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ABSTRACT

In this paper we describe several computational algo­
rithms useful in studying importance sampling (IS)
for Markov chains. Our algorithms compute opti­
mal IS measures and evaluate the estimate variance
for a given measure. As knowledge of the optimal
IS measure implies knowledge of the quantity to be
estimated, our algorithms produce this quantity as a
by-product. Since effective IS measures must often
closely approximate the optimal measure, the use of
these algorithms for small problems may produce in­
sights that lead to effective measures for larger prob­
lems of actual interest. We consider two classes of
problems: hitting times and fixed-horizon costs.

1 INTRODUCTION

Most investigators who experiment with importance
sampling quickly discover that the "holy grail" of
variance reduction is highly elusive. One seems as
apt to make things worse as to improve them. While
theoretical results provide guidance in some problem
domains (e.g. single station queues, highly reliable
Markovian systems - see Heidelberger (1995) for a
review), little support exists in other situations.

The few general results in importance sampling
indicate that any IS measure with "nice" variance
properties (e.g. bounded relative error) must closely
approximate the optimal IS measure in many aspects
(e.g. support, relative distribution over the sample
space). Thus it seems reasonable to compute opti­
mal IS measures for "small" problems in the hope
that the insights may be applied to the larger prob­
lems of actual interest. In particular, computation­
ally reasonable approximations of the optimal mea­
sure may have good variance behavior.

In this paper we describe several computational
algorithms useful in studying importance sampling
(IS) for Markov chains. Our algorithms compute op­
timal IS measures and evaluate the estimate variance
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for a given measure. Since knowledge of the opti­
mal IS measure implies knowledge of the quantity to
be estimated, our algorithms produce this quantity
as a by-product. Our algorithms employ dynamic­
programming-like ideas and compute IS measures in
a recursive form amenable to event-by-event simula­
tion.

We consider two classes of problems: hitting
times and fixed-horizon costs. Typical examples of
hitting time problems include estimating the mean­
time-to-overflow in finite capacity Markovian queue­
ing systems, or the mean-time-to-failure in a sys­
tenl with exponential component lifetimes and re­
pair times. Fixed-horizon costs occur when estimat­
ing inventory costs or queueing times over a fixed
time period.

The paper is organized as follows. In Section
2 we review basic concepts of importance sampling
and summarize some earlier results on the properties
of the optimal (zero-variance) importance sampling
scheme. In Section 3 we discuss the problem of es­
timating the first passage time to state F starting
from state O. We present different approaches of
finding the optimal dynamic IS scheme (Section 3.1)
and develop a useful tool for assessing the variance
of a constructed scheme without using simulation
(Section 3.2). Next, in Section 4 we consider the
problem of estimating the mean performance mea­
sure over a fixed (finite) time horizon. We discuss
two different formulations of this problem - a multi­
plicative formulation in Section 4.1 and an additive
formulation in Section 4.2. In each case, we present
the optimal IS scheme and develop a tool for vari­
ance computation. We conclude in Section 5 with a
mention of some heuristics for constructing "good"
IS schemes suggested by the results of this paper.

2 BACKGROUND

Let X denote a stochastic process defined on the
probability space (f2 1 F, P), and assume that we wish
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where the Xi are sampled from the measure P. The
variance of this estimator is given by

1 M

a = M 'L g(X;)£(Xi)
i=l

to estimate the mean a == E[g(x)] via simulation.
The naive simulation approach for estimating
a involves generating M independent sample paths
Xl, ... , X M and forming the estimator

dP(x) = g(x) . dP(x)/Ep[g(x)] =: dP*, (3)

then
g(x) . L: (x) = Ep [g (x )]

M

TF =Ep ['L1i] = Ep [1i]Ep [M].
i=l

3 HITTING TIMES

Consider a continuous-time Markov chain defined on
a finite state space 5. Given an initial state 0, we
wish to estimate the hitting time TF for a set of states
F C 5, 0 ~ F under the assumption that probabil­
ity of reaching F from 0 is very small. Since we
are only interested in the first passage to F, we will
model F as a single absorbing state. Such a model
may be used for example to determine the mean time
to system failure in a highly reliable system or the
the mean time to buffer overflow in a queuing sys­
tem.

