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ABSTRACT

Selection of the best system among k different sys
tems is investigated. This selection is based upon the
results of finite-horizon simulations. Since the distri
bution of the output of a transient simulation is typ
ically unknown, it follows that this problem is that
of selection of the best population (best according to
some measure) among k different populations, where
observations within each population are independent,
and identically distributed according to some general
(unknown) distribution. In this work in progress, it is
assumed that the population variances are known. A
natural single-stage sampling procedure is presented.
Under Bechhofer's indifference zone approach, this
procedure is asymptotically valid.

1 INTRODUCTION

Simulation is often used in order to select the best
system among a set of k, say, different systems. For
example, in the design of an (s, B)-inventory system
one may want to try k different settings for the pa
rameters (8, B), the objective being to find the sys
tem with the smallest "mean inventory level at end of
day." The decision of selecting the best of these sys
tems might be based upon the results of finite-horizon
simulations.

In statistical terminology the setting is the follow
ing. There are k distinct populations, and a sample
of independent and identically distributed variables
Xi,l, Xi

1
2, ... can be collected from each population

(i =1, ... ,k). (When simulating the ith system, ob
servation XiIi is the output of the jth replicate.) Let
Fi be the cumulative distribution function (cdf) of
X i11 , whose exact form is unknown, and

J.l(Fi) == EFiXill

its mean. (The expectation is indexed to stress that
it is with respect to Fi') The goal is to find an ef
ficient procedure so that the system with the largest
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mean is selected with probability at least p., which
is a prespecified parameter (e.g., p. = 0.9). Under
the indifference-zone approach) one will want to se
lect the best population with a high likelihood when
the second largest mean is at least 8 units away from
the largest. The procedure's tolerance parameter 8 is
prespecified.

The parametric Gaussian procedures (e.g., the
Dudewicz-Dalal and Rinott procedures) seem to be
used in practice, even when the distributions of the
samples depart from normality. The small robustness
study of Sullivan and Wilson (1989) shows clearly
that in populations with even moderate skewness,
there can be substantial discrepancy between nomi
mal and actual probabilities of correct selection that
are obtained with classical two-stage Dudewicz-Dalal
type procedures. Selection of the best system in the
nonparametric setting has both practical and theo
retical importance.

It will be assumed here that population variances
are known. In practice, it is unlikely that cdf's are
not known, yet variances are. However, the problem
is difficult. The proofs we have used relied heavily on
Berry-Esseen bounds and local limit theorems. We
believe that some of these techniques will also be
fruitful for tackling the general unknown-variances
case. We also believe that solving the general i.i.d.
nonparametric case is a step towards solving the prob
lem of selection of the best system in the (stationary)
dependent case (which arises in steady-state simula
tion).

The rest of the paper is organized as follows. Sec
tion 2 contains a brief literature review. Some prelim
inary notations are given in Section 3. The procedure
is presented in Section 4 along with the paper's main
result, whose proof is sketched in Section 5. A two
stage sampling procedure for the case of unknown
variances is presented in Section 6. Section 7 is the
conclusion.
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4 THE PROCEDURE

2. For i =1, ... ,k, compute

1. Choose p. (11k < p. < 1) and 6 > O. Com
pute h.

... = p(F, [k - 1])
p(F, [k]) - 8},

8(6) = {F E Ak
: p(F, [1])

where ~(.) is the standard-normal cdf. The solution
to the equation exists and is unique from classical ar
guments. Bechhofer, Santner, and Goldsman (1995,
pp. 61-63 and pp. 293-294) contains a table of values,
and a computer program used to determine h when
this parameter cannot be deduced from the table.

apart from one another. When F E 8(6), the proce
dure should select the best system, with probability
at least p.. The least favorable configuration is the
set

which is assumed to be nonempty. The procedure
will have most difficulty in selecting the best system
when F E 8(6).

