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ABSTRACT

Traditionally, sensItIVIty and uncertainty analyses in
environmental modelling contribute quantitative
descriptions of the relative importances of individual
parameters and processes, highlighting areas of
significant contributors to the overall uncertainties of
model predictions and giving markers for areas requiring
substantial improvement (perhaps through directed
experimental work). Both sensitivity and uncertainty
analysis require extensive re-sampling from input data
and simulation of model response and there is a large
and growing literature concerning their use in
environmental modelling. There is however growing
interest in the sensitivity of predictions to model
structure, and in evaluating the contribution of model
structural uncertainty to the overall uncertainty within
the general framework of sensitivity analysis (Draper,
1995, Beven, 1993, Beven and Binley, 1992).

Sensitivity and uncertainty analysis contribute to all
stages of model development, testing and assessment
and their impact on model reliability and validity will be
described. After a general introduction to sensitivity and
uncertainty analysis and discussion of their
contributions, some applications of sensitivity analysis
to several environmental modelling studies will be
presented.

2 INTRODUCTION

An environmental model will very often be composed of
a number of linked sub-models, representing physical
processes understood to varying degrees. They may be
dynamic and stochastic, and the model extent may also
be spatial. Such models may be used for example, to
predict levels of Cs-13 7 on pasture over several seasonal
cycles following the Chemobyl power plant accident;
they may be used to model the global carbon cycle in
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climate studies and to model the dispersal of a
radioactive pollutant discharged into the Irish Sea from
Sellafieid nuclear fuel reprocessing plant. The model,
depending on its purpose and field of application will
include many different processes, the sub-processes may
operate at quite different time and space scales and for
the modeller there will be choice of which processes to
explicitly model and how to parameterise these
processes. Some parameters will be known precisely,
for others, there may be conflicting evidence so that the
parameter can only be defmed in terms of a range of
values which may span several orders of magnitude.
Some of the parameters may be time- and space­
dependent.

Sensitivity analysis encourages the exploration of the
interactions between the various modelled processes and
helps throw light on the properties of complex
computational models by in its simplest form perturbing
one parameter at a time and studying its effect on the
response. For large computer models, with perhaps
hundreds of parameters, sensitivity analysis may involve
perturbing all parameters simultaneously, but in such a
way that the main effects of individual parameters and
their interactions can be estimated. Uncertainty analysis
contributes estimates of uncertainties on the final
predictions by propagating through the model all
quantified sources of uncertainty. Thus, sensitivity
analysis identifies the key contributors to uncertainties,
while uncertainty analysis quantifies the overall
uncertainty, so that together they contribute to a
reliability assessment for the model.

3 MODEL RELIABILITY EVALUATION

Modelling the environment may be done with a
number of goals in mind: they include description of the
system, prediction, impact assessment and to provide a
basis for management decisions. It is crucial that the
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model should be fit for the purpose to which it was
designed.

There are a number of properties the modeller wishes
the model and the model results to possess, but one of
the most important is reliability. What properties might
be considered to define model reliability? One
fundamental requirement is that the model should
reproduce the behaviour of the system under study,
within the limits of uncertainty of the data and the model
predictions.

As part of this requirement,therefore, an assessment of
the uncertainty associated with the model predictions is
required. This uncertainty should be acceptable for
decision making purposes and it should also be possible
to identify the factors contributing to this uncertainty.

3.1 Factors affecting reliability

The factors affecting reliability can be broadly classified
corresponding to the main stages in model development:
specification, conceptualisation, computation and
parameterisation (IAEA, 1989).

In the specification of the problem, the modeller must
consider the spatial and temporal resolution required in
the predictions, the purpose of the modelling and the
scales at which the predictions will be required. He
must also consider the processes which operate.

He must formulate an appropriate conceptual model,
defming the model structure, processes and the scale at
which they operate and any interconnections.

The conceptual model must be translated into a
computational model, whose code must be verified.

Finally, any unknown parameters must be defined.
The parameters may have associated with them large
uncertainties , arising from two sources: natural
stochastic variation and lack of knowledge on the
modeller's behalf (Hoffman & Hammonds, 1994).

Thus, at each stage of the modelling process
uncertainties are introduced, not only in the defmition of
the parameters. Sensitivity analysis contributes at each
stage and only after these stages have been completed,
can the critical stage of model testing and validation be
reached. The testing and validation must take into
account the uncertainties introduced in the preceeding
stages (McKay, 1995).