If TO is the first passage time to 0, and Q' =
P [TF < TO], then for the regenerative process con­
sidered here, TF = Ep[min(To, TF)]/a (see Bratley,
Fox, and Schrage (1987) and Heidelberger (1995) for
details). This result can be heuristically explained
as follows. Since visits to F from 0 are rare each
sample path which starts in 0 and eventuall; ends
in F may visit 0 multiple times in the intermediate
epochs. Suppose in an arbitrary sample path, there
are M "cycles" (i.e., sections of the sample path be­
ginning in state 0 and ending with first passage into
either state 0 or F). Let the time duration of the
i-th cycle be denoted by 1i. Then, since the system
probabilistically regenerates itself at each re-visit to
0, {T1 , T2 , . .. , TM } are i.i.d. variables. Thus, the
time until failure is the sum of a random number
(M) of i.i.d. random variables and by Wald's lemma
we have,

Note that if

and the variance is zero. Thus, an optimal IS mea­
sure always exists. Note that I?* assigns probability
proportional to a path's contribution to Q', thereby
giving rise to the name importance sampling.

illustrated in a p~per by Andrad6ttir et. al. (1995).
Thus, choosing P properly is the key issue in em­
ploying importance sampling.

Since the goal is to minimize the variance of a,
we also make the following

DEFINITION 1 An optimal IS measure is one which
produces a zero-variance estimate of a.

(1)

Jg(x)dlP'(x)

Jg( x) d~(x) dP(x)
dP(x)

EiP [g (x )£ (x )]

Ep[g(x)]

where P is any measure absolutely continuous w.r.t.
g(-)P and £(x) = dP(x)/dP(x) is the Radon-Nikodym
derivative of P w.r.t. P (often called the likelihood
ratio) Glynn and Iglehart (1989). Absolute continu-
ity requires that P(x) > 0 whenever g(x)lP(x) > O.

From (1) it is clear that we can form a new
(unbiased) estimator for 0', namely,

2 Ep[(g(x )L:( X ))2] - a 2 ml - 0'2
(J"- = - IP (2)

a M - M

Here ml represents the second moment of the esti-
IP

mator g( Xi )L:(Xi) corresponding to a single sample.

If Ii is chosen properly, then a will have significantly
lower variance than ci - often orders of magnitude
lower. However, a poor choice of Ii can lead to in­
creased (even infini te) variance - a fact most recently

Since Ep[g(Xi)] = 0' the naive estimator is always
unbiased.

To motivate the need for importance sampling,
let us consider the problem of estimating a rare event
probability a. The performance measure in this case
is g(x) = 1A (x) (where 1A (-) is the indicator func­
tion of A). Here, the naive estimator has standard
deviation (J"& = Va(l - a)/M. So, the relative er­
ror (J"&/a grows without bound as 0'-0. Equiva­
lently, as the event becomes rarer, the number of
samples needed to estimate 0' to a fixed precision
grows without bound. Thus, for many practical sit­
uations where simulation is warranted, direct simu­
lation of the system is infeasible.

Importance sampling (IS) is based on the ob­
servation that
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The ratio formula for TF follows from the fact that
Ep[M] == l/Ct. and since F is reached very rarely,
min( TO, TF) ~ TO most of the time. Hence, we can
write,

3.1 Recursive Calculation of the Optimal IS
Measure

Observe that

,(s) == lim ,<N(S), s E 5 - F
N-oo -

A Markov chain construction of IP* is given in the
following theorem:

Now, estimating TO involves only a few state tran­
sitions and moreover, most cycles end in state 0
in a typical simulation. So we can easily estimate
IE IP [min( TO, TF)] using the naive simulation approach.

Thus the problem of estimating TF essentially
reduces to that of estimating the rare event proba­
bility a == P[A] == IE IP [lA(x)], Here, A is the set of
sample paths that begin in 0 and end in F without
visiting 0 along the way. Since S is finite, A is either
finite or at most countably infinite.

It is clear that Ct. does not depend on the time
spent in each state; rather it depends on the par­
ticular sequence of states visited in a given simula­
tion run. Hence, we can replace the continuous time
Markov process by the corresponding embedded dis­
crete time Markov chain (DTMC) {Xt , t == 0,1,2, ...}
with state space 5 and one-step transition probabil­
ity matrix P == [Ps,t]mxm. In the remaining sections
on this problem we will work with this DTMC.

The optimal IS scheme is given by:

and let Q be the matrix with q(s, t) as its elements.
Now, if the systen1 is in state s E 5 - F, then:

(5)

t == 0 or s == F, t =I F
s==t==F
otherwise

q(s, F) + L q(s, t)'~N-1 (t)
t~F

L q(s, t)"'j~N-1 (t).
t

q(s,t) == { ~
p( s, t)

where ,~N (s) denotes the probability that the sys­
tem first reaches F starting from state s in N steps
or less without ever returning to the initial state O.

