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ABSTRACT

Perturbation analysis (PA) is a technique for estimat
ing gradients of performance measures, particularly
applicable to the simulation of discrete-event systems.
Over the past two decades, various "versions" have
been developed. In this paper, we compare and con
trast some of these perturbation analysis techniques
by applying them to a simple example. This exam
ple also serves to highlight the issue of process rep
resentation that can play a very crucial role in the
application of perturbation analysis.

RPA, and APA, and illustrate their application on
the simple example. Obviously, full justice cannot be
given due to space limitations, and Fu and Hu (1996)
can be consulted for a more detailed exposition of
the individual techniques. In Section 4, three specific
cases of the examples are carried out to illustrate the
specific form of each of the estimators. Some conclu
sions based on the example and the specific cases are
provided in Section 5.

2 THE EXAMPLE

1 INTRODUCTION

We consider a single random variable X, defined on
an appropriate probability space, for which our goal
is to estimate

dE[.I}{]
dO

E [d.l}{+] == dE(X+] E [dX_] == dE(X_]
dO dO' dO dO'

Thus, we also allow X+ and X_ to be random vari
ables themselves with possible dependence on 0, but
we impose the following conditions (cf. (4) and (5)):

(1)
w.p.O
W.p. 1 - 0 .

where 0 is a scalar parameter of the distribution.
The example is the following:

This corresponds to the requirement that the compo
nents are sufficiently smooth so that IPA applies.

We consider two representations corresponding to
two different methods for generating .IX" from ran
dom numbers. Assume that each of ..\+ and ..\_ can
be expressed as functions of a single random vari
able U '"'J U(O,l), i.e., besides the possible implicit
dependence on 0 that we do not display, we write
..\+ == ..\+(U) and ..\_ == X_(U). The first represen
tation of (1) uses two independent random numbers,
whereas the second uses a single random number.

Sensitivity analysis and optimization of discrete-event
systems via simulation has become an increasingly
important area of research in the past two decades
(cf. Fu 1994). One line of this research is pertur
bation analysis (cf. Ho and Cao 1991, Glasserman
1991). Even in the field of perturbation analysis, dif
ferent techniques have been developed. For gradient
estimation, the "original" technique is infinitesimal
perturbation analysis (IPA) , which remains the eas
iest PA technique to apply in practice. However, its
ease of implementation is often offset by its relatively
limited domain of applicability, which has led to the
development of various other generalizations or alter
natives, among them the following: smoothed per
turbation analysis (SPA), rare perturbation analysis
(RPA) , discontinuous perturbation analysis (DPA),
and augmented perturbation analysis (APA) . The
purpose of this paper is to use a very simple example
to illustrate these techniques and the role of process
representation in their application. Much of this ma
terial is taken from Fu and Hu (1996).

The rest of the paper is organized as follows. We
present the simple example in Section 2, including
two different process representations. Section 3 will
summarize briefly the techniques of IPA, SPA, DPA,
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Representation 1: Representation 2:

(2)

Representation 2:

3 PA TECHNIQUES

if U1 ::; 0
if U1 > 0 . (3)

In general, these sample derivatives are biased, i.e.,
they do not satisfy Equation (5). We now establish
necessary and sufficient conditions for their unbiased
ness.

Rewriting the representations in terms of indicator
functions, we have

In this section, we apply in turn the various PA tech
niques to our example after a very brief discussion of
each. To keep things simple, we will limit the discus
sion of the techniques to a single random variable X,
as in the example. Recall that our goal is to estimate

dE[X]
diJ·

where 1{.} is the set indicator function. In the first
representation, we can uncouple to get

3.1 IPA

i.e., it becomes a question of an interchange of expec
tation and limit:

Thus, for the IPA estimator to be an unbiased gradi
ent estimator, we need

the latter following from our assumption on X+ and
X_. Thus, we have the following result:

dE[X]
dO

so that differentiation yields

Proposition 1 For Representation 1, a necessary
and sufficient condition for unbiasedness of IPA is
given by:

In addition, the unbiasedness of subsequent SPA
estimators imply the following corresponding result
for Representation 2:

(5)dE [..Y] == E [dX]
dO dO '

dX(O,w) = lim X(O + ~O,w) - X(O,w). (4)
dO ~B~O ~O

For discrete-event systems, 0 can be more general.
For example, it could represent a vector operating
parameters such as the re-order point and order quan
tity in an inventory control system.

