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ABSTRACT Alternatively,

A random variate with a given non-uniform distribu
tion can often by generated in one assignment state
ment if a uniform source and some simple functions
are available. We review such one-line methods for
most of the key distributions.

1 A MODEL OF COMPUTATION

Random variate generators that are conceptually sim
ple and quick to program become invariably popular,
even if they are not as efficient as some more compli
cated methods. We explore and survey the simplest
end of the spectrum-the generators that can be im
plemented in one line of code. We assume through
out that an unlimited source of i.i.d. uniform [0, 1J

random variates U1 , U2 , ... is available. When dis
cussing one-liners, we must distinguish between two
situations: in the ordinary case, each request of a
uniform variate is fulfilled by another number from
this sequence. In the extended case, we may index
our requests by U1 , U2, and so forth, so that repeti
tions of the same uniform variate within the code are
possible. This will be called an extended one-liner.

The standard operators +, -, *, / are available,
as are mod, round, l.J, sign, r·1, 1.1, sin, cos, exp,
log, tan, atan. Many functions may be derived from
these using only a constant number of combinations.
For example, the indicator function Ix>o is simply
Ix>a == 2 sign(x - a) -1, and Ia>x>b == (sign(x - a) 
sign(x - b))/2. FUrthermore, max is included as

max(a, b) == a + (b - a)Ib>a .

265

max(a, b) = a ; b + Ia ~ bI .
Some may include more complicated functions such
as r or (, but these will not be required for the dis
cussion below.

One may think of a one-liner as an expression
tree in which the leaves are uniform [0,1] random
variables or constants, and the internal nodes are the
operators or functions in the accepted class of oper
ators, which we shall call F. In a simple one-liner,
each leaf has a different uniform random variate as
sociated with it. In an extended one-liner, repeti
tions may occur. We may put this differently. Each
expression may be represented as a directed acyclic
graph (or "dag"), in which the leaf nodes contain con
stants or Ui's, but each Ui occurs only once. If multi
ple Ui nodes are disallowed, Extended one-liners are
implementable by dags, while simple one-liners are
implementable by trees. We should point out here
that. some smart compilers may transform expressions
with repetitions into dags before machine translation.

The well-known Box-Muller formula for normal
random variates,

X == J -2 log U1 cOS(21rU2) ,

is thus a simple one-liner. However, the equivalent
form

X == exp( (1/2) log(-2 log U1 )) (cos2
( 1rU2 ) - sin2

( 1rU2))

is an extended one-liner. The figure below depicts
the expression trees for both forms of the Box-Muller
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formula.

When we have a family of distributions with pa
rameter(s) 0, then it is of interest to have expression
trees that have a fixed structure, independent of O.
The value 0 appears at best in one or more leaves.
For example, if a gamma (k) random variable is gen
erated in one line by summing k independent expo
nential random variates, then the structure itself of
the expression tree changes with k, and indeed, its
size grows proportionally with k. For a family of dis
tributions, we define a fixed one-liner as one whose
expression tree has a given structure, whose internal
nodes have fixed operators, and whose leaves have
constants, the value 8, or uniform random variates.
The operator "take the i-th component of a vector
(such as 0)" is in the set of accepted operators.

With the previous set-up, if the family of oper
ators and functions has k members (which is fixed of
course), and if each member is unary or binary say,
then the number of possible trees on n internal nodes
does not exceed

n ~ 1 C:) x n
k ~ n

k = e (n
k

-
3

/
2
4

n
) .

This limits the numbers of families we may construct
using the basic operations. Still, by making n even
moderately large, the possibilities are virtually un
limited. We will take a little tour of the popular dis
tributions and exhibit a number of (mostly known)
one-liners. Notable exceptions are the gamma and
Poisson distributions.