Let 'N (s) denote the corresponding probability
of hitting F in exactly N steps without returning
to O. Clearly, 11(S) == p(s, F) and 'N(F) == 1 for
N == 1,2, .... Set

As in dynamic programming methods (e.g., see Bert­
sekas (1987)), we can regard ,<N(S) as the "cost-to­
go" at the N -th stage. (Not~ that we are simply
accumulating costs without the optimization at each
stage that occurs in dynamic programming.)

Supposef<N == [,<N]mx1 andfo == [IF(S)]mx1.
Then, equation-(5) bec~mes

for x E A
otherwise.{

~
P*(x) == 0 Q

(4)

THEOREM 1 Suppose the system behaves as a DTMC
with state space S and transition matrix P. Then
the probability assignment of (3) corresponds to a
DTMC whose transition probability matrix P* has
elements:

*( ) _ p(s, t),(t)
P s,t - ,(s)

where ,(s) denotes the probability that the system
reaches F starting from state s without ever return­
ing to the initial state O.

Assuming that the expected hitting time is bounded,
we have ,~N ~ , as N ~ 00 (see Kemeny and
Snell (1976) for a detailed explanation). So if r ==
[,( s)]mx 1

f==Qf

which can be solved by a variety of methods. f can
also be approximated accurately by QNfo for large
N at a computational cost of O(log N).

For proof of this theorem see Kuruganti and Strick­
land (1995).

Thus if ,(s) for each state s in 5 be known then
we can compute the optimal scheme using (4). Since
,(0) == Ct., this result is not useful for importance
sampling; however, it shows that I?* can be realized
by a Markov chain.

3.2 Variance Computation

The recursive approach above can be adapted to
compute the estimate variance for any IS scheme
characterized by a transition matrix P. From (2),
this amounts to computing
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Let l/JN (s) be the contribution to mJ- of all pathsp
starting from state s in S - F which hit F in exactly
N steps. And let l/J5: N (s) = E~ ~)j(s). As before,
let Q be a matrix whose elements are given by

starts in the same initial state. (For a more gen­
eral treatment we can include the initial probability
distribution vectors used under the original and im­
portance sampling measures respectively).

From (3) the optimal (zero-variance) importance
sampling scheme for this problem is given by :

q(s, t) = { ~
p(s,t)

Then

t = 0 or s = F, t :I F
s = t =F
otherwise

1P*(XO,Xl," .,xT ) =
P(XO,Xl, ... ,xr )g(XO,Xl," .,Xr )

aT
(8)

Letting A be the matrix with elements

The desired second moment is given by :

m~ = l/J(O) = lim l/J<N(O).
.,-- N-oo -

T

r

g(J\o,X1"",Xr ) == IIg(Xi )

i=O

Additive:

If the function g(XO,X1, ... ,Xn ) can be expressed
in terms of a recursive equation, then we can ex­
ploit some of the techniques developed in the first
segment of the paper to find the optimal IS scheme
and compute the IS variance. In particular, we show
how this may be accomplished for two formulations
which cover many applications of practical interest :

Multiplicative:

(7)

(6)

if q(s,t) > 0

otherwise

q(S,F)2 '""" q(S,t)2
-(s F) + LJ -(s t) l/J5: N - 1 (t)q, tflF q ,

'""" q(s,t)2
LJ --;::::-----() l/J<N - 1(t ).

t q,s,t -

{

qls,t)2

l(s, t) = OQ(3,t)

and '11 = [l/J]mxl we can write (6) as

"p5:N = A"p5:N-l = AN "po.

where l/Jo(s) = 1F(s). If the IS scheme has finite
variance, so ~5:N --+ ~'as N ~ 00, then '11 = ['~)(S)]mxl

is given by
'11 == Aw.

g(..I~O'J\l, ... ,..IYT) == Lg(./Yi ).

i=O

Let G == [g( s)]mx 1. In both cases we assume that the
performance measure of interest is a positive quan­
tity i. e., g( s) > 0 for every state s in the state space
S. Since the multiplicative form is easier to work
with we first examine this in the following section.

Note though that this tool does not address the
effect of the IS measure on the computational cost
of each sample. We ignore this issue here because
in most practical situations of interest, with an ap­
propriate choice for Ii the reduction (relative to the
naive approach) in number of samples needed to esti­
mate a far exceeds the increased cost of generating
each sample under importance sampling (see Sad­
owsky (1993)).