We will denote a sample point by w with correspond
ing random variable value X(w). The IPA estimator
is simply the sample path derivative of the quantity
of interest, defined by

lim E [g~B] == E [ lim 9~B] ,
~B~O ~o~o

where
X(O + ~O) - X(O)

g~8 == ~O

Proposition 2 For Representation 2, a necessary
and sufficient condition for unbiasedness of IPA is
given by:

For our example, the IPA estimator is obtained by
simply taking the derivatives in Equations (2) and (3)
to obtain the following.
Representation 1:

Le., X is a.s. continuous across its breakpoint.

Note that X +(1) and X _ (1) correspond to setting
U1 == 0 for Representation 2.

The techniques SPA, RPA, DPA, and APA can be
applied even when the interchange equation (5) is not
satisfied. We now consider each of these in turn.
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Intuitively, IPA corresponds to the case where small
perturbations in the parameter cause small pertur
bations in the output random variable. In contrast,
RPA corresponds to the case where small perturba
tions in the parameter cause no change in the output
random variable much of the time, and the "rare"
times when a change does occur results in a relatively
large change in the output random variable. First
introduced by Bremaud and Vazquez-Abad (1992),
a maximal coupling interpretation was provided in
Bremaud (1993), which is presented here.

Letting fo represent the p.dJ. of JX" and defining

SPA uses conditional expectation to derive alterna
tive estimators for which a modified version of the in
terchange equation is satisfied. Introduced by Gong
and Ho (1987), this technique has been developed into
a very general methodology in the generalized semi
Markov process (GSMP) framework, e.g., Fu and Hu
(1992) and Dai and Ho (1995). The resulting estima
tor contains an IPA term (possibly 0) and a condi
tional contribution that is the product of a probabil
ity rate term and a conditional performance difference
term. We illustrate the estimator on the example.

Let Y = 1{U1 ~ B}. Then, Y is a Bernoulli ran
dom variable with parameter B, Le., P(Y = 1) = ()
and P(Y = 0) = 1 - O. We first consider the right
hand (RH) derivative, Le., D.fJ > o. If Y = 1, then
there is no possibility of a change to Y = 0 from the
perturbation 6.fJ, since

P(U1 > B+ 6.BIU1 ~ B) = 0, D.B > o.

However, if Y = 0, then we have

go(6.B,x)

gJ (6.B, x)

where 60 (6.B)

min(fo(x), fo+~o(x))
1 - 60(6.0)

(fo(x) - fo+~o(x))+

60 (6.8)

(fo+~o(x) - fo(x))+
60 (6.B)

~ f IfIl+AIi(x) - fo(x)ldx,

and the probability rate term is given by

lim P(U1 ~ B+ D.81U1 > 8) = _1_.
~o-+o+ D.O 1 - ()

Similarly, for the left-hand (LH) derivative, 6.(} < 0,
the probability rate term is given by I/O.

The conditional difference term is given by

which depends on the representation used.
Thus, for our example, we have the following SPA

derivative estimators:

Representation 1 (LH and RH, respectively):

dX 1d1i + (j (X+(U2) - X-(U2)) 1{U1 S; O}, (6)

~~ + 1 ~ 0 (X+(U2) - X_(U2)) 1{U1 > O}. (7)

Representation 2 (LH and RH, respectively):

dX 1d1i + (j (X+(l) - X_(l)) 1{U1 S; O}, (8)

~~ + 1 ~ 0 (X+(l) - X_(l)) 1{U1 > O}. (9)

the main result is the following. If

I • 60 (6.fJ) .
60 = hm ~fJ eXIsts,

~o-+o+ u

and the c.dJ. 's corresponding to densi
ties go(6.B, .),g~(6.fJ, .),g~(6.B, .), converge weakly to
c.dJ. 's Fo (.), G~ (.), G~ (.), respectively, as 6.fJ --+ 0+,
then

6~[V(2) - V(1)] (10)

is an unbiased estimator for dE[X]/dO, where V(l)

and V(2) are independent r.v.'s with respective c.dJ.'s
G~, G~. This is the two-sided RPA estimator. One
sided (left and right) RPA estimators are also avail
able, but will not be presented here. For our par
ticular example, we cannot write out a more explicit
estimator without specification of the distributions
involved in X_ and X+ in Equation (1). This will be
taken up in Section 4 for the three specific cases.