2 NOTATION

We give different symbols for different random vari
ables. For example, U is uniform [0,1], N is stan-
dard normal (with density e- x2

/2 / ~), A is arc
sine (with density 1/(7rV1 - x 2 ) on [-1,1]), Ba,b is
beta (a, b) (with density x a - l (l - x)b-l / B(a, b) on
[0,1] where a, b > 0), Ga is gamma (a) (with den
sity xa-le- x /r(a) on [0,00), where a > 0), E is ex
ponential (with density e- x , x > 0), L is Laplace

(with density e- lxl /2), C is Cauchy (with density
1/{7r{1 + x 2

))), Ta is Student t(a) (with density

1/{B(a/2, 1/2)01(1 + x2/a)~) ,

where a > 0).
Some densities are best defined in terms of their

characteristic functions <po A partial list follows below
(note that K(o:) == 0: - 210 >1): So,O is symmetric
stable with <p(t) == e- 1tIQ , 0 < 0: ~ 2, So.,/3 is stable
(0:, (3) with <p(t) == e-ltIQe-i(7r , 0 < 0: < 2

Q #- 1, (3 E [-1,1], SI,{3 is stable (1,,8) with c.p(~ ~
e- 1tl (7r/2+i{3sign(t)logltl), -1 ~,8 ~ 1, So,l is positive

extreme stable with <p(t) == e-ltIQe-i(7r , 0 <
Q < 1, Ga is gamma (a) with <p(t) == 1/(l-it)a, a > 0,
L is Laplace with <p(t) == 1/{1 + t2

), M a is Mittag
Leffler with cp(t) == 1/(1 + (-it)a), a E (0,1]. Pa,b is
Pillai with cp(t) == 1/{1 + {_it)a)b, a E (0,1], b > O.
La is Linnik with <p(t) == 1/{1 + Itl a

), a E (0,2].

3 THE INVERSION METHOD

The inversion method is based upon the property that
piny (U) has distribution function F if U is uniformly
distributed on [0,1]. It leads to one-liners only if F
is explicitly invertible in terms of functions that are
in F. In the table below, a, band c are positive
constants that serve as parameters.

In this manner, we note that E £ - log U as

P(x) == 1 - e- x , B l,a £ Ul/a, as F9x) == xa (0 <
X < 1), Ba,l £:. 1 - Ul/a, A £ cos(rrU), as F(x) =
1 - arccos(x)/7r, and C £ tan(7rU) as F(x) = 1/2 +
arctan(x )/7r.

Other notable examples include the logistic
(F{x) == 1/(1 + e- X

)) which can be obtained as
~ 10g(U/(1 - U)). (U-1/a - l)l/c yields a Burr XII
random variate (F(x) == -l/(xC + l)a (x > 0)), and
(U-l/a - 1)-l/c yields a Burr III random variate
(F(x) == l/{x-C + l)a (x > 0)). A Frechet or Weibull
random variate with F(x) == 1 - e- xG (x > 0) may
be obtained as logl/a(l/U). For the Gumbel distribu

tion (F(x) == e-ae -
z

), we suggest -log((log(l/U)/a)).
A Pareto or Pearson XI (F(x) == a/xa+1 (x ~ 1)) may
be obtained by u-l/a. A tail of the Rayleigh distribu-

2 2

tion has distribution function F(x) = 1-e~ (x ~

a > 0), so that random variates may be obtained
as Ja2 - 2 log U. The hyperbolic secant distribution
function is F(x) == 1- (2/1r) arctan(e- 1rx/ 2 ). Random
variates may be obtained as (2/1r) log tan ('rrU/2).
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4 COMBINATIONS OF TWO OR MORE
RANDOM VARIABLES

Mixtures of the form X == Y with probability p and
X == Z with probability 1 - p are easily taken care of
in one-liners by setting

x == Y Iu<p + ZIu?p == Y + (Z - Y)Iu?p

where U is uniform [0, 1] and independent of (Y, Z).
However, countably infinite mixtures are not easy to
transform into one-liners.

Special distributional properties often lead to el
egant one-liners. The triangular density provides a
textbook example:

THE TRIANGULAR DENSITY. Assume that we wish
to obtain a one-liner for the triangular density with
support on [a, b] and mode at m. This could be
achieved in a number of ways, but two possibilities
are

x == m + (a + UI(b - a) - m)Jf]; ,

and

x == m + (a + U1(b - a) - m) max(U2 , U3 ) .

Here all the Ui's are i.i.d. uniform [0, 1] random vari
ables.

