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ABSTRACT

We develop an efficient numerical method for fitting
ARTA processes for use as simulation input. ARTA
processes are stationary time series with arbitrary
marginal distributions and autocorrelations specified
through finite lag p. We discuss the software package
ARTAFACTS, which implements the numerical method,
and the package ARTAGEN, which generates observa­
tions from ARTA processes. To demonstrate the use
of the software, we present a real-world exaolple.

1 INTRODUCTION

Many systems contain processes that are inherently
dependent. For instance, the temperatures in an oven
of a steel mill, measured over time, are likely to be
autocorrelated. The sizes of demands on an inventory
system are often dependent; for instance, a sOlall de­
mand may follow a very large demand. Daily reserve
levels in a blood bank are autocorrelated. The preva­
lence of dependent input processes, as well as the po­
tential error in the simulation output if dependencies
are ignored (see, for example, Livny, Melamed, and
Tsiolis 1993), motivates the need for simulation input
models that represent autocorrelated time series.

ARTA (AutoRegressive To Anything), introduced
in Cario and Nelson (1996), is a transformation­
oriented approach for modeling and generating a
time-series process {Yt ; t =: 1,2, ...} with an arbi­
trary marginal distribution and autocorrelation struc­
ture specified through lag p. This approach takes a
process with a known autocorrelation structure, the
base process {Zt}, and transforms it to achieve the
desired marginal distribution for the input process,
{yt}. The target autocorrelation structure of {Yt} is
obtained by adjusting the autocorrelation structure
of the base process. In our model, the base process is
a standardized Gaussian autoregressive process of or­
der p (ARJ(p)). Thus, the major step in constructing
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an ARTA process is finding the autocorrelation struc­
ture of the AR(p) process that results in the desired
autocorrelation structure for the ARTA process. We
present an efficient numerical procedure for perform­
ing this step.

The paper is organized as follows: Section 2 dis­
cusses other nlethods for generating time-series in­
puts for sinlulation. Section 3 gives a brief review of
ARTA processes. In Section 4 we present a special­
ized nunlerical nlethod for finding the required auto­
correlation structure of the AR(p) process. We de­
scribe ARTAFACTS (AR,TA Fitting Algorithm for Con­
structing Tinle Series), a Fortran implementation of
the numerical procedure, in Section 5. In Section 6
we discuss the software package ARTAGEN (AutoRe­
gressive To Anything GENeration), which generates
observations from an ARTA process for use as sim­
ulation input. Section 7 provides a real-world appli­
cation of an ARTA process. Conclusions appear in
Section 8.

2 BACKGROUND

A variety of methods exist for modeling time-series
input processes with specified marginal distributions
and autocorrelation structures. These methods differ
in their degree of generality and their ease of use.

In Song, Hsiao, and Chen (1996), the authors use
a transformation-oriented approach with an AR( 1)
base process. However, they attempt to match only
the lag-1 autocorrelation, and they use simulation
to find the lag-1 autocorrelation of the base process
that gives the desired lag-1 autocorrelation of the in­
put process. This approach becomes computationally
prohibitive if extended to more than two or three au­
tocorrelations. The ARTA approach matches p 2 1
autocorrelations, and is computationally more effi­
cient.

TES (Melamed 1991) also uses a transfornlation­
oriented approach to modeling tinle-series input pro-
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cesses. TES, which is implemented in the soft­
\vare package TEStool (Melamed, Hill, and Golds­
man 1992), uses a series of autocorrelated uniform
random variates as the base process. To obtain an
input process with the desired characteristics using
TEStool, the user must adjust the distribution of the
base-process noise terlll. IT nfortunately, there is no
standard procedure for adjusting the noise term, so
constructing a TES process is an art as well as a sci­
ence. Furthernlore, TES processes often exhibit un­
usual sample paths. The sample paths can be inl­
proved at the expense of further complicating the
nl0deling process.