Once the systems are chosen, the joint experiment
depends upon F, which is simply the product of the
k marginal cdf's F I , ... ,Fk. The probability mea
sure associated with this particular experiment will
be denoted by Pi" It is assumed that the variance

(j2(i, F) = EFi[(X.J1 - p(F.))2] is known for each pop
ulation (i = 1, ... , k).

Another parameter used in the selection procedure
is the solution h to the equation

Since variances are assumed to be known, the fol
lowing single-stage procedure for selecting the best
system is proposed.

2 LITERATURE REVIEW

Selection of the best system, under the indifference
zone approach, is briefly reviewed. Related topics
such as subset selection, elimination, and sequential
procedures are not discussed. The problem of selec
tion of the best system has been extensively studied
in the i.i.d. Gaussian context. The setting considered
by Bechhofer (1954), in his seminal paper, was that
of known variances. The case of unknown but com
mon variances was investigated by Bechhofer, Dun
nett, and Sobel (1954). Dudewicz and Dalal (1975)
proposed two two-stage sampling procedures for the
case of most interest in practice, where variances are
unknown and possibly unequal. Dudewicz and Dalal
(1975) then showed the validity of one of the meth
ods. Rinott (1978) considered a modification of the
other procedure and showed its validity.

Selection of the best system in the i.i.d. non
Gaussian context has been investigated for certain
probability distributions, such as the exponential,
gamma, Weibull, Bernoulli (selection of the popula
tion with largest probability of success), and multi
nomial (selection of the cell with largest probabil
ity). Nonparametric models have been considered,
but mostly in the context of location parameter distri
butions. (These are distributions with cdf's F(x; B) =
F( x - 8) .) There are also results on scale distribu
tions. (These are distributions with cdf's F(x; B) =
F(xI8) .) Gupta and McDonald (1980) discuss the
case where the populations have stochastically in
creasing (in the parameter) cumulative distribution
functions. For relevant discussions on selection of the
best system in the nonparametric setting, see Chap
ter 8 of Gupta and Panchapakesan (1979), Chapter 7
of Gibbons, Olkin, and Sobel (1977), Section 8.6 of
Mukhopadhyay and Solanky (1994), and Bechhofer,
Santner, and Goldsman (1995, p. 68).

where rx1is the smallest integer greater or equal
to x.

3. For every population i, sample Xi,l , ... ,

X i ,N(i,F,6)' Let

3 PRELIMINARY NOTATIONS

Let A be the set of possible distribution functions
the various populations can be coming from. In
the inventory example, A is the set of cdf's that
can model the end-of-day inventory level. Let F =

k -(FI ,· .. , Fk 2 E A and p(F) =(p(FI ), •.. , p(Fk )).

Denote p(F, [~l) as the ith largest mean in F (and
so p(F, [k]) is the mean of the best population in F).
The preference region is given by

8(8) == {F E Ak
: p(F, [k]) 2:: j.l(F, [k - 1]) + 8}.

1

N(i, P, 8)

N(i,i',6)

~ X··L..J ',)
j=l

The preference region is the set of joint cdf's for which
the best and second best means are at least 8 units

be the sample mean over the available observa
tions.
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4. Select the population with the largest sample
mean.

Note that N(i, F, 6) is not a random variable but
a deterministic integer. The procedure uses no dis
tributional information beyond the second moments
of the underlying distributions. Since the forms of
the cdf's are unknown, it is unrealistic to expect the
procedure to be exact for a finite sample; asymp
toties have then to be considered in order to show
its (asymptotic) validity.

The asymptotics we consider are as the tolerance
parameter 6 shrinks to zero, which will result in the
sample size for each population tending to infinity.
The second effect of letting 0 ~ 0 will be that the
preference region gets closer to the whole set Ak , mak
ing the correct selection increasingly more difficult
(because when F belongs to the least favorable con
figuration, the best mean will be closer and closer to
the remaining (k - 1) means); nontrivial results are
thereby obtained in the limit. Consider the following
two assumptions.

Assumption 1 For all F E A, F admits a density
I, the distribution mean is finite, its variance is fi
nite and uniformly bounded away from zero, and its
absolute centered third moment is uniformly bounded
(from above).

