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ABSTRACT

We estimate, by simulation, the cell-loss rate in an
ATM switch modeled as a queueing network. Cell
losses are rare events, so estimating their frequency
by simulation is hard. We experiment with impor-
tance sampling as a mean of improving the simulation
efficiency in that context.

1. INTRODUCTION

An Asynchronous Transfer Mode (ATM) communi-
cation switch can be modeled as a network of queues
with finite buffer sizes. Cells (or packets) of infor-
mation join the network in a stochastic manner and
some may be lost due to buffer overflow. The long-
term (or steady-state) fraction of cells that are lost
at a given node is called the cell-loss rate (CLR) at
that node. Typical CLRs are small and the cell losses
also tend to occur in bunches. They are therefore
rare events, so estimating the CLRs with reasonable
precision by straightforward simulation is extremely
time-consuming—in some cases practically impossi-
ble.

Efficiency improvement methods have been pro-
posed to deal with such a situation. Most of these
methods improve the efficiency by reducing the vari-
ance of the estimator, and are called variance reduc-
tion techniques. For rare events, tmportance sam-
pling (IS) seems the method of choice. It changes the
probability laws governing the system so that the rare
events of interest occur more frequently, and eventu-
ally are no longer rare events. The estimator is also
changed accordingly (multiplied by a likelihood ratio)
so that it remains unbiased.

For general background on efficiency improvement,
consult Bratley, Fox, and Schrage (1987), Glynn (1994)
and L’Ecuyer (:1994). For more on IS, see Glynn and
Iglehart (1989), Heidelberger (1995), Shahabuddin
(1994) and the several other references given there.
Application of IS to the simulation of communication
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systems is studied by Chang et al. (1994), Chang, Hei-
delberger, and Shahabuddin (1995), Fleming, Scha-
effer, and Simon (1995), among several others. A
somewhat related approach, which also concentrates
the simulation effort on the more interesting events, is
splitting (called “RESTART” by some authors); see,
e.g., Glasserman et al. (1996).

By far the most difficult problem in the practical
application of importance sampling is to find an ap-
propriate change of measure; that is, figure out how to
change the probability laws so that the variance gets
reduced to an acceptable level. Theoretically, there
always exists a change of measure that reduces the
variance to an arbitrary small value, but it is usually
much too complicated and too difficult to find.

Chang et al. (1994) proposed an approach, based
on the theories of effective bandwidth and large devi-
ations, to derive an “asymptotically optimal” change
of measure for estimating the probability p that a
queue length exceeds a given level z before returning
to empty, given that the queue is started from empty,
for a single queue with multiple independent arrival
sources. Roughly, asymptotically optimal means that
the standard error of the IS estimator converges to
zero exponentially fast with the same decay rate (ex-
ponent) as the quantity to be estimated, as a func-
tion of the level z. For a more precise mathematical
statement, see Chang et al. (1994) and Heidelberger
(1995). An asymptotically optimal change of mea-
sure does not (generally) minimize the variance, but
can reduce it by several orders of magnitude.

The probability p just described is closely related
to the CLR, so this change of measure could be used
as well to estimate the CLR in a single queue with
finite buffer size. Chang et al. (1994) extended their
method to intree networks of queues, which are acyclic
tree networks where cells flow only towards the root
of the tree. The arrival sources can feed any node.
For intree networks, they did not prove that their
proposed change of measure is asymptotically opti-
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mal, but conjectured that it is close and gave an up-
per bound on the variance. They reported numerical
experiments with single-node and two-node queueing
systems, and indeed observed spectacular variance re-
ductions.

This paper reports further experimentation with
this approach, for larger queueing networks of a spe-
cific type. Our findings confirm the large variance re-
ductions observed by Chang et al. (1994) in general.
We make an heuristic adaptation to a certain class
of non-intree networks and observe large variance re-
ductions as well, under certain conditions. The next
section describes the queueing network model. Sec-
tion 3 recalls how to compute confidence intervals for
the CLR via the A-cycle method. Section 4 explains
how importance sampling is applied. The numerical
results are reported in Section 5.