5 THE POLAR METHOD

In the standard polar method, one generates a ran
dom pair (X, Y) as (Rcos8,Rsin8), where Rand
8 are (random) polar coordinates. Typically, 8 is
uniformly distributed on [0, 21r], and R has a given
distribution that is easy to sample from. Often, R
is independent of 8. In the context of one-liners, we
thus have

X == R cos(21rU)

where U is uniform [0, 1]. Another way of writing this
is X == RA, where A is a random variable on [-1,1]
with the arcsine density (note: our arcsine density is
in fact a linear transformation of the standard arc
sine density 2/(1rJz(1 - z)), 0 < z < 1). A simple
exercise in analysis shows that if R and A are inde
pendent, and R has density f on [0,00), then X == RA
has density

EXAMPLE 1: THE NORMAL DENSITY. If

f( ) -r
2 /2 0r == re , r > ,

which is the Rayleigh density (so that R == J -210g(U)
has density f when U is uniform [0,1]), then the den
sity of RA is

1
(X) e-x2 /2 e- y2/2 1 2

----- dy == --e- x /2 .
o 1r ~

We thus rediscover the Box-Muller method given in
the introduction:

N £ J- 2 log U1 cos(21rU2 ) .

EXAMPLE 2: THE SYMMETRIC BETA DISTRIBUTION.

In the above context, define

f(r) == 2cr(1 - r 2 )C-l , a < r < 1 ,

where c > 0 is a parameter. The distribution function
is F(r) == 1 - (1 - r2 )C, so that, by the inversion
method, R is distributed as VI - UI/c when U is
uniform [0, 1]. The density of RA is supported on
[-1,1] and is given by

l v'1-x
2 2c(1 - x 2 _ y2)c-I

h(x) == dy
o 7f

2c(1 - X
2 )C-l/2 11

== x (1 - U2 )C-l du
1r 0

2c(1- X2 )C-l/2 22C- 1r 2 (c)
== x ----

1r r(2c)
r(2c+ 1)(1_x2 )C-l/2

22cr 2 (c + 1/2)

in which we recognize a shifted version of the sym
metric beta density. In the last step, we used a prop
erty due to Binet (property 23 on page 261 of Whit
taker and Watson, 1927). The last density is that of
2Bc+ I / 2,c+I/2 - 1. Thus, our one-liner for symmetric
betas with parameter a > 1/2 is based on

£. 1 + VI -U~ cOS(21rU2)
Ba,a == 2 .

This is Ulrich's formula (Ulrich, 1984). For a == 1/2,

note B I / 2,1/2 £: (1 + cOS(21rU2))/2 == cOS2(rrU2). Just
as for the normal distribution, equivalent respresen
tations are easy to construct. We note here that
the density h plays a central role in nonparametric
estimation theory. The case c == 3/2 leads to the
Epanechnikov or Bartlett density. The case c == 5/2
is usually referred to as the quartic kernel. Note that
Ulrich's formula is not valid for a < 1/2. A fixed one
liner for the entire symmetric beta family is given in
the next section.
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EXAMPLE 3: THE HALF-BETA DISTRIBUTION. The
half-beta density is the density of B 1/ 2 ,a. If X has
density h from the previous section, then on [0,1],
Y == X 2 has density

r(2c + 1)(1 - y)C-l/2 r(c + 1)(1 - y)C-l/2

22cr2 (c + 1/2)VY == r(I/2)r(c + 1/2)VY '

which is the density of B I / 2 ,c+l/2. Thus, for a 2: 1/2,

B 1/ 2,a I= (1 -U1
2
0

2

-
1

) cos2(21l"U2 ) .

EXAMPLE 4: THE T DISTRIBUTION. If B is beta
(a, a), then

To £ .;2a(B - 1/2)
2a - 2JB (1 - B) .

This method yields an extended fixed one-liner for the
t distribution. Another fixed one-liner is developed in
the next section.

6 THE POLAR METHOD AND NORMAL
SCALE MIXTURES

Devro.ye

This method for t-variates was pointed out by Bai
ley (1994). This could also have been obtained by
the method of the previous section, but the method
above requires less integration work. We do not make
claims that this is the fastest method for generating
t variates. There is another interesting observation
here: the t density is a mixture of bimodal densities
with infinite peaks (arcsine densities)!

ANOTHER ONE-LINER FOR SYMMETRIC BETAS. Best
(1978) has proved that

B a a £:. ~ (1 + T
2a

).
I 2 J2a+Tia

Thus, if S denotes a random sign (3 == IV~1/2 for
V uniform [0,1]), the following distributional identity
yields a one-liner for all symmetric beta distributions:

LIS
B a I a == 2 + ----;::::::==========================

2 1 + (U;1/0_ 1{ COS2 (21l"U2 1

This (new) method is applicable for all values of a
Ulrich's formula required a > 1/2.