3.2 The role of sensitivity and uncertainty analysis in
model development

3.2.1 Parametric sensitivity analysis

Sensitivity analysis involves determination of the
amount and kind of change produced in a given system
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parameter by a change in another parameter. It is a tool
in the investigation of factors which are important or
influential in detenning the system response. To
perform a sensitivity analysis, it is necessary to first
identify the parameters of interest, define for each a
probability density function (p.d.f.) to reflect the belief
that the parameter will take on various values within its
possible range, account for dependencies amongst the
parameters and propagate the uncertainties through the
model to generate a p.d.f. of predicted values which can
then be analysed.

Defmition of the parameter p.d.f. can often prove
difficult, occasionally there may be experimental
information available which would allow empirical
based estimation of the p.d.f., but more commonly there
may be little information and the p.d.f. then
fundamentally reflects the modeller's belief. The
elicitation of belief based p.d.f.s in environmental
contexts is a challenging task, but which which if
successfully achieved raises the possibility of directly
incorporating expert opinion into the formal analysis
through Bayesian methodology (Cooke,1994a,b, EC
Munvar report, 1995 ).

Given the p.d.f., there are a number of widely used
methods of sampling, they include simple random
sampling (SRS), (parameter values chosen at random
from the p.d.f.) and Latin hypercube sampling (LHS),
(the range of each parameter is partitioned into n
intervals and one value is selected from each interval of
each parameter). SRS is simple, reliable easy to analyse
but inefficient. LHS is basically a stratified sampling
procedure and is generally more efficient than SRS
(Andres, 1987, Andres, 1997, Iman and Conover, 1980).

A large number of methods for the analysis of the
results from the sensitivity analysis exist, and indeed
there have been a number of comparisons of the
methods (Iman and Helton, 1988, Saltelli and Homma,
1992, Hamby, 1995). Techniques used include response
surface replacement, correlation and partial rank
correlation coefficients, regression (on ranks) as well asa
number of standard test statistics (Smirnov, Vramer-Von
Mises and Mann-Whitney), (Saltelli et ai, 1992).
Whatever the method, its goal is to explore the model
response to changing parameters.

However, parametric uncertainty reflects only one
source (and perhaps not the dominant source) of
uncertainty. The other key contributor is uncertainty
about the model structure itself.

3.2.2 Model uncertainty

In the development of the model, the modeller must
work with an imperfect and incomplete description of
the physical system. He must select features and
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processes to be parameterised, he must synthesise
sometimes conflicting evidence and he must prioritise.

Model or structural uncertainty reflects that an
acceptable model prediction may be achieved in many
different ways and that the modeller must use judgement
to decide on the structure of the model. In an attempt to
explicitly consider this source of uncertainty in the
predictions (particularly important when the model is
being used as a management decision tool), a number of
problems must fIrst be resolved. It may be more
difficult to quantify the uncertainty in the model
structure when compared to a single parameter.

Models may differ in tenns of the physical, chemical
or biological processes included; they may have
different state spaces; they may have been constructed
using a different knowledge base; the complexity of the
models may thus be different, yet all may be valid but
still provide different responses. The issue of how
uncertainty about model structure can be quantified and
incorporated in a standard sensitivity analysis is
important one which is yet to be fully addressed. The
issue of structural uncertainty is one which can be
addressed using a Bayesian formulation, within which, it
is possible to elicit and make use of expert beliefs.
Following Draper (1995):
let M denote the model, S the structural assumptions and
e the model parameters. Suppose we have a discrete set
of models, say ffi. Let x denote the data and y the
quantity to predict, then

p(y lx,S) = LP(Si Ix)p(y Ix,Si) (1)

and Si' i=1,.. ,m denotes the different structural
alternatives within the models. The analysis presented
in (1) allows, through the application of Bayes Theorem,
the distribution of the predicted quantity to be defmed in
terms of prior beliefs P(Si Ix) for the model structure
given the data and the predictive distribution for y given
the model structure Si. However, the prior distributions
P(Si Ix) must be defmed. Draper suggests creating
cross-validation or bootstrap samples (Efron and
Tibshirani, 1993) from the available data and conducting
parallel modelling activities on each sample. However,
in many environmental studies, there is little available
data so that this may not be a viable alternative. A
simple alternative to this approach which makes use of
all the data, but rather re-samples from the modellers has
often been used in international model inter­
comparisons. Modellers are given access to the same
information, and are tasked to independently develop
models for the same, defmed purposes. In this way, a
more robust and hopefully reliable set of predictions can
be achieved. In addition, the variability in the model

predictions provides a direct measure of uncertainty
based on structural uncertainty.

