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ABSTRACT

We consider the problem of determining which of k
simulated systems is most likely to be the best per­
former based on some objective performance mea­
sure. The standard experiment is to generate v in­
dependent vector observations (replications) across
the k systems. A classical multinomial selection pro­
cedure, BEM (Bechhofer, Elmaghraby, and Morse),
prescribes a minimum number of replications so that
the probability of correctly selecting the true best
system meets or exceeds a prespecified probability.
Assuming that larger is better, BEM selects as best
the system having the largest value of the perfor­
mance measure in more replications than any other.
We propose using these same v replications across k
systems to form v k pseudoreplications (no longer in­
dependent) that contain one observation from each
system, and again select as best the system having
the largest value of the performance measure in more
pseudoreplications than any other. We expect that
this new procedure, AVe (all vector comparisons),
dominates BEM in the sense that AVC will never
require more independent replications than BEM to
meet a prespecified probability of correct selection.
We present analytical and simulation results to show
how AVC fares versus BEM for different underly­
ing distribution families, different numbers of pop­
ulations and various values of v. We also present
results for the closely related problem of estimating
the probability that a specific system is the best.

1 INTRODUCTION AND MOTIVATION

Motivating Example: As tactical war planning an­
alysts, we are directed to provide the Joint Task Force
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Commander with the best plan to cripple the en­
emy's command and control. "Best" means achieving
the highest level of cumulative damage expectancy
(CDE) against a selected set of targets given current
intelligence estimates of enemy defense capabilities
and available friendly forces. Our team prepares four
independent attack plans and we simulate v replica­
tions across all four plans. For each replication we
compare the CDE between each of the four plans.
Since the chosen plan can only be executed a single
time, we select as the best plan the one that has the
largest CDE in most of the replications.

We consider the general problem of selecting the
best of k ~ 2 independent populations, 1r1, 1r2, ... , 7rk,

where in our context "populations" is taken to
mean simulated systems. This is known as the
multinomial selection problem (MSP). Let Xi =
(Xli, X 2i ,· .. , X ki ) represent a vector of independent
observations of some common performance measure
across all populations on the i th replication. For
each i, the best population is the population with the
largest Xji. The goal is to find the population that is
most likely to be the best performer among the pop­
ulations, as opposed to identifying the best average
performer over the long run. Applications include se­
lecting the best of a set of tactical or strategic military
actions, as presented above. In the areas of marketing
research or opinion surveys, we might determine the
most popular brand, flavor, etc., or the n10st favored
candidate or position on a political issue. An exam­
ple in the area of structural engineering is finding the
design that performs best in a one-time catastrophic
event, such as an earthquake. The goal in any MSP
is to achieve a prespecified probability of correctly se­
lecting the best population with a minimum amount
of data.
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Let Yji = 1 if Xji > Xli, for i = 1, 2, ... , k, but
i =I- j; and let Yji = 0 otherwise. In other words,
Yji = 1 if Xji is the largest observation in Xi· In
case of a tie for the largest value, we randomly select
one of the tied populations as the best. Suppose that
there are v independent replications across all popula­
tions, and let Yj = E~=l Yji represent the number of
times population j wins out of these v replications.
So E '=1 Yj = v and the k-variate discrete random
varia';le Y = (Yi, Y2 , ... , Yk ) follows a multinomial
distribution with Pj = Pr{trjwins},j = 1,2, ... ,k,

where 0 < Pj < 1,j = 1,2, ... ,k, and E7=I Pj = 1.
The probability mass function for Y with parameter
v and success probabilities p == (PI, P2, ... ,Pk) is

The goal of MSP is to find the population 1ri associ­
ated with the largest Pi.

The paper is organized as follows: We first provide
a brief review of MSP and the classical approach to
solving it. Then we describe our new procedure that
uses the same data and increases the probabilitly of
correctly selecting the best population. Some analyt­
ical results are presented next, along with empirical
results for a number of specific distributions for the
X ji - Finally, we describe the closely related problem
of estimating Pj, the probability that population j
will be the best.

2 BACKGROUND

Bechhofer, Elmaghraby and Morse (1959) describe a
single-stage procedure for selecting the multinomial
event (population) which has the largest success prob­
ability. BEM requires the specification of P* (where
11k < P* < 1), a minimum probability of correctly
identifying the population with the largest success
probability (Le., the best population), and 0* (where
1 < 0* < (0), the ratio of the largest success proba­
bility to the second largest success probability. The
procedure consists of the following steps:

Procedure BEM

1. For given k and 0*, find the minimum value of v
that guarantees that the probability of selecting
the best population is at least P*.