4.1 Multiplicative Cost

In this formulation, the mean performance measure
aT is given by :

T T-1

aT = L II g(Xi) II p(Xi, Xi+1)
Xl,X2,,··,X r i=O i=O

which can be calculated recursively as explained be­
low. Define

4 FIXED HORIZON COST FUNCTIONS

Let T be an arbitrary (but fixed) number of time
epochs and Y = g( J\0, ..1\1, ... , ..1\T ) some performance
measure of interest. Suppose we wish to estimate
the mean aT = Ep[Y"]. Let P = [P(s, t)]mxm be the
one-step transition probability matrix used during
importance sampling and Xi the state visited at the
i-th epoch. For simplicity, we assume that Xo is
fixed under both P and P i.e., the system always

j j-l

L II g(Xi) II P(Xi, Xi+l)
XlJooolXj_l i=O i=O

L hj-1(xj-l)p(Xj-l, Xj)g(Xj) (9)
Xj-l

with ho(xo) = g( xo) == 00 and

OJ == Lhj(xj), j = 1,2, .. . ,T (10)
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(recall that we assume a fixed starting state xo).
In matrix form, the recursive equation (9) can be
written as :

which is the (constant) true value. Hence the vari­
ance of the IS estimator is zero i.e., P* is the optimal
IS scheme.

where D is a m x m diagonal matrix with elements
g( s) along the principal diagonal and pT is the trans­
pose of P. Here Hj = [h(S)]mx1 is a vector that is
recursively accumulated.

4.1.1 Optimal Scheme

Comparing equations (9) and (10) with (5) we note
that in this dynamic programming formulation, (}:j

behaves as the "cost-to- reach" state x j, the state
visited at the j-th epoch. So, by analogy with (4)
we hypothesize the following form for the elements
of the Markovian optimal IS transition matrix P*:

(13)

~'j [D 2 AT ]j Vo, j = 1,2, ... ,T

=}Vr [D 2 AT ]r G2 .

4.2 Additive Cost

So, the variance of an arbitrary (Markovian) IS scheme
for this problem can be found using:

where Vo = G 2 = [g(S)2]mxl' m~ = I:x
r

vr(xr )

and AT is the transpose of the matrix A defined in
(7). The vector Vi = [Vj(Xj)]mxl can be recursively
computed.

Using induction, it can be shown that:

4.1.2 Variance Computation

As in Section 3.2 we can compute the variance of an
arbitrary IS scheme for this problem using dynamic
programming and consequently develop a matrix­
based formulation.

Equation (11) suggests a matrix-based method
for finding (}:r =ho(xo). So, using the same argu­
ments as in Section 4.1 we can derive the recursive
matrix equation:

(12)

(11 )Hj =DpT H j _ 1 , j=I,2",.,T

where j = 0,1, ... , T-l. Note that non-negativity of
p* (x j , x j +1) is assured by the positive form assumed
for the function g(.). Moreover, equations (9) and
(10) ensure that every row of P* sums to one. Since
(12) expresses the optimal IS transition probabilities
in terms of the known simulation inputs P and G,
the optimal IS scheme can be computed and actually
implemented in a simulation.

That this is indeed the optimal IS scheme can be
verified as follows. Let (xo, ... , X r) be a particular
sample path generated under P*. Now:

P* (xo, Xl,···, X r )

r-1

IIp*(Xi'Xi+1)
i=O

(}:op(xo, X1)g(Xl) (}:lP(Xl, X2)g(X2)

(}:1 (}:2

(}:r-lP(X r -1,X r )g(x r )

aT

nT=o g(xd rI~~ p(Xi> xi+d and
a r

T-1

p (x 0, Xl, . . . , X T) = II p(Xi, Xi+1 ) .

i=O

So, under P* each sample leads to the following
I.S. estimate for aT :

Now assume that:

(}:r =Ep[Y] ==

xl~xr (~9(Xd) gP(Xi>Xi+d.

Typical examples include the net payoff from a fixed
number of successive gambling trials and the total
waiting time experienced by a single customer at
different stations in a queueing network. This rep­
resentation can also be used when the performance
measure of interest is the number of times a partic­
ular state (or set of states) F is visited in a simula­
tion run of fixed length. In this case g(Xi) = IF(Xi)'
(Note that this last example does not satisfy our ear­
lier assumption of strictly positive values for g( Xi).)
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4.2.1 Optimal Scheme

Equation (8) and the fact that

imply that

P* (Xo, Xl,·· ., Xj+l) =
{l:{~~ g(x;)} I1{~~ p(Xi. Xi+d

l:i~~ Ep [g(Xi)]

But by the Markov property, this probability is given
by:

P* (Xo, Xl,·· ., Xj+l) =
IP* (Xo, Xl, ... , x j ) P* (X j, x j +1)'

We therefore conclude that

Since all the components of the above expression can
be computed off-line or along the sample path, this
P* = [p*(s, t)]mxm can be used for simulation. But
note that the transition probabilities at epoch i de­
pend on the sample path history up to i. Thus it
appears that the optimal IS measure cannot be re­
alized by a Markov chain. Also, observe that as
J -+ 00,

so
P*(Xj,Xj+l) -+ p(Xj,Xj+l).