A completely different approach, for which there is
a large literature, is to construct a time-series process
that exploits properties that are specific to the par­
ticular marginal distribution of interest for {Yt }. An
example is Lewis, McKenzie and Hugus (1989) who
construct time series with gamma marginals. The
prinlary shortcoming of this type of approach is that
it is not general: a different model is required for
each marginal distribution of interest. In addition,
the sample paths of these processes, while adhering
to the desired marginal distribution and autocorrela­
tion structure, sometimes have unexpected features.

3 ARTA PROCESSES

This section reviews the definition of an ARTA pro­
cess and summarizes the results of Cario and Nelson
(1996). Formally, an ARTA process is a model of a
stationary time series {}''t} \vith the following prop­
erties:

1. }''t f"'.J Fy, t = 1,2, ... , where Fy is an arbitrary
cUDlulative distribution function (cdf); and

2. (Pl,P2, ... ,pp)=P=
(Corr[}'t, }''t+l], Corr[}''t, },'t+~], ... , Corr[}''t, }''t+p ])

where Fy and p are given. In an ARTA process, {}''t}
is represented as a transfornlation of a standardized
Gaussian AR(p) process, as follows:

ARTA Process

1. Let {Zt; t = 1,2, ...} be a stationary Gaussian
AR(p) process

where {Et} is a series of independent N(O, (j2)
random variables and (j2 is selected so that
the nlarginal distribution of the {Zt} process is
N(O,I), where N denotes the normal distribu­
tion.

Cario

2. Define the ARTA process }''t = Fy 1 [<P(Zt)J,
t = 1,2, ... , where <I> is the standard normal cdf.

The transformation F}~ 1 [<p(-)] ensures that {Yt }

has the desired marginal distribution Fy. Therefore,
the central problenl is to select the autocorrelation
structure r = (Tl' T2, ... , r p ) for the AR(p) process,
{Zt}, that gives the desired autocorrelation structure
p for the input process, {yt}.

The autocorrelation structure of the AR(p) base
process directly determines the autocorrelation struc­
ture of the input process, since Corr[Yt , 1't+h] =
Corr {F}~l[<I>(Zt)],Fy 1 [<P(Zt+h)]}. To adjust this
correlation, \ve can restrict attention to adjusting
E[}''t }'t+h], since

~ E[}''t }'t+h] - (E[},'t])2
Corr[Yi,1'Hh] = Var[1't]

and E[}''t] and Var[1''t] are fixed by Fy. Then, since
(Zt, Zt+h) has a standard bivariate normal distribu­
tion with Corr[Zt, Zt+h] = rh, we have

E {Fyl[<p(Zt)]F}~l[<p(Zt+h)]}1:1: FyI [<I>(zt}]Fy I
[<I>(Zt+h)]

x'Prh (Zt, Zt+h)dztdzt+h, (1)

where 'Prh is the standard bivariate normal probabil­
ity density function (pdf) with correlation Th. We are
only interested in processes for which this expectation
exists.

Observe from Equation (1) that the lag-h autocor­
relation of {}''t} is a function only of the lag-h auto­
correlation of {Zt}, which appears in the expression
for <.prh' We denote this function by p( rh)' Thus,
the problem of determining the autocorrelations for
{Zt} that give the desired autocorrelations for {Yt }
reduces to p independent problems: For each lag
h = 1,2, ... , p, find the value rh for which p( rh) = Ph.

Cario and Nelson (1996) prove that for each lag h
all feasible values of Ph are attainable under ARTA
processes. By feasible, we mean that e ~ Ph :::; 1,
where

fa
1

Fy 1(u)Fy 1(1 - u)du - (E[yt])2
P=~-------------
- Var[}/t]

is the minimum feasible bivariate correlation for Fy
(see Whitt 1976).

In general, it is not possible to find the rh-values
analytically; therefore, we develop an efficient numer­
ical procedure to find the Th-values to within any
precision. Cario and Nelson (1996) prove that p( r)
is nondecreasing and, under very mild conditions on
Fy , it is also continuous. These results guarantee
that our numerical procedure will converge.
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4 NUMERICAL PROCEDURE

There are two main considerations in constructing an
efficient numerical procedure for finding the autocor­
relation structure of {Zt} which gives the target auto­
correlation structure for {ri}. The first consideration
is the choice of a method to integrate Equation (1)
numerically. The second consideration is the devel­
opment of a numerical search procedure that selects
and updates the values of Ih in an efficient manner.