2. THE MODEL

We consider an acyclic queueing network whose nodes
are partitioned into four levels. Each node is a single-
server FIFO queue with finite buffer size. Levels 2
and 3 have ms nodes each, while levels 1 and 4 have
mymsy nodes each. Each level-2 node is fed by m;
level-1 nodes, while each level-3 node feds m; nodes
at level 4. The “customers” in the network are (in-
dentical) cells containing bits of information. They
arrive at level 1, then move ahead to levels 2, 3, and 4,
in succession, before leaving the network. Each level-
1 node is fed by mg independent arrival sources. Each
source is assigned to a specific destination at level 4,
so all cells from this source have a common trajec-
tory in the network. The assignments of destinations
to sources is fixed (deterministically) beforehand. In
practice, we may be interested in a random assign-
ment of destinations to sources, but in that case it is
probably better to stratify the experiment over the
set of possible assignments. Here, we concentrate on
what to do after the assignment has been fixed.

For ¢ = 1,...,4, all level-f nodes have the same
buffer size B, and the same constant service time 1/c;
(so cg is the service rate). Whenever a cell arrives at
a node where the buffer is full, it is lost and just
disappears.

The mgm;m, arrival sources are iid Markov mod-
ulated processes. A source is off for a while, then on
for a while, then off for a while, and so on. During
a on period, cells arrive at a constant rate, one cell
per unit of time, whereas during a off period, none
arrives from that source. The durations of off and on
periods are independent geometric random variables
with respective means kg and k1. The parameter k;
is called the average burst size.

We want to estimate the fraction of cells lost (the

CLR) at a given level of the network (among those
reaching that level), in steady-state. For this, we con-
centrate on a selected node of the network, say node
g* at level £*, and trim down from the network all
nodes at level 3 or 4 from which node ¢* cannot be
reached. An alternative would be to take the aver-
age CLR for all nodes at a given level as the estima-
tor. With a straightforward simulation approach, this
would yield a better estimator than concentrating on
a single node. But with IS, it seems better to concen-
trate on a single node, and increase only the traffic
to that node, to control the variance of the likelihood
ratio.

Other variants of the model could be considered.
For example, each arriving cell could have its destina-
tion determined randomly, or the destination could be
generated randomly for each on period (or “burst”)
of each source. These models may be more difficult
to handle with IS (in general) than the one we con-
sider, because the likelihood ratio would tend to have
more terms. Our fixed-assignment model is reason-
able because in communication networks, a typical
connection between a source and a destination would
last for a period of time several orders of magnitude
larger than the average time between bursts.

3. CONFIDENCE INTERVALS

To compute a confidence interval on , one needs to
estimate the variance of ji. For this, we apply a gener-
alization of the classical regenerative method, called
the A-cycle method, introduced and used by Nicola
et al. (1993) and Chang et al. (1994). Let A be a sub-
set of the state space of the system. In this paper,
A is taken as the set of states for which the queue at
node ¢~ is empty. Let tg = 0 and let ¢;,ts,... be the
successive times at which the system’s state enters
the set A. The system’s state at those entering times
t; has a steady-state distribution 7 defined by:

() €1

N R .
Jim ~ ;P{state € - at time t;}.
The process between times t;_; and t; is called the
1th A-cycle. Let X; denote the number of arrivals to
node ¢* during the ith A-cycle and Y; be the number
of lost cells among those X; arrivals. Let E, denote
the mathematical expectation over an A-cycle when
the initial state (at the beginning of the A-cycle) has
distribution 7. One has:

_ E.[1]

“EEX] M

In the limit, as the number of A-cycles increases, the
average distribution of the system states at the times
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t; approaches w. To reduce the initial bias, one may
warm-up the system by discarding (say) the first ng
A-cycles from the statistics. Then, take the averages
of the Y; and X over the next n A-cycles, which yields
the estimator:

~ Z?:l )/1

# z?:l Xi ~

Under mild conditions which are assumed to hold
here, 7 is also a steady-state distribution in the point-
wise sense. The A-cycles are then asymptotically
identically distributed (their initial state follows =)
but not independent. To reduce the dependence, and
also improve the normality, one can batch them, as in
the batch means method (Bratley, Fox, and Schrage
1987). One then applies the standard methodology
for computing a confidence interval for a ratio of ex-
pectations, using the batch means as observations.

Suppose we take b batches of k£ = n/b successive
observations (X;,Y;) each. For 1 < j < b, let (X,,Y))
be the mean within batch j, and put

Z, = Y, —uX,
The Z; have zero expectation and variance
Var[Z;] = Var[Y;] — 2uCov(X;, Y;] + p?Var[.Y}],
which can be estimated by
Sy = Sy — 2aSxy + i°S%

where X, 5%, Y, SZ, Sxy denote the sample mean
and variance of the X;’s, the sample mean and vari-
ance of the Y,’s, and the sample covariance between
the X;’s and Y;’s, respectively. Assuming that the
Z; are iid normally distributed and denoting Z =

Y — pX, one obtains that

VbZ VX (- p)
Sy Sz

has a Student-t distribution with b — 1 degrees of
freedom, which is approximately standard normal for
large enough b. From this, one can compute a confi-
dence interval on u in a standard way.