3.4 DPA

The main idea in DPA is to represent the jumps in the
sample performance function by using step functions
(Shi 1996). For example, if the random variable X
depends on fJ through N random numbers as follows:

k = 1, .... , M, 0 = pp < pl < ... < P i
k < ... < Pi

M = 1,
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DPA:

then presented for each of the two representations
(RPA is discussed first, because it is independent of
the representation). Note that even when the IPA
estimator is unbiased, the other estimators may be
different (though equal in expectation).

4.1 CASE 1

X == { U(O,O) w.p. 0
0.5 W.p. 1 - 0 .

Then, E[oL"'(] == 0.5(02 - 0 + 1), dE[X]/dO = 0 - 0.5.
Since .\+(U) == OU, .\_(U) == 0.5, applying Propo
sitions 1 and 2, IPA fails for both representations.
For this case, the RPA "estimator" turns out to be
the exact answer (0 - 0.5)' since Jo(~O) = ~(), and
g~(~O,·) and g~(6.0,·) converge to masses at () and
0.5, respectively. The other estimators follow.

Representation 1:

OU2 if U1 ::; ()

0.5 if U1 > 0 .x={
d}( == { U2 if U1 ::; 0
dO a if U1 > 0 .

The IPA estimator has expectation E[dX/d(}]
0.50 ¥ dE[}[]/dO, and hence is biased.

SPA (LH):

dX 1
dO + (j (OU2 - 0.5) I{U1 ::; O}.

SPA (RH):

d}[ 1
dO + 1 _ 0 (OU2 - 0.5) I{Ul > O}.

For our example, we obtain

Representation 1:

3.5 APA

doL"'(
dO + (X+(U2 ) - ..\_(U2 )). (11)

The APA method is an extension of IPA that at
tempts to partition the sample space into a finite
number of sets with the same event sequence (Gaiv
oronski et al. 1992). Here, for the case of a sin
gle random variable, we will simplify the exposition
considerably. Assume that the sample space can be
partitioned into a finite number of sets {E1 , ... , E Af }

(events in the probability space) such that for each
E j , there is a corresponding (Pjrnin, Pjrnax] C (0,1] on
which X is uniformly differentiable with respect to O.
Then, the APA estimator is given by

dX M x(p~ax).!Lp~ax _ x(p~in)-SLp~in

dO+L J dOF~ax _ ~minJ dO J l{Ej }.

j=1 J J

N M-l k )L L (L~ - L~+l) dFi (8 .
i==1 k==1 dO

For our example, we obtain the following estimators.

Representation 1:

where the Pik are cumulative probabilities, then the
DPA estimator is given by

Representation 2:

dX
dO + (OU2 - 0.5) .

Representation 2: APA:

dX BU2 0.5
dO + 01{Ul ::; O} - 1 _ 01{U1 > O}.

1
"0 (0 - 0.5) 1{U1 :s O}.

dX
dO =0.

IPA is clearly biased, since it yields identically zero.

SPA (LH):

4 SPECIFIC CASES

We now consider three specific cases of (1). In the
first case, IPA works for neither representation. In
the second case, IPA works for Representation 2, but
not for 1. In the third case, IPA works for Represen
tation 1 (but not for 2), in spite of the fact that the
function is a.s. discontinuous. Note that this cannot
happen for Representation 2 (across the breakpoint).
The corresponding SPA, RPA, DPA, and APA esti
mators obtained via Equations (6) through (14) are

Representation 2:

x={ U1 if U1 ::; 0
0.5 if U1 > 0 .
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SPA (RH): Representation 2:

1
1 _ fJ (fJ - 0.5) 1{U1 > O}. x={ U1 if U1 ~ 0

o if U1 > 0 .

DPA:

APA:

8 - 0.5. dX == {O if U1 ~ 0
df) 1 if U1 > 0 .