2. Generate v independent replications for each
population.

3. Compute }~. == E~=l }'ji, for j = 1,2, ... ,k.

4. Let Y[l] ~ Y[2] ~ ... ~ Y[k] be the ranked sample
counts from step 3. Select the population asso­
ciated with the largest count, Y[k], as the best
population. In case of a tie for the largest count,
randomly select one of the tied populations as
the best.

To determine the appropriate v in step 1, let P[l] ::;

P[2] ~ ... ~ P[k] denote the ranked success probabil­
ities for the k populations. Since only values of the
ratio 0 == p[k)/p[k-l) greater than or equal to 0* are of
interest, we are indifferent between the best and the
next-best population for values of 0 < 0*. A proce­
dure of this type is referred to as an indifference-zone
approach. Select v as the minimum number of in­
dependent vector observations required to achieve a
probability of correct selection (PCS) greater than or
equal to p. whenever 0 ~ 0* .

If we obtain a PCS ~ P* with our selected v un­
der the least favorable configuration (LFC) of p =
(P[l] ,P[2] , ... ,P[k]), a PCS of at least P* can be guar­
anteed for any configuration of p with 0 2:: 0*. Ke­
ston and Morse (1959) prove that the LFC for BEM
is given by:

1
P[l] == P[2] = ... = P[k-1] == (0* + k - 1)

0*
P[k] == (0* + k - 1)

However, the PCS can be calculated for any con­
figuration of p with P[k] > P[k-1). Let 11'"[j] be the
population associated with P[j) and let Y[j] represent
the number of wins for 11'"[j]. So the subscripts for
the populations and the associated number of wins
are based on the ranking of the Pj s. We refer to the
PCS using BEM for a fixed k and v as PCsbem . For
any fixed k and v, PCSbemcan be expressed as

1 , k

Pcsbem ( ) =~ _ v. II ~(j)
p ~ t Ok ., p[J] ,

j=l Yfj] - j==l

where the summation is over all vectors Y =
(Y(I]" .. 'Y(k]) such that Y(k] ~ Yu](j == 1,2, ... ,k ­
1), and t is the number of populations tied for the
most wins.

3 NEWMETHOD

We propose a method to provide a PCS greater
than or equal to Pcsbem using the same replications
Xi, i = 1,2, ... ,v. In other words, an improvement
in PCS for "free." We use the BEM parameters k, P*,
and 0* , and we execute the first step of BEM to find a
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value of v. Then a total of v k pseudoreplications are
formed by associating each Xji (j = 1,2, ... , k; i =
1,2, ... , v), with all possible combinations of the re­
maining Xlh (i = 1,2, ... , k; i =I j; h = 1,2, ... ,v).
Each such pseudoreplication contains one observation
from each population. Note that the v k pseudorepli­
cations include the v independent replications from
which the pseudoreplications are formed.

Define

v v v k

Zj = L L ... L II 4>(Xjaj,Xlat) (1)
al=l a2=1 ak=l l=l;l#j

for j = 1,2, .. . ,k, where ¢>(Xji,Xli ) is an indicator
function that takes the value 1 only if Xji is larger
than Xli. Thus, Zj represents the number of times
out of v k pseudoreplications that population 1rj wins.
This new procedure consists of the following steps:

Procedure Ave

4 ANALYTICAL RESULTS

Initially, we restrict our attention to continuous dis­
tributions for the Xji s which eliminates the possi­
bility of ties among observations. We can calculate
PCSavc by conditioning on the joint density of all
the order statistics for the v independent replications
from 1r[k]. Let 1r[k] follow some distribution and let
X represent an observation from 1r[k]' Let all the re­
maining populations be identically distributed and let
o represent an observation from any of these popu­
lations. This set up gives us the LFC for BEM.

Consider permutations of the ranks of the observa­
tions from all populations. For any such permutation
we can determine the value of Z[k] and calculate the
probability of obtaining that arrangement of ranks.
We refer to such an arrangement as a rank order.

As an example, suppose k = 3, v == 2. Then

1. Given values for k, P*, and f)*, use step 1 of
procedure BEM to determine a value for v.

We conjecture that the PCS with AVC, referred
to as PCSavc , is greater than or equal to PCSbern .

PCSavc can be expressed

where the summation is over all vectors Z =
(Z[l]"'" Z[k]) such that Z[k] ~ Zu], j = 1,2, ... , k­
1, and t is the number of populations tied for the most
wins. Since Z does not follow a multinomial distribu­
tion, we must go back to the distributions of the orig­
inal observations, Xji, j = 1,2, .. . ,k; i = 1,2, .. . ,v
to calculate PCSavc . Analytical and simulation re­
sults using a number of different population distribu­
tions show that PCSavc depends on the underlying
distributions of the Xji S.