4. APPLYING IMPORTANCE SAMPLING

To estimate the CLR p at node ¢*, the straightfor-
ward approach is to simulate until n cells reach node
q*, and define j as the fraction of those lost due to a
full buffer. This estimator turns out to have relative
error (the standard deviation divided by the mean)
RE[ji] = O((nu)~1/?)), which is unbounded as u — 0,
so one must find a better estimator.

We will use IS, with the methodology developed
by Chang et al. (1994) for choosing the change of

measure. We now explain how this can be applied
to our model. The two quantities to estimate are the
numerator and denominator in (1). The denominator
E-[X] is easy to estimate just by simulating several
A-cycles without IS. The numerator is more difficult
because it involves rare events, and IS will be used
for it, as follows.

Let 0 and 1 denote the states off and on of a
source. Due to the geometric assumption, each source
evolves as a discrete-time Markov chain with state
space {0,1} and transition matrix R with elements
Tij given by Tor = 1//\10, Too = 1 — To1, T10 = l/lil,
r11 = 1 — r1p. Its arrival rate is p = K1 /(K1 + Ko)-

Let S* denote the set of sources feeding ¢*. To in-
crease the traffic at node ¢* (and get more cell losses),
we change the matrix R for all the sources in S*, so
they spend more time in the on state. At the begin-
ning of an A-cycle with IS, the transition matrix R
for the sources in S* is replaced by

= (foo 501) _ (Too/Ko 7‘0169/}\’0)

Tio T11 rio/K1 e’ /Ky )
where 8 > 0, and Ky and K, are (positive) normal-
izing constants ensuring that the lines sum up to 1.
We will explain later on how to choose 6. Note that
# > 0 increases the average input rate from the source
while § = 0 leaves it (and R) unchanged. This new
matrix R is in effect until buffer ¢* fills up or empties
again, whichever comes first. When ¢* fills up, the IS
is turned off (R is replaced by R) until the end of the
A-cycle. We call this an A-cycle with IS.

For a given initial state, let E denote the expecta-
tion over an d-cycle with IS. Let N,; be the number
of times a source in S* goes from state ¢ to state
J while using the new probabilities 7;;, during the
A-cycle, for i+ = 0,1 and 5 = 0,1, and let Np =
Noo + No1 + Nig + Ny, the total number of transi-

tions generated from R. The likelihood ratio associ-
ated with this change of measure is then

N No Nio N
700 To1 710 11

If V is a random variable computed during an A-
cycle, then :
E[V] = E[LV],

so computing LV over an A-cycle with IS yields an
unbiased estimator of E[V].

Generally, the variance of L may increase expo-
nentially fast with N, so (intuitively) one would like
to keep Nt small while still making cell losses fre-
quent enough. This is why the A-cycle methodology,
with short A-cycles, is to be preferred over using IS
with longer simulations.
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One simulates two “versions” of each A-cycle, one
with IS and the other without, both starting from
the same initial state. Thus, the 4-cycles come in
pairs. For the ith A-cycle pair, the simulation with IS
provides an estimation W; = L,Y; of the numerator,
where L; and Y; are the value of the likelihood ratio
and the number of cell losses for this cycle, while the
no-IS one provides an estimator X; of the denomina-
tor. The final state of the no-IS A-cycle, which obeys
approximately distribution 7, is taken as the initial
state for the next pair of A-cycles.

For ¢* = 1 or 2, one has an intree network, for
which all sources feed ¢*, so 6 can be chosen as pro-
posed by Chang et al. (1994). Let A(6) be the spectral
radius (largest eigenvalue) of the matrix

<Too ro1€° )
r0 1116
and f(0) be the corresponding eigenvector. Define

Po(f) = 67 'In(\(F)). Compute 6 and the corre-
sponding 7;; as follows:

Algorithm 1 (For {* =1 or 2.)
1. If ¢* =1, then
compute 07, a solution of moyo(0) = 1
else .
compute 61, solution of d(mglnA(8))/db = c;;
Let

B mowo_(a) ) if < 91;
Y1(0) = {01 —01(cy — moo(6)) otherwise;

Compute 63, a solution of m, v (6) = c2;
Let 67 = min(63,6,);
2. For each (i, j), define

