
Proceedings of the 1996 Winter Simulation Conference
ed. J. M. Charnes, D. J. IVlorrice, D. T. Brunner, and J. J. Swain

NEW ADVANCES AND APPLICATIONS OF COMBINING SIMULATION AND OPTIMIZATION

Fred Glover
James P. Kelly
Manuel Laguna

Graduate School of Business
University of Colorado

Boulder, Colorado 80309-0419, U.S.A.

ABSTRACT

The area of integrating simulation and optimization has
recently undergone remarkable changes. New advances
are making available applications of simulation that
previously had been considered infeasible or beyond the
scope of current technology to handle.

This paper describes recently developed computer
software that effectively integrates simulation and
optimization. The software employs graphics to show
the perfonnance of the search mechanisms that control
the integration. We also demonstrate the ability of the
system to find optimal and near optimal solutions in
minutes for applications where an exhaustive
exarnination of relevant alternatives requires days or
months. The scaling of reduced time applies equally to
settings where simulation runs require greater time. As a
result, for a selected practical time limit, the new
approach provides the opportunity to obtain decisions
and scenarios whose quality greatly exceeds the quality
available in the past.

1 INTRODUCTION

The ability to guide a series of simulations in the most
effective way, instead of blindly itemizing scenarios
(with the hope that at least one of those itemized will be
one that is most desirable to implement) has been a long
standing goal. The integration of simulation and
optimization is putting this goal within practical reach.

Now, practical software exists that is capable of
interfacing simulation and special search processes, to
guide a series of simulations to uncover optimal or near
optimal scenarios. Applications include the goals of
finding:

144

• the best configuration of machines for production
scheduling;

• the best investment portfolio for financial planning;
• the best utilization of employees for workforce

planning;
• the best location of facilities for commercial

distribution;
• the best operating schedule for electrical power

planning;
• the best assignment of medical personnel in hospital

administration;
• the best setting of tolerances in manufacturing

design;
• the best set of treatment policies in waste

management;
• and many other practical objectives.

Current advances not only open new doors for
simulation, but also extend the areas to which
optimization can be applied. The great advantage of
simulation, which has been lacking in traditional
optimization, is the ability to handle uncertainties and
complex interactions (at a level that can scarcely be
formulated in standard optimization models). The
marriage of simulation and optimization offers a way to
overcome this limitation.

Earlier attempts to create methods for optimizing
simulations have largely been based on ad hoc
approaches, or have relied on the user to run through a
cumbersome "seat of the pants" analysis. Alternatively,
they have been based on stochastic approximation
designs whose main focus involves the analysis of
convergence behavior in an infinite time frame. Not
surprisingly, the results of such efforts have left a great
deal to be desired from a practical standpoint. As a step
in the direction of greater rigor within a finite time
horizon, a systematic catalog of all possible alternatives

Combining Simulation and Optinlization 1-15

may be examined by complete enumeration algorithms.
Although this approach guarantees optimal solutions, it
has very limited application. As an example of an
exceedingly simple setting where enumeration may be
practicable, suppose that a simulation model depends on
only two input factors, as for example, a job shop with
parallel machines of 2 types. If a feasible shop design
would allow from 1 to 10 machines of each type, then
100 simulation runs are needed to enumerate all
possibilities. If each simulation is relatively short (e.g., 3
seconds), then the entire process could be done in 5
minutes of computer time. However, if instead of 2
machine types we allow a very modest increase to
consider 5 types, then enumerating all alternatives to find
an optimal one would require 105 =100,000 simulations,
or approximately 3.5 days of computer time. Of course,
most simulation settings are not really so simple as the
one described. It is easily possible for complete
enumeration to take weeks or even months to carry out.

Recent developments in the area of optimization
have led to the creation of intelligent search procedures
capable of finding optimal or near optimal solutions to
complex problems with large solution spaces, by
exploring only a small fraction of the possible
alternatives. In particular, the system we describe in this
paper is the result of implementing a search technology
known as scatter search, by customizing its operation to
the context of optimizing simulations. The system
searches for the best possible solution to an optimization
problem, defined on a set of input factors to a simulation
model.