Several properties of the integrand make it non­
trivial to integrate Equation (1) numerically. Fore­
most is the fact that the integrand is bivariate, and
there are few general-purpose numerical-integration
nlethods for multivariate integrals. Our application
requires a general-purpose method since we do not
make any restrictions on the functional forn1 of the
marginal distribution Fy other than those required
for it to be a cdf and for the integral (1) to exist.
For instance, we do not require Fy to be continuous.
The doubly infinite ranges of the inner and outer in­
tegrals further complicate the integration since many
numerical-integration methods for multivariate inte­
grals apply to subspaces with special shapes, such as
spheres and cubes. Finally, since Equation (1) must
be calculated for many values of 'h, and it is often
computationally expensive to calculate F}-: 1, we need
a method that efficiently manages the nunlber offunc­
tion evaluations.

Taking the previously mentioned factors into con­
sideration, our solution is to iteratively apply a
univariate numerical-integration method to compute
Equation (1). Specifically, we use a bivariate im­
plementation of the Gauss-Kronrod quadrature rule
(Piessens et al. 1983, pp. 16-17). Dropping the time
subscripts t and t + h from z, the Gauss-Kronrod
quadrature rule approximates Equation (1) as:

15 15

L L W(Zi)W(Zj )Fy 1[<P(Zi)]
i=1 j=1

XFyl[~(Zj)]<Prh(Zi,Zj), (2)

where w( z) is a weight function and the ZiS and ZjS
are abscissae. Piessens et al. (1983) give the abscis­
sae for the interval (-1, 1), but they may easily be
mapped onto the range of interest. In our implemen­
tation, we truncate each doubly infinite range to the
finite range (-10,10), and use a linear mapping of the
abscissae from (-1, 1) to (-10, 10). Using the finite
range does not decrease the accuracy of the approx­
imation significantly since the value of the bivariate
normal pdf is effectively zero outside of this range.

We set absolute-error tolerances for the inner and
outer integral using the method given on pp. 112-

11:3 of Piessens et al. (1983). The absolute error is
taken to be the absolute error of the difference be­
tween two sums: the Kronrod sum, for which all of
the weights are non-zero, and the Gauss sunl, for
which some of the weights are zero. If either the inner
or the outer integral exceeds its absolute-error toler­
ance on the initial integration range (-10, 10), then
the corresponding integration range is bisected and
the integral is computed on each half-interval. This
procedure is repeated until all of the inner and outer
integrals meet the absolute-error tolerances, giving us
a bound on the overall integration error as well.

Given a value of I, we nlay compute the value
of p( I) using the Gauss-Kronrod quadrature rule.
The remaining step is to construct an efficient nu­
merical search procedure to find the autocorrelation
structure r* == (,i, 12' ... , r;) of {Zt}, such that
p* == (p(/i),p('2)""'p(;;)) ~ p. Many distribu­
tions have special properties which enhance the effi­
ciency of such a numerical search procedure.

When Fy is a continuous uniform distribution, a
closed-form solution for p( I) is given in Li and Ham­
mond (1975, Equation 7) as:

Furthernl0re, for sonle distributions-such as the
exponential distribution with rate parameter A, or
any other scale family-p( I) is independent of the
distribution parameters. To increase the efficiency
of the search procedure when p( r) is parameter­
independent, we access a precomputed table of
(" p( I)) values to find a good starting point for the
search. For symmetric distributions, p( - I) == - p( 1)
(Song, Hsiao, and Chen 1996); thus, it is only neces­
sary to compute Equation (1) for positive values of I.

Our numerical search procedure makes use of these
results.

When }'i is a discrete random variable with fi­
nite support, we use a special-purpose numerical­
integration method. In this case, which includes the
empirical cdf, it is easy to show that Equation (1) is
a finite sum of terms of the form

(constant) x (area under the bivariate normal pdf).