2. Generate v independent replications for each
population and construct the additional vk - v
pseudoreplications possible with one value from
each of the populations.

3. Compute Zj using equation (1).

4. Let Z[l] ~ Z[2] ~ •.• ~ Z[k] be the ranked sample
counts from step 3. Select the population asso­
ciated with the largest count, Z[k]' as the best
population. In case of a tie for the largest count,
randomly select one of the tied populations as
the best.

Pr{0(1) < 0(2) < 0(3)

< 0(4) < X(l) < X(2)} (2)

4 Pr{O(l) < 0(2) < 0(3)

< X(l) < 0(4) < .i~(2)} (3)

Pr{Z[3] = 6}

Pr{Z[3] ==8}

Probability statement (2) uniquely covers a1l4! per­
mutations of the O's that are less than both X's.
However, in probability statement (3), since all the
O's are not adjacent, we need to consider how many
of the 4! permutations of the O's result in a unique
combination of adjacent O's. This is why the coeffi­
cient '4' appears on the right-hand side of equation
(3). Similar arguments can be used to derive expres­
sions for possible values of Z[k] for integers k, v 2: 2.
For this example, there is only a single rank order
that results in each value of Z[k]' As k or v get even
moderately large, there will be multiple rank orders
that result in the same value for Z[k] and the calcula­
tion of the probability of each value of Z[k] becomes
extremely tedious.

If we pick a particular distribution family for X
and 0, then we can obtain experimental results with
simulation as well as derive formulas to compare
PCSavc with pcsbem . First, consider X,....., exp(A)
and 0,....., exp(J.L) and let A < j.L, where A and J.L
are exponential rates. For k = 2, v == 2, we have
P[2] = Pr{X > O} = J.LI(A + J.L) and P[l] == Pr{X <
O} == AI(A + j.L). To calculate pesbem, we need to
consider vectors Y = (Y[l] , Y[2]) such that Y[2] ~ Y[l)'

1L t Pr{Z[l] = Z[l]' . · · ,

Z[k] = Z[k]}'

PCSavc(p)
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With v = 2, the only possible Y's with Y(2] 2: 1[1] are
(0,2) and (1,1). This gives us

Similarly, to calculate PCSa.vc, we need to con­
sider vectors Z = (Z[I]' Z[2]) such that Z[2] 2: Z[I]·

With v k = 4, the only Z's with Z[2] 2 Z[I] are:
(0,4), (1,3), (2,2). So

PCSavc = Pr{Z[2] = 4} + Pr{Z[2] = 3}
1+2 Pr{Z[2] = 2}. (5)

pcsbem 1
Pr{Y[2] = 2} + 2Pr{Y(2] = I} (4)

2 1
P[2] + '2 2 P[1]P[2]

J-l
A+J-l

The (J-l - ,\) > 0 term in equation (6) shows that
when X is the best population, AVC always shows an
improvement in PCS over BEM. Similar analytical
results have been obtained for exponential popula­
tions with k = 2, v == 3 and k = 3, v = 2. Addi­
tionally, results for continuous uniform populations
(k = 2, v = 2,3; k = 3, v = 2) show an increase in
PCS with AVC, but the increase is different than it
is for the exponential populations.

As an illustration of how AVC compares to BEM
for discrete distributions, let X '" Bern(px) and 0 N

Bern(po) with Px > Po· For k = 2, v = 2, we have
P[2] = Pr{X > O} = 1/2(px + 1 - Po) and P(l] =
Pr{X < O} = 1/2(po + 1 - Px). From equation (4)
we obtain

CSbem 1 (pP = 2" x + 1 - Po)

Given expressions for both pcsbem and PCSavc , we
can find the improvement in PCS with AVC from

When X '" exp(A), the joint distribution of
(X[I] , X[2]) is !12(a, b) == 2A2 e--\(a+b). The probabili­
ties for the values of Z[2] in Equation (5) and PCSavc

can then be found as follows:

Pr{Z[2] = 4} = 100l b

(l - e- lla )2 x

2A2 e--\(a+b)dadb

J..l2

Pr{Z[2] = 4} =

Pr{Z(2] = 3}

Pr{Z[2] = 2}

pcsavc can be calculated as we did for our exponen­
tial example by finding the probabilities for the fol­
lowing values of Z(2] and using Equation (5).