Assume that X is a normal scale mixture random
variable, i.e., X can be written as Y N, where N is
standard normal, and Y is an arbitrary positive ran
dom variable, independent of N. If N I , N2 are two
independent normals independent of Y, then

(XI ,X2) ~f (YN1 , YN2) £:. (ZI,Z2) x (YJ2E) ,

where E is exponential, and (Zl, Z2) is uniform on
the unit circle and independent of E and Y. This
says that (X1,X2 ) has a radially symmetric distribu
tion with random radius distributed as Y V2E. Gen
erating Xl based upon this formula might be called
a polar method for X. In some cases, the distribu-

tion of Y V2E is very simple. For example, if Y £:.
Ja/2Ga / 2 , then simultaneously

yJ2E = VGaE
; YN f=. Ta .

a/2

The last relationship in fact describes the genesis of
the t-distribution. The quantity under the square
root in the first equation has a beta II (or F) distri
bution. Routine calculations show that

yJ2E f=. Ja(U-2/a - 1) .

One could thus generate Ta in one line using two in
dependent uniform [0,1] random variates U1 and U2

since

ANOTHER ONE-LINER FOR HALFBETAS. As (2Ba,a

1)2 £:. B 1/2,a, the previous paragraph suggests yet
another one-liner for halfbetas:

B £ Tia 1
1/2,a - 2a + Tia - 1 + 2a/Tia .

Thus, if S denotes a random sign (3 == IV~1/2 for V
uniform [0,1]), the following distributional identity
yields a one-liner for all halfbeta distributions:

This (new) method is applicable for all values of a.

7 DISTRIBUTIONS DEFINED AS
ONE-LINERS

Systems of distributions such as Pearson's usually
have simple analytic formats. Yet, random variate
generation may cause problems. The Pearson IV fam
ily, for example, requires quite a bit of work (see De
vroye, 1986, p. 480). In modeling, it may be useful
to define a distribution by specifying first a one-liner
(so that generation is easy), and then worrying about
the choice of the parameters and the fine-tuning of
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with parameter a E [1,2]:

f(x) = f(-x) = ~Sin C2a
) 100

ue-XUg(u)du,x > 0,

where

THE STABLE LAWS. Ibragimov and Chernin (1952)
and Zolotarev (1966, 1986) derived various useful rep
resentations for the stable laws. As an example, de
fine K(a) == a - 2Ia >1, and let Ga,b be the distribu
tion function for Sa,b. Set () == bK(a)/a. Note that
for x > 0, b > 0,

The values for x < 0 are obtained by noting that
Ga,b(X) + Ga,-b( -x) == 1. The values for b < 0 are

obtained by noting that Ba,b £. -Sa,-b. The func
tions U are defined as follows:

U ( b) == 7r(I + bz) e~(z+l/b) tan( T) .
1 Z, 2 (1rZ) ,cos 2

(

. (1ra(Z+6))) ~ (7r«a-l)z+a(J))Sin 2 cos 2

Ua ( Z , (J) = COS ( "2z ) COS (,,2")

1 (Jra) ua
-

1

g(u) == -sin - ,u> 0
Jr 2 1 + 2 cos( 7r

2
a )ua + u2a .

Thus, a Linnik random variate can be generated as

S E /W where S is a random sign, E is exponentially
distributed, and W has density g. Using the trans
formation, v == ua

, it is easy to establish that W is
distributed as

(
1ra 1ra) l/a

Csin- -cos
22'

where C is a Cauchy random variable restricted to
C 2: 1/ tan 1r2a. Equivalently, C is distributed as
tan(~(l - aU)), where U is uniformly distributed on
[O,IJ. In summary, we have

La ~ BE 1 .

(sin 1r
2
a tan(~(l- aU)) _ cos 1r;) /a

Not in partcular that if E is exponential, S is a ran
dom sign, L is Laplace, C is Cauchy, and N 1 , N2 are
i.i.d. normal random variates, then

L £. EN1 . L £. EC . L L E L £. SE C L
1 N

2
' 1 , 1 == C; 2 == ==.

(a > 1)

(a < 1) .

(a == 1)

1 1 fl -x~ U (z (J) d-- e Q I Z
2 -(J

1-6 + 1 fl -x~U (z6)d- - e Q, Z
2 2-6

! JI e-e-:l:/bU1 (z,b) dz
2 -1

Ga,b ==

the model. There are literally hundreds of such at
tempts. Thkey (1960) defined a symmetric family by

U>.. - (1 - U)>"
X == A '

where A E IR is a parameter and U is uniform [O,lJ.
This was later generalized by Ramberg and Schmeiser
(1974) by using different A's for the exponents.