In general, the form of Equation (2) leads to ad­
ditional computational savings. Observe that in
Equation (2), <Prh is the only term that is a func­
tion of Th. Since for many distributions calculating
FyI is conlputationally intensive, we compute Equa­
tion (2) for many values of Th simultaneously. Specif­
ically, at each pair of abscissae (Zi, Zj ), we calcu­
late w( Zi )w( Zj )Fy 1 [<p( Zi )]Fy 1[<p(':j)] once, followed
by <Prh (Zi, Zj) for several values of 'h. Then, after
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multiplying the two terms together, we keep track of
the Gauss and the Kronrod sun1S for each value of
'h separately. The error for each integration interval
is taken to be the n1aximum absolute error over all
values of 'h, and the interval is bisected if the error
does not meet the given tolerance.

In brief, our numerical search procedure selects a
grid of 'h-values at each iteration. At least initially,
these grid points depend upon Fy and p. Then,
the Gauss-Kronrod quadrature rule is used to inte­
grate Equation (1) simultaneously for all of the grid
points. For each autocorrelation lag h, the proce­
dure finds the two grid points 'jh and 'jh+ 1 such
that P('jh) :S Ph :S P('jh+l). If one of these two
grid points meets the relative-error criterion, then the
search is complete for lag h. Otherwise, several points
between 'jh and 'jh+l are added to the grid for the
next iteration. The procedure is repeated until the
relative-error criteria are n1et for all p lags.

5 ARTAFACTS-SOFTWARE FOR FIT­
TING ARTA PROCESSES

ARTAFACTS is a Fortran in1plementation of the nu­
merical search procedure outlined in Section 4. lTser
input, which is read fron1 a file, includes the marginal
distribution Fy, the nun1ber of autocorrelation lags
p to n1atch, the autocorrelations p to n1atch, the
relative-error criterion for each autocorrelation lag,
the parameters of the ARTA-process marginal distri­
bution, and the nal11e of the output file. The follo\ving
marginal distributions are supported: Normal, Stu­
dent's t, Continuous lTniforn1, Exponential, Gan1ma,
Weibull, Lognorn1al, Johnson lTnbounded, Discrete
with finite support and Empirical. The output con­
sists of the first p au tocorrelation lags of the AR(p)
process, along with the resultant autocorrelation val­
ues for the ARTA process, which are within the user­
specified relative errors. The output also includes the
AR parameters 0:= (0'1,0'2, ... , O'p).

If necessary, ARTAFACTS can read in time-series
data from a file, calculate the sample autocorrelation
function of the series and test whether the autocor­
relations are significantly different from O. For this
option, the user specifies the number of autocorrela­
tion lags to calculate and the nan1e of the file to which
the sample autocorrelation structure will be \vritten.

Prior to invoking the numerical search procedure,
ARTAFACTS perforn1s several checks on the feasibility
of the user input. For instance, ARTAFACTS checks
that the correlation matrix implied by the auto­
correlation structure for the input process is posi­
tive definite. Furthermore, ARTAFACTS checks that
e:S Ph ~ 1,h = 1,2, ... ,p, where e, the minimum
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feasible bivariate correlation for Fy , is calculated by
ARTAFACTS. These two conditions are necessary, but
not sufficient, for the ARTA process to be stationary.
After the numerical procedure terminates, ARTAFACTS

determines whether or not the underlying AR(p) pro­
cess is stationary. If the AR(p) process is not sta­
tionary, a warning appears in the output file and no
ARTA representation is possible.

Figure 1 displays a sample ARTAFACTS input file for
an application that will be presented in the next sec­
tion. The first line contains the name of the output
file, Yleib. out. The 0 on the second line indicates
that we do not want ARTAFACTS to read in an empiri­
cal time series and estimate its autocorrelation struc­
ture. Instead, the third line tells ARTAFACTS that we
want the 111arginal distribution of the ARTA process
to be a Weibull distribution, which has code number
6. The 3 on the next line indicates that we want to
match three autocorrelation lags of the input process.
The following six lines give the desired autocorrela­
tions and their corresponding relative-error criteria
for lags 1 through 3. The final two lines of input
contain the scale parameter, 0.9432, and shape pa­
rameter, 5.14, of the Weibull distribution.