1
~PCS = 4(Px - Po)(l + 2pxPo - Px - Po) > 0 (7)

9 2 52 1 22
16Px - gPxPO + gPxPo

3 3 3 2
+ gPX - "4PxPo + gPXPo

1 1 2 1
-gPO + 16Po + 16

3 2 3 2 1 22
- 4Px + "2PxPo - '2PxPo

1 1 2 1
+'2Px - '2PxPo - '2Po

1 2 1
+4Po + 4

1 2 3 2 3 22
- 8Px - 4PxPo + 4PxPo

1 3 3 2
- 4'Px + '2PxPo - '4PxPo

1 1 2 3
-4'Po - "8Po +"8
1 2 2 1
4(Po - Px) + '2PxPo(Px - Po)

3
+4(Px - Po)

Then calculating the difference in PCS

We again see a term, (Px - Po) > 0 in Equation (7),
which shows an improvement in PCS with AVe when
X is the better population. Figure 1 illustrates the
difference in the improvement with AVe for expo­
nential and Bernoulli populations. Notice that the

(2A + J.l)(A + 2J.l)(A + J.l)2

J.l(A2+ 6AJ.l + 2J.l2)

(2A + J-l)(A + J-l)

2100 l b

(1 - e-Ila ) (ella - e-Ilb ) x

2A2 e--\(a+b) da db

(2)' + f-L)(>' + 2f-L)(>' + f-L) > 0 (6)

pcsavc _ pcsbem

AJ.l(J.l - A)

(2A + J-l)(A + J-l)2

100 l b

(e- Ila
- e-llb

)2 x

2>-.?e--\(a+b)dadb +

2100 l b

(1 - e-Ila )e-Ilb x

2A2 e--\(a+b) da db

2AJ-l(4AJ.l + J.l2 + A2
)

~pcs

pcsavc =

Pr{Z[2] = 3}

Pr{Z[2] = 2}
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5 E1vIPmJCAL RESULTS

maximum improvement with AVC occurs at a 0 value
between 2 and 3.

Figure 1: Exponential and Bernoulli Populations:
k = 2, v = 2, Px = ~

We have determined that the increase in PCS with
AVC can be attributed to a subset of the total possi­
ble rank orders. Most rank orders result in the same
conclusion with either BEM or AVC. For illustration
consider k = 2. For any rank order with Z[2] > v2/2,
AVC always makes the correct selection, however; for
values of Z[2] close to v2/2, BEM can make an incor­
rect selection. We refer to such rank orders as a gain.
Similarly, for rank orders with Z[2] < v2/2, AVC al­
ways makes an incorrect selection; however, for such
values of Z[2] close to v2/2, BEM can make a correct
selection. We refer to such a rank order as a loss.

Figure 2 clearly illustrates the improvement in
PCSavc over PCSbem for 2 to 5 exponential popula­
tions. Likewise, Figure 3 shows similiar results for 2
and 3 Bernoulli populations. Figure 4 demonstrates
the dependence of PCSavc on the underlying popula­
tion distributions.

Due to the difficulty in calculating analytical results
for even small k and v, analytical results were only
presented for a single k and v over a range of values
for O. The simulation results presented in this section,
can easily show the relationship between PCSbem and
PCSavc over a range of vectors and number of pop­
ulations for a fixed (). Mirroring the analytical re­
sults already presented, Figures 2 - 4 illustrate the
improvement in PCS with AVC for up to v = 50 vec­
tors for exponential and Bernoulli populations. All
results are for 100,000 replications using a separate
random number stream for each population and com­
mon random numbers for each set of distributions.
The standard errors for PCSbem and PCSavc are ap­
proximately 0.0015. All runs were done using the
LFC for BEM with 0 = 1.2. This was accomplished
by fixing the parameter for one distribution and vary­
ing the other with increasing k to maintain a constant
(). For the exponential populations A = 1 and for the
Bernoulli populations Px = 1/2.
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Figure 2: Exponential Populations, 0 = 1.2
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Given a particular rank order, the probability of
a gain (loss) is simply the fraction of the time AVC
is correct and BEM is incorrect (BEM is correct and
AVC is incorrect). The contribution to the overall
PCS is then the probability of obtaining a particu­
lar rank order times the probability of the gain or
loss with that rank order. Summing this contribu­
tion over all possible rank orders with a gain or loss
provides an alternative way to quantify the difference
in PCS between BEM and AVC. Calculations using
this approach with exponential and continous uni­
form populations (k = 2, v = 2,3; k = 3, v = 2)
match results for finding the gain in PCS by taking
PCSavc - pcsbem

. Our conjecture is that we can sys­
tematically identify all rank orders with a gain or a
loss and then group these gains and losses in some
fashion to show the sum of the probabilties of the
gains exceeds the sum of the probabilties of the losses.
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The natural point estimator associated with the
AVC method is

z·p. - .2.) - vk

the fraction of wins out of vk psuedoreplications
achieved by population j, where the pseudoreplica­
tions are obtained by taking all combinations of k
observations with one from each population. Clearly,
E[pj] = Pj. Unfortunately, the variance of Pj is quite
complex. However, the following analysis shows that
we should anticipate a variance reduction relative to
Var[pj].