Assumption 2 There exists a finite constant K
such that, for all F E A, sup{-oo<x<oo} f(x) ~ K.

Our goal is to show that the above procedure is
asymptotically valid. One must show then that the
probability of correct selection is at least P* for any
joint distribution F in the preference region. (Correct
selection will be denoted by CS(8).) Since the proce
dure must be efficient (from a sampling standpoint),
it is actually desired that

lim inf Pi' [CS(6)] =P*. (1)
6-+0 {F=(F1 , ... ,Fk)E0(6)}

Consider the following results.

Proposition 3 Under Assumptions 1 and 2, we
have that for every f > 0, there exists 00 == oo( f)
such that when 0 < 0 ~ 60 ,

for all F E 8(8).

Proposition 4 Under Assumptions 1 and 2, we
have that for all f > 0, there exists 00 == £50 (f) such
that when 0 < £5 ~ 00,

for all F E 8(0).

The main result of the paper follows as a corollary.

Corollary 5 Under Assumptions 1 and 2, (1) holds,
i. e., the procedure is asymptotically valid (as the tol
erance parameter 8 ~ 0).

The proofs of the propositions are sketched in
the next section. The complete proofs are given in
Damerdji et al. (1996).

5 SKETCH OF THE PROOFS

As previously mentioned, Berry-Esseen bounds on
the rate of convergence in the central limit theorem
for i.i.d. variables as well as local limit theorems are
pivotal.

Lemma 6 (Petrov, 1975) Let Y1 , .. . ,Yn be indepen
dent random variables having a common distribu
tion. Suppose EY1 = J.L, E[(Y1 - J-l)2] = (12, and
E[lY1 - J-l1 3

] < 00. Then

1 n

s~p pC..jn [;(Yj -Jl) < x) - <I1(x)

A E[lY1 - J-l1 3]_1
(13 .jn'

where A is a universal constant.

Lemma 7 (Petrov, 1975) Let Y1 , ... ,Yn be indepen
dent random variables having a common distribution,
with density p(x), such that EY1 = J-l, E[(Y1 - Jl)2] =
(J'2, E[lY1 - J-l1 3

] < 00, and sUP-oo<x<oo p(z) ~ K
for some constant K. Let Pn (x) be the density of the
random variab/e (1/((1Vi1)) 2:7=1(Yj - J.l). Th en

sup Ipn(x) - ~e-X2/21 ~
-oo<x<oo y211"

A' E[IY1 - J.t1
3

] max (1 K 3 )
3 C "(1 yn

and for all x

I

pn(x) - _1_ e- x 'J/ 2
1 <

~

A' (E[IY1 - Jl1 3
) 2m-l max (1, K2m+l)

(13] .jn(1 + Ixl m )

for m = 2 and m = 3, where A' is a universal con
stant.

Denote X(i)(6) as the sample mean of the popula
tion with ith largest mean. The probability of correct
selection is

Pi' [CS(6)] = Pi' [X(i)(6) < X(k)(6) 'Vi :/= k].
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Let

[
XCi )(8) - J.L(F, [i]) ]

a(t;F,(i),6) - Pi' 6/h < t.

We now sketch the proof of Proposition 3. For all
F E 8(6), we have that

p_ [CS(8)] > p_ [X(i)(6) - p,(F, [iD <
F - F 8/h

X(k)(6) ~:(F, [k]) + h Vi # k]

=100

(II a(z + h; F, (i), 6)) a(dz; F, (k), 6).
-00 i~k

(2)

Some more notation is needed. Let

b(t; F, (i), 6) == Pi' [ X(i)(6)_- p,(F, [il~ < t] ,
J(J"2« i), F)/N« i), F, 6)

c(t; F, (i), 8) = a(t; F, (i), 8) - b(t; F, (i), 8),

and

d(t; F, (i), 8) =b(t; F, (i), 8) - <t>(t).