Vleib.out
o
6

3

0.749
0.01

0.409
0.01
0.121

0.01

0.9432
5.14

Figure 1: Sample ARTAFACTS Input File, input.dat

Figure 2 displays the ARTAFACTS output file
Vleib. out corresponding to the input file given in Fig­
ure 1. The output file reiterates that the ARTA dis­
tribution is a Weibull(0.9432, 5.14) distribution and
that we want to match three autocorrelation lags.
The output file also gives the desired autocorrelations
and their required relative errors. Next, it displays
three columns of program output, the three ARTA­
process autocorrelations p* = (0.751,0.407,0.121),
their underlying AR-process autocorrelations r* =
(0.752,0.408,0.122) such that p(rh) ~ ph, for h =
1,2,3, and the actual relative errors that were at­
tained. The final column of output contains the pa-
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rameters 0'1,0'2, and 0'3 of the AR(3) base process.

•••••••••• USER IHPUT ••••••••••

tocorrelations for the AR(p) process follo\ved by the
autocorrelations for the ARTA process appear on the
next six lines. The final two lines contain the param­
eters of the marginal distribution.

•••••••••• ARTA PROGRAM OUTPUT ••••••••••

Minimum feasible bivariate correlation is: -0.98875

Humber of ARTA autocorrelation lags to match: 3

••••••••••••••••••••••••••••••••••

weib.gen
weib.sum
6

3
1000

0.752
0.408

0.1216
0.749

0.409
0.121
0.9432

5.14

0.01000
0.01000
0.01000

Desired Relative Error

••••••••••••••••••••••

Weibull
0.94320
5.14000

0.7490000000000
0.4090000000000
0.1210000000000

Desired Autocorrelation

•••••••••••••••••••••••
1

2

3

ARTA Distribution:
Scale Parameter:
Shape Parameter:

Lag

•••

Lag ARTA Correl. AR Correl. ReI. Error Figure 3: Sample ARTAGEN Input File, input. gen

1
2
3

0.750955
0.406725
0.121049

0.752000
0.408000
0.121600

0.002610
-.005563
0.000402 7 APPLICATION

Figure 2: Sample ARTAFACTS Output File

6 ARTAGEN-SOFTWARE FOR GENER­
ATING ARTA PROCESSES

After fitting an ARTA process using ARTAFACTS,

we can use the AR output parameters 0: to gener­
ate simulation inputs (see Cario and Nelson 1996).
ARTAFACTS automatically writes the input file for
ARTAGEN, a software package that generates observa­
tions from ARTA processes.

ARTAGEN reads input from a file called input. gen.
A sample input file for ARTAGEN appears in Figure 3.
The first line of the input file specifies the name of
the file, weib. gen, to which the generated observa­
tions will be written. The second line contains the
name of the file, weib. sum, to which summary statis­
tics about the generated observations will be written.
The next three lines contain the code number (6) of
the ARTA marginal distribution, the number of auto­
correlation lags that have been matched (3), and the
number of observations to generate (1000). The au-

i
1
2
3

Alpha(i)
1.0017

-0.2978
-0.0632

Continuous-flo\v production lines, such as those used
to extrude plastics, are common in the chen1ical in­
dustry. Process variables such as ten1peratures and
pressures are often key parameters on these types
of production lines, and understanding their effects
on the manufacturing system is critical. Systems
simulation can be used to model new and existing
continuous-flow lines, as well as to train new opera­
tors in proper responses to process changes.

In this section, we present time-series data for
a pressure variable from a continuous-flow polymer
process at a manufacturing plant of a large chem­
ical company. We fit a marginal distribution us­
ing the con1mercially available ARENA input proces­
sor and estimated the autocorrelation structure using
ARTAFACTS. We then used ARTAFACTS to fit an ARTA
process to the data set. Finally, we generated 1000
observations from the ARTA process using ARTAGEN.
To assess the fit of the ARTA process, we compared
the properties of the empirical tilne series with those
of the generated time series.