Here the IPA estimator is unbiased, since E[d..l;/d8] ==
1 - 8. Furthermore, we have

From this case, we note the following:

• the DPA estimator can be obtained from the SPA
estimators via appropriate unconditioning;

• the DPA estimator for Representation 2 coin
cides with the RPA estimator; however, this is
not true for Representation 1;

• the RPA estimator is independent of the repre
sentation.

so both SPA estimators and the DPA estimator re
duce to the IPA estimator, which is unbiased. The
additional term in the APA estimator, however, is
nonzero, but it clearly must have zero expectation.
APA:

4.3 CASE 3

DPA:
dX
dB + B(U2 - 1).

dX
dB + (U2 - 1) l{Ul ~ O}.

SPA (RH):

dX B
dB + 1 _ 0 (U2 - 1) 1{U1 > B}.

8U2 if U1 ~ 0
0.58 if U1 > 8 .

U(O,O) W.p. 0
0.50 W.p. 1 - 8 .

x={

x={

dX
dB + (U2 - 0.5)1{U1 ~ B}.

d..l; == { U2 if U1 ~ f)
df) 0.5 if U1 > 8 .

We note that IPA works for this case, E [d..X"j dO] =
0.5, even though it is not a.s. continuous. In fact, it
is continuous when U2 = 0.5, which occurs w.p. O.
Even though IPA works, the other estimators still
have additional terms that clearly must have expec
tation zero.

Then, E[..l;] == 0.5f), dE[..l;]/dO = 0.5. Since
..X"+(U) = f)U, ..l;_(U) = 0.58, applying Propositions
1 and 2, IPA works for Representation 1, but fails for
2. Again, for this example, RPA does not apply. The
other estimators follow.

Representation 1:

SPA (LH):

SPA (RH):

d..l; 0 {}dB + 1- B(U2 - 0.5)1 U1 > 8 .

OU2 if U1 ~ fJ
B if U1 > 0 .x={

4.2 CASE 2

X == { U(O, fJ) w.p. f)
o w.p. 1 - B .

Then, E[X] == B - 0.5fJ2, dE[X]/d8 == 1 - O. Since
X+ (U) == OU, X_ (U) == fJ, applying Propositions 1
and 2, IPA works for Representation 2, but fails for
1. For this example, RPA does not apply, as the limit
defining <5~ is infinity. The other estimators follow.

Representation 1:

dX {U2 if U1 ~ 0
dB == 1 if U1 > B .

The IPA estimator has expectation E[d..l;/dB] == 1 
0.5B -I dE[X]/df), and hence is biased.

SPA (LH):

APA:

dX B
dB + U2 1{U1 ::; O} - 1 _ 01{U1 > O}.

DPA:
dX
dB + (}(U2 - 0.5).
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APA:

dX 0.5B
dB + U2 1{U1 ::; B} - 1 _ B1{U1 > 8}.

Representation 2:

x={ U1 if U1 ::; 8
0.58 if U1 > B
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dX {O if U1 ::; B
dB = 0.5 if U1 > 8 .

The IPA estimator has expectation E[dXjdB]
0.5(1 - B) =I dE[X]jdB, and hence is biased.

SPA (LH):
dXdB + 0.51{U1 ::; B}.

SPA (RH):

dX 0.5
dB + 1 _ B1{U1 > 8}.

DPA:
dX
dB +0.5B.

APA:

dX 0.5B
dB + 1{U1 ::; 8} - 1- B1{U1 > B}.

5 CONCLUSIONS

For this simple example, we have developed neces
sary and sufficient conditions for unbiasedness of the
IPA estimator. The conditions clearly depend on
the representation, as Propositions 1 and 2 indicate.
When IPA fails, the other techniques (SPA, DPA,
RPA, APA) can almost always be applied. All but
RPA can be considered extensions or generalizations
of IPA, and this is evident in the example where each
contains the IPA estimator as a component of the
total estimator. Furthermore, RPA is independent
of the process representation. In fact, it has been
pointed out by a number of researchers that RPA
is more closely akin to the so-called weak derivative
estimators (Pflug 1992). On the other hand, in cer
tain problems, the RP..L\. estimator coincides with the
DPA estimator (Shi 1996), but the latter depends
on the representation. The example also illuminates
the fact that DPA and SPA can be viewed as con
ditional forms of one another. The simple example
also showed that aside from IPA, the APA estimator
is the only one that can always be estimated directly
from the original sample. In fact, the APA estimator
often corresponds to the likelihood ratio jscore func
tion method estimator when the IPA contribution is
zero.
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