Omitting location and scale parameters, the
Schmeiser-Deutch faIllily (Schmeiser and Deutch,
1977) is the family of distributions of the random vari
ables

x == { -(A - U)Il-, if U :::; A
(U - A)1l- , if U > A ,

where A and J-L are shape parameters.
In hydrology, one uses the Wakeby distribution

(Johnson and Kotz, 1988, vo1.9, p.513) because it is a
versatile five-parameter distribution, gives occasion
ally outliers, and is easy to simulate. A random vari
ate is obtained as

X = a + ~ (1 - (1 - U)C) - ~ (1 - (1 - U)C') ,

where U is uniform [0,1], b' 2: 0, b+b' 2: 0, and either
c + c' > °or c + b' == c' == O.

Burr (1942) (see Tadikamalla, 1980), Johnson
(1949) and many others since then have invented their
own families of distributions based on this convenient
principle. Tadikamalla (1980) reviews many systems.
For example, in the Tadikamalla-Johnson system
Tadikamalla and Johnson (1990), we begin with a
logistic random variate

U
Z == log-

I- U '

and define three random variables:

YL == ~ + Ae(Z---y)/fJ ,

YB = ~ + AI (1 + e-(Z-I')/6) ,

Yu == ~ + Asinh((Z - ,)/b) .

Just as with the Johnson family, the family covers the
entire skewness-kurtosis plane. And the one-liners are
fixed as well for the family.

8 REPRESENTATION THEOREMS

Somethnes densities, distribution functions or charac
teristic functions can be written as integrals, which,
upon closer inspection, reveal some method for gen
erating random variates. Two examples follow that
lead to useful one-liners.

A NEW ONE-LINER FOR LINNIK'S DISTRIBUTION.

Kawata (1972, pp. 396-397) derives the following rep
resentation for the density f of the Linnik distribution
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All Sa,b'S are supported on the real line except Sa,l

for a < 1 (which is supported on the positive halfline)
and Sa,-l for a < 1 (which is supported on the neg
ative halfline). Another representation is that the
distribution of S::l(a-l) for a < 1 is given by

~ ('If e-xA(z)dz ,

1r Jo
where

1

A(z) = sin((l - a)z) (si~(az))~
sin(az) sIn z

In the integrals, we recognize exponential power mLx

tures, which lead to a variety of one-liners. Kanter
(1975) used the last representation to suggest t.hat

I-a

S £: (A(7ru))-a
a,l E .

For a < 1, this would suffice for all values of b E

[-1,1] as

L (1 + b) l/a (1 -b) 1/a
Sa,b == -2- Sa,l + -2- Sa,-1

(Zolotarev, 1986, p. 61). Defining () as above and

sin(~) (cos ('If((a-~)z+a/l»)) ~
Ba(z) == ( )1r«a-l)z+aB) cos (1rz)cos 2 2

Chambers, Mallows and Stuck (1976) (see also Zolota
rev, 1986) suggest the extended one-liner

Sa,b ~ Ba(U - 1/2)E1
-

1
/

a

valid for all a =1= 1 and b E [-1, 1]. For a == 1, they
obtain

L 2b
8 1 b == B l (U -1/2) - -logE,

, 7r

where

2b (1 + bz ) ( 7rZ )B I (z) == -log () + (1 + bz) tan - .
7r cos '1r

2
Z 2

9 SCALE MIXTURES

We say that X is a scale mixture if X == Y Z can
be decomposed as the product of two independent
random variables Y and Z. Such mixtures are con
venient ways of trying to discover one-liners. Famous
scale mixtures occur when Y is uniform [0,1]. In that
case, the distribution of X is unimodal with a peak
at the origin, and the mixture is called a Khinchine
mixture. One should try replacing Y with all random

Devro,ve

variables for which one-liners are already known. The
following are prime candidates: Y == Ua

, Y is normal,
Y is exponential, and Y is Cauchy. At this junction,
it is impossible to be exhaustive. We will rather limit
ourselves to a few nice examples.

KHINCHINE MIXTURES. The density of X == U1U2

(with U1,U2 i.i.d. uniform [0,1]) is -log(x) on [0,1].