- _ exp(UbT)f,(67)
Fij = Ty
A(67)£:(67)

For £* = 3 or 4, the network is no longer intree,
in the sense that many cells exit before reaching the
root ¢*. We nevertheless heuristically adapt the al-
gorithm of Chang et al. (1994) as follows. We change
Ti; to 7i; only for the souces in S*. When choosing
0, we neglect all the traffic not directed towards node
q*. To simplify, we also neglect the possibility that
the effective bandwidth exceeds the service rate at a
node other than ¢*. This is reasonable because in
our setup, S* typically contains only a small fraction
of the sources. This yields the following algorithm,
where s* is the cardinality of S*, and where A, f, and
1o are defined as before.

Algorithm 2 (For ¢* =3 or4.)
1. Compute 8*, a solution to s*1g(8) = c-;
2. Define )
= _ exp(G8)f;(0")ri;
N A(6*) f:(67)

5. NUMERICAL RESULTS

5.1. The Setup

In the examples that follow, the simulation was run
first using the straightforward approach without IS,
for b batches of k A-cycles each, then with IS, for
b batches of k pairs of A-cycles each. The tables
report the value of the CLR estimator fi, its vari-
ance estimate 62 = S%/(bX?), the relative half-width
A =257S,/(VbX ) = 2.57S2/(VbY) of a 99% con-
fidence interval on p (under the normality assump-
tion), the CPU time ¢ (in seconds) required to per-
form the simulation, and the estimated relative effi-
ciency, defined as i?/(t5?). These values are noisy
but give a rough indication of what happens. For
the cases where no cell loss was observed in all the A-
cycles simulated, we put 4 = 0 and the entries for the
variance and efficiency estimates are left blank. The
IS adds overhead: it takes more CPU time than no-
IS for the same total number of simulated cells—up
to 15 times more in our implementation. So, for the
IS estimator to win (be more efficient) it must have
approximately 15 times less variance. To compare
IS with no-IS, one must look at the efficiency (eff.)
columns. Beware of comparing the CPU times and
efficiencies across the tables, because the experiments
were run on different machines (SUN SparcStations
4, 5. and 20).
For all the examples b has been fixed to 200.

5.2. CLR Estimation at Level 1

Example 1 Take B; =512, mg =4, p=1/10,¢; =
1 and vary the average burst size ;. Let & = 3000
for IS and k£ = 50000 for no-IS. Table 1 gives the
results. For large average burst sizes, the CLR p is
high and easy to estimate, with or without IS. But for
small burst sizes (the other parameters remaining the
same), u is small and much more difficult to estimate.
Then, IS is much better than no-IS. With x; = 50
the no-IS estimator is no longer trustworthy, and for
k1 = 10 and 25 not even a single cell loss was observed
in the kb A-cycles of the no-IS sample.

We made several other experiments where we var-
ied the buffer size B, or the number of sources mo
(with mop fixed). As B increases, p decreases ex-
ponentially fast and the no-IS estimator quickly be-
comes useless, whereas IS works fine. As a function
of mg, p increases slowly, so IS produces larger gains
for small my.

5.3. CLR Estimation at Level 2
Example 2 Let B, = 256, B, = 1024, my = §,
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my=4,c1=2,c,=4,p=1/21, and vary the aver-
age burst size x,. The average input rate at the level
2 node is thus approximatively 1.5 cells per unit of
time, whereas the service rate is 4. Here, k = 250 for
IS and k = 7500 for no-IS. Table 2 gives the results,
which are similar to those of Example 1, but with
smaller CLR values and more spectacular improve-
ment for the IS over the no-IS. For any &, it appears
difficult to estimate p with significant precision with
no-IS.

Example 3 Same as for the previous example, ex-
cept that x; is now fixed at 50 and we vary the buffer
size By. We take k = 250 for IS and k = 7500 for no-
IS. The results are given in Table 3. As the cell-loss
rate is smaller than 1078 (the value around which no-
IS estimation passes from difficult to near-impossible)
for all buffer sizes, no cell losses was observed in any
of the no-IS simulations. The CPU time used by IS
increases with the buffer size while it remains con-
stant for no-IS. This is because, when the buffer size
is larger, it takes more time to fill it (and ultimately
observe a cell loss) under IS. The CPU time for the
no-IS is not affected by the buffer size simply because
the simulation does not try to cause an overflow, and
so does not work more when the buffer is larger.