Thus, as the sample path length increases, the opti­
mal IS transition matrix P* approaches the original
n1atrix P. This is consistent with the result derived

in Andrad6ttir et. al (1995) that for fixed time­
horizon problems, for best results, the IS transition
matrix P must approach the original transition ma­
trix P as the sample path length (i.e., time-horizon)
increases.

4.2.2 Variance Computation

We begin by establishing that Q'T can be recursively
computed. So, we define

j j-l

L L g(Xi) II p(Xi' Xitl)
Xl,,,.,Xj-l i=O i=O

+pj (xo, Xj )g(Xj)

with ho(s) = g(s)l xo (s) and Q'j = l:x' hj(xj). Note
J

that pi (xo, X j), the total probability of going from
Xo to xi in exactly j steps, is an element of the row
for Xo in the matrix pi. So, in matrix form the
above recursive equation is:

Hj=pTHj_l+DPjTlo,j=1,2, ... ,r (14)

where D is a diagonal m x m matrix with elements
g(s) along the principal diagonal and 10 = [lxo (s)]mxd·
Thus the vector Hi == [hj(Xj)]mxl (and hence OJ)
can be recursively computed using (14).

Similarly, we can show that the 1.5. variance can
be recursively computed by defining

L tg(xdll P!Xi,Xi+d
. . p(Xi,Xitl)

Xl, .. "Xj-l z=o z=o

L Vi-l(Xj-l)l(xj-l,Xj)

where the last term itself has a recursive structure
as indicated below:

Xj-l
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Writing these results in matrix form we get:

T . -
V} A V}-I+AJG 2 +2DHj

for j = 1, 2, ... , r

- 2 2Here ho = [g(s) 1xo (S)]mxl, Va == [g(s) 1xo (S)]mxl,
G2 == [g(S)2]mxI, and ~ == I:x

r
VT(X T ). SO, the

variance of an arbitrary (Markovian) IS scheme for
this problem can be once again computed using Equa­
tion (13).

where

H·J AT (Hi - 1+ D(Ai-1)T10 )

j-I

ATiho + LATiD(Ai-ifIo.
i=1

that the resultant IS scheme behaves like the opti­
mal IS scheme in the limit as the rare event of inter­
est has vanishingly small probability. An alternative
technique is to use a myopic approach i.e., restrict
attention to only sample paths of length N or less
(where N is a small positive integer) in calculating
,(s) via equation (5). Similar approximation heuris­
tics may also be investigated for the fixed-horizon
problem considered in this paper.

These techniques potentially present a simple
and intuitive alternative to the approaches inspired
by large deviations theory that have thus far been
discussed in the literature - see for example Cottrell
et. al (1983), Parekh and Walrand (1989) and Sad­
owsky (1993).
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5 CONCLUSIONS

In this paper we have presented several recursive al­
gorithms for constructing optimal IS measures and
computing the variance of arbitrary IS measures. (A
different non-recursive approach for finding the opti­
mal IS measure for the hitting time problem was pre­
sented in Kuruganti and Strickland (1995).) While
these techniques are limited to relatively "sll1all"
problems, they may prove useful for developing ef­
fective schemes for large problems, either through
approximation of the optimal scheme or through ex­
ploratory evaluation of trial schemes for small pro­
totypes.

For example, when estimating the first passage
time to F, using approximations of the methods de­
veloped in Section 3.1 we can generate guesstimates
for ,(s) and substitute these in (4) to construct a
sub-optimal yet computationally attractive IS mea­
sure that is dynamic (state-dependent). Another
possible approach is to replace the original model
by a simpler model (with fewer states and/or simpler
transition structure) for which ,(s) can be computed
easily. Then, we could use these results to approxi­
mate ,(s) for the original more complex model.

Approximations of the recursive method of com­
puting ,(s) (and thence the optimal change of mea­
sure) may also lead to heuristic strategies for con­
structing sub-optimal but computationally attrac­
tive IS simulation schemes with desirable asymptotic
properties. One strategy in this context involves
considering at each stage of the infinite-horizon dy­
namic programming algorithm the contributions from
only the dominant most likely paths to failure. In an
earlier paper, it was established by Strickland (1993)
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