Figure 4 displays the time-series plot of the em­
pirical data. The sample contains 519 observations,
with sample average {.1 = 45.48 and sample vari­
ance 52 = 0.039. The san1ple autocorrelation function
through lag 3 is p = (0.749,0.409,0.121). No other
autocorrelations are statistically different from zero.

ARENA selected 44.6+Weibull(0.9432, 5.14) as the
best fit for the marginal distribution of the pressure
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•••••*.... USER INPUT ••••*••*••

Figure 4: Time-series Plot of the Elnpirical Data

••*••*•••*.*.*•••••**•••••••••••••

••**. SUMMARY STATISTICS •••••

AR Corr.
0.7520
0.4080
0.1216

Weibull
0.94320
5.14000

ARTA Corr.
0.7490
0.4090
0.1210

ARTA Distribution:
Scale Parameter:
Shape Parameter:

Average of Output (y) Process: 0.86158
Sample Variance of Output (y) Process: 0.03869
Lag Correlation of Output (Y) Process

1 0.73937780
2 0.38340840
3 0.08111539

Lag
1

2
3

500400300

Time

200100

variable. We used this Weibull distribution (minus
the constant) and p as the input to ARTAFACTS, which
is displayed in Figure 1. Recall from the output file in
Figure 2 that the autocorrelation structure for the un­
derlying AR(3) process was r* = (0.752,0.408,0.122)
and the implied ARTA-process autocorrelation struc­
ture was p*= (0.751,0.407,0.121).

Given r*, we used ARTAGEN to generate an ARTA
process with the specified Weibull distribution and
autocorrelation structure p* ~p. Recall that the
ARTAGEN input file for this process appears in Figure
3. Figure 5 contains the ARTAGEN sunlnlary statistics
file.

As indicated in Figure 5, the salnple average for
this series is jl = 44.6 + 0.86 = 45.46 and the sample
variance is 52 = 0.0387. The sample autocorrelation
function through lag 3 is p = (0.739,0.383,0.081).
The differences between the sample statistics and the
theoretical values are due to sampling error-they
would converge to the theoretical values as the nunl­
ber of generated observations increased.

Figure 6 displays the tinle-series plot of the obser­
vations from the ARTA process that we fit to the
pressure variable. Conlparing Figures 4 and 6, ob­
serve that the sample paths are qualitatively sinli­
lar, although the height of the spikes is nlore variable
in the empirical tilDe series, and the ARTA process
varies nl0re consistently about its nlean than does the
empirical time series. The differences between the
two tinle series reflect sanlpling error as well as the
fact that the nlarginal distribution and autocorrela­
tion structure do not capture all of the characteristics
of a tinle-series process.

The scatterplots of (l'i, }'t+l) for the empirical and
ARTA data on the pressure variable appear in Figures
7 and 8, respectively. Observe that the ARTA data

Average of Input (Z) Process: -0.02773
Sample Variance of Input (Z) Process: 1.02594
Lag Correlation of Input (Z) Process

1 0.74147892
2 0.38993248
3 0.08886040

Figure 5: Sample ARTAGEN Summary File, weib. sum

is nl0re scattered than the empirical data, and that
there are a few more points in the bottom, left corner
of the scatterplot for the empirical data. Similar dif­
ferences appear in the scatterplots for lags two and
three, which are not displayed. The differences are
compatible with the differences between the fitted dis­
tribution and the empirical distribution, along with
the differences between the time-series plots. Overall,
the ARTA process provides a plausible model for the
empirical tinle series.

8 CONCLUSIONS

The example in Section 7 demonstrates the use­
fulness of ARTA processes for modeling time-series
inputs for sinlulation. Certainly, they provide a
more faithful representation of the empirical sys­
tems than do series of independent, identically dis­
tributed random variables, which are often used
in practice. Furthermore, the software packages
ARTAFACTS and ARTAGEN simplify the tasks of build­
ing and generating observations from ARTA models.
Instructions for downloading and using ARTAFACTS

and ARTAGEN appear on the ARTA web page at
http://primal.ierns.nwu.edu/-nelsonb/ARTA/.
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process :t\10del
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