We naturally have that

a(z + h; F, (i), 8) = <t>(z + h) + c(z + h; F, (i), 6)
+d(z + h; F, (i), 6).

The expression fli¢k a(z + h; F, (i), 6) in (2) can
then be ~xpanded into a ~um of terms involving
c(z + h; F, (i), 8), d(z + h; F, (i), 6), and <t> (z + h).
Lemma 6 is used to show that for all F E 8(8),

Pi'[CS(6)] > 1:(i)(z+h))k-la(dz;F,(k),6)

- H(F, (k), 8),

where the exact form of H(F, (k), 8) IS given In

Damerdji et al. (1996). Under Assumptions 1 and 2,
this term can be made arbitrarily small uniformly in
F.

We now rewrite

a(dz;F,(k),6) = i)(dz) + (a(dz;F,(k),6)- i)(dz)) ,

and use Lemma 7 to bound la(dz; F, (k), 8) - <t>(dz)/.
As for Proposition 4, we start by considering F in

the least favorable configuration. For such F, we get
that

Pi' [CS(6)] < I: (i)(z + h)r- 1

a(dz; F, (k), 6)

+ H(F, (k), 8).

Using the bound on IH(F, (k), 8)1 developed earlier,

we get that Pi' [CS(6)] ~ p. + f, where f depends
only upon 6. The detailed proof is given in Damerdji,
Glynn, Nakayama, and Wilson (1996).

6 THE TWO-STAGE SAMPLING PROCE
DURE

The following is a two-stage procedure for selection of
the best system for i.i.d. observations with unknown
distributions (and variances). The (asymptotic) va
lidity of this procedure is yet unavailable.

1. Choose p. (l/k < p. < 1) and fJ > O. Com
pute h.

2. Let m(8) == r8- 21be the size of the first subsam
pIe for each population.

3. For every population i = 1, ... , k, let Xi), X i,2,
... , X i ,m(6) be the corresponding sample. Let

_ 1 m(6)

Xi,1(6) == m(8) ~ Xi,j
.1=1

and

2 _ 1 m(6) _ 2

Si (6) = m(6) _ 1 {; (Xi,j - Xi,1(6)) ·

4. For every population i, compute the total sample
SIze:

. - {r h2S1(8)1}N(~, F, 8) =max m(6), 82 .

5. If N(i,fr,fJ) ~ m(8) + 1, sample Xi ,m(6)+1' ... ,

X iJN(i,t,6)'

6. Let
_ 1 N(i,F,6)

Xi(6) == N(i, F, 6) {; Xi,j.

7. Select the population with the largest sample
mean.

Note that in the unknown-variances case, the to
tal sample sizes are not deterministic quantities but,
rather, random variables. This is not a major is
sue in the Gaussian case; in that setting the mean
and sample variances are independent (the total sam
ple is function of the sample variance), which al
lows passage to the t-distribution. See Remark 4.1
of Dudewicz and Dalal (1975). Another great diffi
culty in showing the validity of this procedure is that
we want equality in (1) so the procedure is computa
tionally efficient. This work is still in progress.
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7 CONCLUSION

Suppose a number of systems are to be investigated
via simulation, where the nature of the problem is
such that the simulations are of the fini te-horizon
type. Simulation of each system will then involve
running independent replicates, each replicate pro
viding a single "observation," whose distribution is
unknown.

Selection of the best system is undertaken here. In
this work in progress, it is assumed that the popula
tion variances are known. A single-stage procedure
was presented, and its asymptotic validity discussed.
The detailed proofs are given in Damerdji, Glynn,
Nakayama, and ~Wilson (1996).

The assumption of known variances is unrealistic
in practice. For the unknown-variances case, a two
stage procedure was presented. Asymptotic validity
of this procedure, Le., Equation (1), is still an open
problem for the two-stage case. Some of the tools de
scribed here might be useful. Another problem under
investigation is that of selection of the best system in
steady-state simulation, i.e., when the problems are
such that the simulations are of the steady-state type.
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