4. EXAMPLES

A number of recent modelling studies have had as a
stated objective an assessment of the uncertainty in
predictions due to differences in model structures. In
such work, often described as 'model benchmarking', a
number of modellers have been provided with the same
information concerning physical environment as well as
clear modelling objectives. Model endpoints have been
selected and the results compared both across the
different models and also, when possible, with
observational data. Results from three such studies are
presented and discussed.

4.1 IAEA VAMP programme (IAEA, 1995)

The International Atomic Energy Agency programme
had as one of its objectives:
'to provide a mechanism for validation of assessment
models using Chemobyl related data'. As part of this
work, a further objective was defmed: 'to test predictive
capabilities of models and identify the most important
reasons for model misprediction'. The study was
designed in the form of a test scenario, describing in
some detail, conditions in a location (unknown to
modellers) in central Europe. A wide range of model
endpoints were identified including Cs-137
concentrations in a number of agricultural products at
different points in time and also an estimate of dose to
the local population. Modellers provided their best
estimate as well as an estimate of the uncertainty on the
result. Finally the model results could be compared both
internally and against experimental data from the region
(Hoffman & Thiessen, 1995, Hoffman et aI, 1996).

The results showed variation amongst the predictions,
and differences between the model predictions and
experimental data. On further analysis, one of the main
sources of variation in the results was found to be
'modeller interpretation' (IAEA, 1995). In addition to
best estimates, the modellers also provided in some
instances, uncertainty estimates, one of the main sources
of difference in these estimates was the judgement on
how representative the measured data.

4.2 BIOMOVS (1993)

BIOspheric Model Validation Study (BIOMOYS) was
an international study for testing models for ecological
transfer and bioaccumulation of radionuclides and other
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trace substances. One of the primary objectives of
BIOMOVS was 'to explain differences in model
predictions due to structural deficiencies, invalid
assumptions .. .' (BIOMOVS, 1993). Within the
programme, one approach adopted involved the
fonnulation of test scenarios based on suitable data and a
comparison of model predictions against these
independent data sets, while for the other approach,
model predictions and associated estimates of
uncertainty were compared. As in VAMP, when the
model comparisons were made substantial differences
were found, related in part to the expertise and
judgement of the modeller. More recently, the
BIOMOVS programme has developed a number of test
cases to further investigate the role of expert judgement
in detennining uncertainty.

4.3 IAEA Arctic assessment programme (Scott et ai,
1997)

The Arctic assessment programme was concerned with
evaluating the present and potential impacts of the
dumping of nuclear waste within shallow coastal waters
in the Arctic (specifically the Kara and Barents Seas).
The waste of most concern was reactor compartments
from nuclear submarines, some of which still contained
spent nuclear fuel. A modelling group was created with
the task of providing reliable and realistic estimates of
the potential radiological impact on biota and human
populations.

The modelling group comprised 9 modellers, and in
the frrst phase of the work they undertook an extensive
benchmarking exercise, with a view to providing
provisional estimates of the uncertainties in the
predictions due to differences in the model structure.
The endpoints of the benchmarking were spatially and
temporally discriminating, and it was of interest to
investigate the variation in the endpoints.

The models used in the work simulate the dispersion
of radioactivity due to advection and diffusion within the
water column and include interactions with suspended
material and sediment. There were two main modelling
approaches, one was based on compartmental models
while the other used detailed 3-D hydrodynamic models.

In addition to a quantification of predictive
uncertainty as a result of model structure, a directed
sensitivity analysis was also carried out on sub­
processes. Results again emphasised the importance of
structural uncertainty in the overall predictive
uncertainty.

Scott

5 SUMMARY AND CONCLUSIONS

Sensitivity and uncertainty analysis are important tools
in the modelling toolkit. They should be perfonned
routinely, as the modeller might assess the goodness of
fit or check on outliers.

In model assessment and testing, sensitivity and
uncertainty analysis provide the essential information for
detennining the acceptability of the uncertainties and the
influential factors.

In model validation, the agreement of the model to
observed or measured data can only be judged in the
light of the predictive uncertainties.

In model design, sensitivity analysis encourages the
identification of key processes to be further investigated
and gives a metric by which to compare different model
structures.

Taken together, sensitivity and uncertainty analysis
contributes to a more reliable model, and one whose
abilities are better understood.
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