To simplify the development from here on, suppose
that we are trying to estimate Pl. Let
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Figure 3: Bernoulli Populations, () := 1.2 k

h(Xli ,X2i ,·.· ,Xki ) = II ¢>(Xli,Xti)
l=2
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an indicator function that will take the value 1 only if
Xli is largest among (Xli, X 2i , . .. , X ki ). Then equa­
tion (1) can be rewritten as

v v v

Zl:= L L ... L h(Xlal,X2a2'·· .,Xka,.J.
at =1 a2=1 ak=l

When written in this way we can verify that PI =
ZI/vk is a k-sample U -statistic with kernel h of order
(1,1, ... ,1) (Randles and Wolfe 1979, pp. 104-109).
We can show that

Figure 4: Exponential and Bernoulli Populations:
k := 2 ,() = 1.2

These results clearly show an improvement in PCS
with AVC for all values of k and v considered, and
also clearly illustrate the dependence of PCSavc on
the underlying population distributions.

6 POINT ESTIMATION

Although the focus of this paper is selecting the best
population, a closely related problem is estimation of
Pj = Pr{1rj wins}. If v vector observations are taken,
then the natural point estimator associated with the
BEM method is

- ljPj:= -
v

the fraction of wins out of v replications achieved by
population j. It is well known that E[pj] := Pj and
Var[Pj] = pj(l - Pj)/v.

where Fj is the empirical cdf of the Xji. This shows
that Var[pl] ~ Var[pI]. But how much variance re­
duction should we expect?

Since PI is aU-statistic, its asymptotic distribution
(as v goes to infinity) is known. Specifically,

where aivc depends on the distribution of the Xii,
but is much less complicated than the finite-sample
variance.

To compare PI to fit, we note that

where a~em = kPI (1 - PI). Therefore, a ratio of
aivc/a~em < 1 implies that PI is asymptotically su­
perior to Pl. Table 1 shows one such calculation for
exponential populations with Al = 1.0, A2 = ... =
Ak := 0.99 (we have changed the problem slightly in
that a smaller performance measure is considered bet­
ter, allowing us to exploit the fact that the minimum
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of exponentially distributed random variables is also
exponentially distributed).

The table shows a substantial variance reduction
for 151, increasing to a limit of 50% as the number
of populations to compare gets large (the limit of
1/2 holds for exponential distributions with any pa­
rameters). Thus, when there are more populations,
making the comparison problem harder, the payoff is
largest.

Table 1: Ratio of the Asymptotic Variances of Esti­
mators for PI

k 2 / 2(lave (lb m

2 0.667
3 0.600
4 0.572
5 0.556

10 0.527
20 0.513

100 0.503
00 0.500

7 CONCLUDING REMARKS

When trying to pick the best system out of k systems,
there are many instances when this selection should
be based on one-time performance rather than long­
run average performance. Multinomial selection pro­
cedures provide a framework for defining such a prob­
lem, and Procedure BEM is the classical approach for
solving it. Procedure AVC is an alternative approach
designed to obtain a higher PCS by perlorming all
possible comparisons across all systems for a given
set of system performance data. Construction of pro­
cedure AVC closely follows that of BEM allowing re­
searchers to easily move from a standard approach to
our new approach.

Given fixed values of k, P*, and (J*, we conjecture
that PCSave ~ Pcsbem

. An interesting question is
how many fewer replications are needed for an AVC­
like procedure to perform just as well as BEM. Ta­
ble 2 presents some preliminary comparisons of the
minimum number of independent replications needed
to achieve a given P* for AVC and BEM. Values for
BEM are taken from Bechhofer, Santner, and Golds­
man (1995). The AVC values are from simulations
(10,000 replications) using exponential populations
under the LFC for BEM. As P* increases and the
difference between the best population and the other

populations decreases, we see a more dramatic reduc­
tion in the number of vector observations needed with
Ave to achieve the same p •.

Table 2: Minimum v with AVe and BEM

p. = .90 P* = .95
k (J* avc bern avc bern
2 2.0 12 15 19 23

1.2 116 199 128 327
3 2.0 21 29 33 42
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