5.4. CLR Estimation at Level 3

Example 4 Let B, = B, = 512, B3 = 256, ¢; = 1,
Cy =C3 = 2,m0 =2,m1 =3,m2 = 10,p= 1/21,and
we vary the average burst size k,. We take & = 500
and 9000 for IS and no-IS, respectively. We assign
6 sources to the node of interest at level 3. Table 4
gives the results. While no-IS has difficulty to observe
a cell loss, IS gives reasonable estimations.

Example 5 Same as for the previous example, ex-
cept that x; is fixed at 50 and we vary the buffer size
B;. We take k = 500 and 9000 (for IS and no-IS).
Results appears in Table 5. Again, the IS works fine
while the no-IS observes no cell loss except at the
lowest buffer size.

Example 6 Same as the two previous example, ex-
cept that , is fixed at 50 and the buffer size B; at
256. We take k = 500 and 9000 (for IS and no-IS)
and we vary the number of sources directed towards
the observed node. Table 6 gives the results. IS again
dominates as cell losses become sufficiently rare.

5.5. CLR Estimation at Level 4

Example 7 Let By = B, = B3 = By = 512, ¢; =
c4=1,cz=03=4,m0=5,m1:lO,m2=6,
p = 1/41 and we vary the average burst size x;. We

assign 6 sources to the node of interest at level 4. We
take k = 250 and 4000, for IS and no-IS, respectively.
The results are in Table 7. IS still gives far more
better performances than no-IS.

Example 8 Same as the previous example, except
that «; is fixed at 50 and we vary the buffer size B,.
We take £ = 250 and 4000, for IS and no-IS. The
results appears in Table 8. Again, IS is more effective
than no-IS.

5.6. Variants of the Algorithms

The algorithms of Chang et al. (1994), used here,
provide good changes of measures in an asymptotic
sense, but not the best possible values of 8. More-
over, their aim is to reduce the variance and they do
not take into account the differences in computational
costs. We made additional experiments where 8 was
varied around the value given by the algorithm, to see
whether the variance and efficiency would improve.
For all levels, the optimal 6 was generally slightly
smaller but very close to the one prescribed by the
algorithm.

When estimating the CLR at level 4 with IS, when
the target buffer overflows at level 4 and the IS is
turned off, there should be a large number of cells
already in the network at previous levels, which may
produce more cell losses than necessary. So, perhaps
IS could be turned off earlier; e.g., when the total
number of cells in buffer ¢* or at previous nodes but
on their way to ¢*, reaches some threshold. We exper-
imented with this idea and (for our model) obtained
no significant improvement over the basic method
which turns off the IS when the buffer ¢* overflows.

Another idea is to play with different definitions
of the A-cycles. For example, instead of starting a
new A-cycle whenever ¢* is empty, start it whenever
the number of cells in the buffer crosses 8 upward,
where f3 is a fixed integer. We tried this but did not
obtain much success in terms of efficiency improve-
ment. When increasing 3, the no-IS A-cycles tend to
become excessively long.

One can also impose a lower bound, say, to on
the length of the A-cycles, to avoid lots of extremely
short A-cycles, which tends to occur under both the
IS and no-IS setup. In our experiments, values of ¢,
between 50 and 100 (roughly) gave slight efficiency
improvements.

ACKNOWLEDGMENTS

This work has been supported by NSERC-Canada
grant # OGP0110050 and FCAR-Québec grant # 93-
ER-1654 to the first author, as well as a scholarship