NORMAL SCALE MIXTURES. Let N be standard nor
mal, and let X be a positive random variable with
two-sided La-place transform £(8) == Ee- sx . Then
Y == N JX/2 has characteristic function L(t2

). This
is easily see by noting that

EeitY == EeitNVXJ2
== Ee- t2X (condition on X)

== L(t2
) .

Three main examples come to mind:
A. If X is exponential (thus, L(s) == 1/(1 + s)),

then N JX/2 is Laplace, as it has characteristic
function 1/{1 + t 2

).

B. Assume that 0 < Q < 1 and set X == So:,l. From
Zo-lo-ta-rev (1986, p. 112), we know that for the
positive stable distribution, £( s) == e- sOl if s 2:
O. Therefore, N J80:,1/2 has characteristic func
tion e-ltI2a. That is,

N JSo:, 1/2 ~ S20:,0. Symmetric stables can be
built up from positive stables and normals. For
the latter distributions, one-liners were exhib
ited aerlier in the paper.

C. If we take in the previous example a == 1, then
we note that N JSl,I/2 has characteristic func
tion

where we used the fact that the two-sided La
place transform of SI,l is e- s log S for s > 0 (Zo
lo-ta-rev, 1986, p. 112).

CAUCHY SCALE MIXTURES. Let C be standard Cauchy
and let X be a positive random variable with two
sided La-place transform L(8). Then Y == ex has
characteristic function L(ltl). This is easily see by
noting that

EeitY == EeitXN

= Ee-1t1X (condition on X)

== L(ltl) .

Three examples follow:
A. Since Ga has two-sided La-place transform £(s) =

1/{1 + s)a, valid for ~(s) 2: 0, eGa has charac
teristic function 1/(1 + It\)a.
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B. Assume that °< Q < 1. Arguing as in the pre

vious subsection, we note that So., 1C £. So.,o,
Thus, symmetric stables can also be obtained
from Cauchy variables and positive extreme sta
bles.

C. Finally, S 1,1C has characteristic function
e-Itllog Itl.

SYMMETRIC STABLE MIXTURES. Scale mixtures with
stable distributions are best studied via characteristic
functions. In particular, if X has density j, then the _
characteristic function of XC Sa,O is

cp(t) = EeitXCSo,o = Ee-ltXClo = J!(x)e-IWlxlco dx .

This is particularly helpful if j(x) has a factor e- lx1b .

For example, if f(x) == e- xb If(l + lib) , x > 0, then,
with c == bfa,

roo e- xb (I+l t I4

) 1

cp(t) = fa r(1 + lib) dx = (1 + Itla )1/b'

This is a generalized form of Linnik's distribution
(Linnik (1962), Laha (1961), Lukacs (1970), pp. 96
97), which is obtained for b == 1 (and thus c == 1Ia).
The one-liner suggested by

£, ~

La == Sa,OE4

is due to Devroye (1990). If La,b denotes a generalized
Linnik random variable, other consequences of the
relationship given above include:

L £, S G I / a
a,b == a,O b ;

£,
L 1,1 == CE ;

£2,1 £. N JE/2 £. L ;

L a ,1/2 £. Sa,o(INI/J2)2/a ;
£,

L == N 1N 2 + N3 N4 .

The last statement involves four independent stan
dard normals, and follows from the previous state
ment.

It is equally simple to verify that if {Qj} is a
sequence of numbers from (0,2], Ij ~ 0, and So.;IO is
a sequence of independent symmetric stable random
variables with the given parameters, then
~;=1 Sa; (,j E) 1/0.; has characteristic function

1

POSITIVE EXTREME STABLE MIXTURES: THE MITTAG

LEFFLER DISTRIBUTION. The one-liner

X == Sa,lG~/a

yields a random variable X with characteristic func
tion

cp(t) = C+ (~it)ar'a E (0,1], b > 0 .

This distribution was studied by Pillai (1990). A re
lated distribution was studied by Klebanov, 11aniya
and Melamed (1984). For b =: 1, we obtain the
Mittag-Leffler distribution with parameter a. Note
that the stable (a, 1) random variate mentioned here
has characteristic function

(t > 0)
(t < 0) .

Using Kanter's one-liner for Sa,l, we see that if E, E*
are i.i.d. exponential random variables and U is uni
formly distributed on [0,1], then

M £:. (ESin(a7rU))l/a ( E*sin(a7rU) )(a-l)/a
a sin(7TU) sin( (1 - a )7TU)
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