed by Chang et al. (1994). Let A(B) be the spectral
radius (largest eigenvalue) of the matrix

(
rOO rOle:)
TlO TIle

and f (B) be the corresponding eigenvector. Define
'l/Jo(B) == B-lln(A(B)). Compute B and the corre
sponding i\j as follows:

Algorithm 1 (For f* == 1 or 2.)
1. If f* == 1, then

compute Br, a solution of 'mo'~'o(B) == Cl

else
compute 01 , solution of demo In A(B)) / dB == Cl;

Let

fl/'l (B) == {mo'l/Jo_(8) _ if B ::; 01 ;

({-/ Cl - 81 (Cl - 1TLO'lPO (B 1 )) other\vise;

Compute 8;, a solution of ml ?/"1 (B) == C2;

Let Br == min(8; ,01 );

2. For each (i, j), define

_ exp(j8~)fj(Br)

Tij == A(8r)!i(8r) Tij'

For f* == 3 or 4, the network is no longer intree,
in the sense that many cells exit before reaching the
root q*. We nevertheless heuristically adapt the al
gorithm of Chang et al. (1994) as follows. We change
Tij to i\) only for the souces in S*. When choosing
8, we neglect all the traffic not directed towards node
q*. To simplify, we also neglect the possibility that
the effective bandwidth exceeds the service rate at a
node other than q*. This is reasonable because in
our setup, S* typically contains only a slllall fraction
of the sources. This yields the following algorithm,
where s* is the cardinality of S* , and where A, f, and
'l/Jo are defined as before.

Algorithm 2 (For f* == 3 or 4.)
1. Compute (}*, a solution to s*'l/Jo (f)) == Ct.- ;

2. Define
exp(j(}*)!j (f)*)r ij

Tij = >.({)*)f;({}*)

5. NUMERICAL RESULTS

5.1. The Setup

In the examples that follow, the simulation was run
first using the straightforward approach without IS,
for b batches of k A-cycles each, then with IS, for
b batches of k pairs of A-cycles each. The tables
report the value of the CLR estimator [L, its vari
ance estimate iJ2 == S}/(bX 2

), the relative half-width

~ == 2..57Sz / ()b..V: P.,) == 2.57Sz / ()by) of a 99% con
fidence interval on fJ (under the normality assump
tion), the CPU time t (in seconds) required to per
form the simulation, and the estimated relative effi
ciency, defined as [L2 / (t;:,2). These values are noisy
but give a rough indication of what happens. For
the cases where no cell loss was observed in all the A
cycles sinlulated, we put [L == 0 and the entries for the
variance and efficiency estimates are left blank. The
IS adds overhead: it takes more CPU time than no
IS for the sallle total number of simulated cells-up
to 15 times more in our implementation. So, for the
IS estinlator to win (be more efficient) it must have
approxinlately 15 times less variance. To compare
IS with no-IS, one must look at the efficiency (eff.)
columns. Beware of comparing the CPU times and
efficiencies across the tables, because the experiments
were run on different machines (SUN SparcStations
4, .5, and 20).

For all the examples b has been fixed to 200.

5.2. CLR Estilnation at Levell

Example 1 Take B 1 == .512, rno == 4, p == 1/10, Cl =
1 and vary the average burst size 1'\:1. Let k == 3 000
for IS and k == 50000 for no-IS. Table 1 gives the
results. For large average burst sizes, the CLR J.-L is
high and easy to estimate, with or without IS. But for
small burst sizes (the other parameters remaining the
same), fJ is small and much more difficult to estimate.
Then, IS is much better than no-IS. With 1'\:1 == 50
the no-IS estimator is no longer trustworthy, and for
1'\:1 == 10 and 2.5 not even a single cell loss was observed
in the kb ..4-cycles of the no-IS sample.

We made several other experiments where we var
ied the buffer size B 1 or the number of sources rna
(with mop fixed). As B l increases, J-l decreases ex
ponentially fast and the no-IS estimator quickly be
comes useless, whereas IS works fine. As a function
of mo, J-l increases slowly, so IS produces larger gains
for small rna.

5.3. CLR Estimation at Level 2

Example 2 Let B 1 == 256, B 2 == 1024, rna 8,
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rn1 == 4, C1 == 2, C2 == 4, p == 1/21, and vary the aver
age burst size K1. The average input rate at the level
2 node is thus approximatively 1.5 cells per unit of
time, whereas the service rate is 4. Here, k == 250 for
IS and k == 7 500 for no-IS. Table 2 gives the results,
which are similar to those of Example 1, but with
smaller CLR values and more spectacular improve
ment for the IS over the no-IS. For any K1, it appears
difficult to estimate J-l with significant precision with
no-IS.