314

L 'Ecuyer and Champoux

Table 1: CLR Estimation at Level 1 for Different Burst Sizes

no-IS IS
K1 I &2 A cpu eff. I &2 A cpu eff.
10 | 0 1270 1.10E-22 1.7E-49 0.95% 2492 29
2510 1302 7.27E-10 1.8E-23 1.5% 1425 21
50 | 4.42E-6 3.0E-12 101% 1314 2.0E-2 | 8.91E-6 4.8E-15 2.0% 934 18
100 | 8.71E-4 2.6E-9 15% 1323 2.4E-1 | 9.09E-4 1.3E-10 3.2% 661 10
150 | 4.38E-3 1.5E-8 72% 1329 9.3E-1 | 4.32E-3 3.8E-9 3.6% 583 8.5
Table 2: CLR Estimation at Level 2 for Different Burst Sizes
no-IS IS
K1 n &° A cpu eff. fa &? A cpu eff.
10 |0 2208 2.80E-41 8.2E-83 81% 2613 3.9E-3
2510 2190 4.62E-21 39E-43 35% 2453 2.2E-2
50 |1 0 2972 2.60E-11 45E-24 21% 2340 64E-2
100 | 1.54E-6 2.4E-12 256% 3161 3.7E-6 | 1.66E-7 3.3E-16 28% 2230 3.7E-2
150 | 7.34E-6 1.3E-11 123% 3269 3.7E-4 | 3.86E-6 2.2E-13 31% 2288 3.0E-2
Table 3: CLR Estimation at Level 2 for Different Buffer Sizes
no-IS 1S
By | o &6 A cpu eff. n &2 A cpu eff.
512 [ O 2184 1.91E-7 1.3E-16 15% 1273 2.3E-1
764 | 0 2183 2.36E-9 2.8E-20 18% 1496 1.3E-1
1024 | O 2184 2.60E-11 4.5E-24 21% 1719 8.7E-2
1280 | O 2186 3.43E-13 1.7E-27 30% 1929 3.7E-2
1536 | 0 2184 535E-15 2.5E-30 76% 2113 5.4E-3
Table 4: CLR Estimation at Level 3 for Different Burst Sizes
no-IS 1S
K1 i o2 A cpu eff. i &2 A cpu eff.
1010 1088 5.44E-20 8.6E-42 14% 1454 24E-1
2510 1050 1.29E-10 2.8E-23 11% 1213 4.09E-1
50 | 0 1125 6.04E-7 72E-16 11% 1042 4.8E-1
100 | 2.09E-5 2.1E-10 178% 1134 6.9E-3 | 4.06E-5 6.7E-12 16% 881 2.8E-1
150 | 1.09E-4 1.6E-9 94% 1136 1.5E-2 | 1.68E-4 9.1E-11  15% 813 3.8E-1
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Table 5: CLR Estimation at Level 3 for Different Buffer Sizes

no-IS IS
B; i &? A cpu eff. m &? A cpu eff.
128 | 2.37E-5 1.1E-10 112% 7036 2.2E-3 | 4.13E-5 5.3E-12 14% 5779 5.6E-2
256 | 0 7024 6.04E-7 7.2E-16 11% 7316  6.9E-2
512 | 0 7059 3.40E-10 29E-22 13% 10246 4.0E-2
768 | 0 7037 2.51E-13 1.7E-28 13% 12930 2.9E-2
1024 | O 7027 2.08E-16 1.4E-34 14% 15649 2.0E-2
Table 6: CLR Estimation at Level 3 for Different Numbers of Directed Sources
no-IS IS
sources i 52 A cpu eff. i 52 A cpu eff.
410 2263 1.93E-8 1.2E-18 15% 2899 1.1E-1
510 2357 1.43E-7 4.5E-17 12% 2578 1.8E-1
6|0 2447 6.04E-7 7.2E-16 11% 2413 2.1E-1
710 2551 2.09E-6 9.1E-15 12% 2357 2.0E-1
8 | 1.10E-5 4.9E-11 163% 2651 1.8E-4 | 4.89E-6 2.2E-14 78% 2300 4.7E-1
Table 7: CLR Estimation at Level 4 for Different Burst Sizes
no-IS IS
K1 n &* A cpu eff. i 52 A cpu eff.
1010 3562 2.13E-28 59E-58 29% 9978 7.7E-3
2510 3575 1.34E-12 1.5E-25 75% 5347 2.2E-3
50 |0 3584 1.37E-7 4.4E-16 39% 3496 1.2E-2
100 | 2.06E-4 2.1E-8 180% 3599 6.1E-5 | 6.81E-5 1.1E-10 39% 2505 1.7E-2
150 | 1.08E-4 89E-9 223% 3589 6.7E-3 | 4.63E-4 7.8E-9 49% 2194 1.3E-2
Table 8: CLR Estimation at Level 4 for Different Buffer Sizes
no-IS IS
B, I &2 A cpu eff. n &2 A cpu eff.
128 | 1.59E-3 7.5E-8 44% 3580 4.3E-3 | 1.08E-3 4.0E-9 15% 1881 1.5E-1
256 | 8.27E-6 6.8E-11 255% 3593 1.3E-2 | 5.54E-5 1.4E-10 55% 2440 8.8E-3
516 | O 3586 1.37E-7 44E-16 39% 3580 1.2E-2
768 | 0 3592 3.63E-10 2.7E-21 36% 4488 1.1E-2
1024 | O 3595 1.02E-12 1.5E-26 31% 5550 1.2E-2
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from Newbridge Networks Corporation to the second
author.
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