Example 3 Same as for the previous example, ex
cept that K1 is now fixed at 50 and we vary the buffer
size B 2 . We take k == 250 for IS and k == 7 500 for no
IS. The results are given in Table 3. As the cell-loss
rate is smaller than 10-6 (the value around which no
IS estimation passes from difficult to near-impossible)
for all buffer sizes, no cell losses was observed in any
of the no-IS simulations. The CPU time used by IS
increases with the buffer size while it remains con
stant for no-IS. This is because, when the buffer size
is larger, it takes more time to fill it (and ultimately
observe a cell loss) under IS. The CPU time for the
no-IS is not affected by the buffer size simply because
the simulation does not try to cause an overflow, and
so does not work more when the buffer is larger.

5.4. CLR Estimation at Level 3

Example 4 Let B 1 == B 2 == 512, B 3 == 256, C1 == 1,
C2 == C3 == 2, rno == 2, m1 == 3, m2 == 10, p == 1/21, and
we vary the average burst size 1'\:1. We take k == .500
and 9000 for IS and no-IS, respectively. We assign
6 sources to the node of interest at level 3. Table 4
gives the results. While no-IS has difficulty to observe
a cell loss, IS gives reasonable estimations.

Example 5 Same as for the previous example, ex
cept that 1'\:1 is fixed at 50 and we vary the buffer size
B 3 . We take k == .500 and 9000 (for IS and no-IS).
Results appears in Table 5. Again, the IS works fine
while the no-IS observes no cell loss except at the
lowest buffer size.

Example 6 Same as the two previous example, ex
cept that K1 is fixed at 50 and the buffer size B 3 at
2.56. We take k == 500 and 9 000 (for IS and no-IS)
and we vary the number of sources directed towards
the observed node. Table 6 gives the results. IS again
dominates as cell losses become sufficiently rare.

5.5. CLR Estimation at Level 4

Example 7 Let B 1 == B 2 == B 3 == B 4 == 512, C1

C4 == 1, C2 == C3 == 4, mo == 5, ml == 10, m2 == 6,
p == 1/41 and we vary the average burst size K1. We

assign 6 sources to the node of interest at level 4. vVe
take k == 2.50 and 4 000, for IS and no-IS, respectively.
The results are in Table 7. IS still gives far more
better performances than no-IS.

Example 8 Same as the previous example, except
that K1 is fixed at 50 and we vary the buffer size B4 .

We take k == 250 and 4 000, for IS and no-IS. The
results appears in Table 8. Again, IS is more effective
than no-IS.

5.6. Variants of the Algorithms

The algorithms of Chang et al. (1994), used here,
provide good changes of measures in an asymptotic
sense, but not the best possible values of B. More
over, their aim is to reduce the variance and they do
not take into account the differences in computational
costs. We made additional experinlents where B was
varied around the value given by the algorithm, to see
whether the variance and efficiency would improve.
For all levels, the optimal B was generally slightly
smaller but very close to the one prescribed by the
algorithlll.

When estimating the CLR at level 4 with IS, when
the target buffer overflows at level 4 and the IS is
turned off, there should be a large nUlllber of cells
already in the network at previous levels, which nlay
produce more cell losses than necessary. So, perhaps
IS could be turned off earlier; e.g., when the total
number of cells in buffer q* or at previous nodes but
on their way to q*, reaches some threshold. We exper
imented with this idea and (for our lllodel) obtained
no significant improvement over the basic method
which turns off the IS when the buffer q* overflows.

Another idea is to play with different definitions
of the A-cycles. For example, instead of starting a
new A-cycle whenever q* is empty, start it whenever
the nUlllber of cells in the buffer crosses (3 upward,
where (3 is a fixed integer. We tried this but did not
obtain much success in terms of efficiency improve
ment. When increasing (3, the no-IS A-cycles tend to
become excessively long.

One can also inlpose a lower bound, say, to on
the length of the A-cycles, to avoid lots of extremely
short A-cycles, which tends to occur under both the
IS and no-IS setup. In our experiments, values of to
between 50 and 100 (roughly) gave slight efficiency
improvements.
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Table 1: CLR Estimation at Level 1 for Different Burst Sizes

no-IS IS

it
~ 2

~ cpu eff. it a2
~ cpu eff.

~l a

10 0 1270 1.10E-22 1.7E-49 0.95% 2492 29

25 0 1302 7.27E-10 1.8E-23 1.5% 1425 21

50 4.42E-6 3.0E-12 101% 1314 2.0E-2 8.91E-6 4.8E-15 2.0% 934 18

100 8.71E-4 2.6E-9 15% 1323 2.4E-1 9.09E-4 1.3E-10 3.2% 661 10

150 4.38E-3 1.5E-8 7.2% 1329 9.3E-1 4.32E-3 3.8E-9 3.6% 583 8.5

Table 2: CLR Estimation at Level 2 for Different Burst Sizes

no-IS IS

~1 it iJ2 ~ cpu eff. it iJ2 ~ cpu eff.

10 0 2208 2.89E-41 8.2E-83 81% 2613 3.9E-3

25 0 2190 4.62E-21 3.9E-43 35% 2453 2.2E-2

50 0 2972 2.60E-l1 4.5E-24 21% 2340 6.4E-2
100 1.54E-6 2.4E-12 256% 3161 3.7E-6 1.66E-7 3.3E-16 28% 2230 3.7E-2
150 7.34E-6 1.3E-11 123% 3269 3.7E-4 3.86E-6 2.2E-13 31% 2288 3.0E-2

Table 3: CLR Estimation at Level ~ for Different Buffer Sizes

no-IS IS
B2 it iJ2 ~ cpu eff. it

",2
~ cpu eff.a

512 0 2184 1.91E-7 1.3E-16 15% 1273 2.3E-l
764 0 2183 2.36E-9 2.8E-20 18% 1496 1.3E-1

1024 0 2184 2.60E-ll 4.5E-24 21% 1719 8.7E-2
1280 0 2186 3.43E-13 1.7E-27 30% 1929 3.7E-2
1536 0 2184 5.35E-15 2.5E-30 76% 2113 5.4E-3

Table 4: CLR Estimation at Level 3 for Different Burst Sizes

no-IS IS
~l it a2

~ cpu eff. {l a2
~ cpu eff.

10 0 1088 5.44E-20 8.6E-42 14% 1454 2.4E-l
25 0 1050 1.29E-10 2.8E-23 11% 1213 4.9E-1
50 0 1125 6.04E-7 7.2E-16 11% 1042 4.8E-1

100 2.09E-5 2.1E-10 178% 1134 6.9E-3 4.06E-5 6.7E-12 16% 881 2.8E-1
150 1.09E-4 1.6E-9 94% 1136 1.5E-2 1.68E-4 9.1E-11 15% 813 3.8E-1
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Table 5: CLR Estimation at Level 3 for Different Buffer Sizes

no-IS IS
B 3 P- iJ2 ~ cpu eff. P- a2 ti cpu eff.

128 2.37E-5 1.1E-I0 112% 7036 2.2E-3 4.13E-5 5.3E-12 14% 5779 5.6E-2
256 0 7024 6.04E-7 7.2E-16 11% 7316 6.9E-2
512 0 7059 3.40E-I0 2.9E-22 13% 10246 4.0E-2
768 0 7037 2.51E-13 1.7E-28 13% 12930 2.9E-2

1024 0 7027 2.08E-16 1.4E-34 14% 15649 2.0E-2

Table 6: CLR Estimation at Level 3 for Different Numbers of Directed Sources

no-IS IS
sources P- iJ2 ~ cpu eff. it iJ2 ~ cpu eff.

4 0 2263 1.93E-8 1.2E-18 15% 2899 1.1E-1
5 0 2357 1.43E-7 4.5E-17 12% 2578 1.8E-1
6 0 2447 6.04E-7 7.2E-16 11% 2413 2.1E-l
7 0 2551 2.09E-6 9.1E-15 12% 2357 2.0E-1
8 1.10E-5 4.9E-11 163% 2651 1.8E-4 4.89E-6 2.2E-14 7.8% 2300 4.7E-l

Table 7: CLR Estimation at Level 4 for Different Burst Sizes

no-IS IS

Kl it a2
~ cpu eff. it a2

~ cpu eff.
10 0 3562 2.13E-28 5.9E-58 29% 9978 7.7E-3
25 0 3575 1.34E-12 1.5E-25 75% 5347 2.2E-3
50 0 3584 1.37E-7 4.4E-16 39% 3496 1.2E-2

100 2.06E-4 2.1E-8 180% 3599 6.1E-5 6.81E-5 1.1E-10 39% 2505 1.7E-2
150 1.08E-4 8.9E-9 223% 3589 6.7E-3 4.63E-4 7.8E-9 49% 2194 1.3E-2

Table 8: CLR Estimation at Level 4 for Different Buffer Sizes

no-IS IS

B 4 P- iJ2 ~ cpu eff. P- iJ2 ~ cpu eff.

128 1.59E-3 7.5E-8 44% 3580 4.3E-3 1.08E-3 4.0E-9 15% 1881 1.5E-1
256 8.27E-6 6.8E-11 255% 3593 1.3E-2 5.54E-5 1.4E-10 55% 2440 8.8E-3
516 0 3586 1.37E-7 4.4E-16 39% 3580 1.2E-2
768 0 3592 3.63E-10 2.7E-21 36% 4488 1.1E-2

1024 0 3595 1.02E-12 1.5E-26 31% 5550 1.2E-2
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from Newbridge Networks Corporation to the second
author.
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