2 CLASSICAL METHODS AND META
HEURISTICS

To give a background for understanding the rationale
underlying our approach, we provide a brief review of
classical optimization perspectives and the emerging role
of meta-heuristics.

Formally, optimization deals with finding the best
(optimal) solution to problems that in general can be
expressed in the form of an objective function (to be
optimized) and a set of constraints (which restrict the
values of the decision variables). The best known
optimization tool is linear programming, which model
assumes that the objective function and constraints can
be expressed using linear functions. Linear
programming techniques are able to find optimal
solutions to problems without the need to evaluate all
possible alternatives. Models with thousands and even
millions of variables can be solved with reasonable
amounts of computer time.

Evidently, however, not all business and industrial
problems can be expressed by means of a linear

objective and linear equalities or inequalities. Many
complex systems may not even have a convenient
mathematical representation, linear or non-linear.
Techniques such as linear programming and its cousins
(non-linear programming and integer programming)
generally require a number of simplifying assumptions
about the real system to be able to properly frame the
problem. One usual simplifying assumption is to
disregard the so called "statistical fluctuations" of the
system. For instance, a production process may be
modeled by assuming that production times do not vary,
permitting a single time estimate to be used for modeling
purposes. The advantage, of course, is that once the
problem has been formulated, well-established
techniques are often able to find an optimal solution,
provided the formulation is "congenial." However, there
are problems such as production scheduling where even
the deterministic versions remain hard to solve. This is
due to the combinatorial nature of these problems, as
illustrated by the situation where the goal is to detennine
an optimal order in which to process a set of jobs. Even
for fewer that a hundred jobs to be ordered, the number
of alternative configurations is astronomical. (Seventy
jobs would require longer than the age of the universe to
enumerate using all of today's computers working at
once!)

Due to the realization that practical problems are not
going to become any easier to solve, and that
practitioners are seeking solutions to increasingly more
complex problems, researchers have actively developed
solution procedures that are referred to as meta
heuristics. Heuristics have been used for many years to
provide approximate solutions to complex problems.
For example, a production heuristic may be to give
priority to jobs with the shortest estimated processing
time. Depending on the context, this heuristic (or
processing rule) may actually work fairly well.
However, in some other situations the results may be
disastrous, with dire consequences for equipment
utilization, production lead times, and work-in-process
inventory.

The alternatives seem at first to be less than
encouraging: either to seek optimal solutions to
simplified problems or to seek sub-optimal and possibly
very poor solutions to complex systems. The area of
meta-heuristics arose with the goal of providing
something better, based on integrating high-level
intelligent procedures and fast computer
implementations. Numerous successful applications
emerged, but with an accompanying limitation: typically
they required highly problem-specific designs,
customizing the solution procedures to each particular
case. Every time a new problem surfaced, a new
procedure needed to be developed. Meta-heuristic

146 C;]OVCT, Kcll,Y, and Laguna

approaches are based on general principles, but they also
owe their efficiency to the knowledge of characteristics
particular to each situation. In this sense, there is no
separation between the model and the solution
procedure. In fact, the solution procedure may be seen
as a way of modeling the problem.

Of course, it is preferable to separate the solution
procedure from the system we are trying to optimize if
such a separation can be achieved successfully. The
disadvantage of this "black box" approach (see Figure
1), is that the optimization procedure is generic and does
not know anything about what goes on inside of the box.

Input .1'--_S_y_st_e_m_----J--O-u-lt~.u~t

Figure 1: System as a black box.

The clear advantage, on the other hand, is that the same
optimizer can be used for many systems. Our approach
is an implementation of a generic optimizer that
successfully embodies the principle of separating the
method from the model. The optimization problem is
defined outside the system, which is represented in this
case by a simulation model. Therefore, the simulation
model can change and evolve to incorporate additional
elements, while the optimization routines remain the
same. Hence, there is a complete separation between the
model that represents the system and the procedure that
is used to solve optimization problems defined within
this model.

Figure 2: Coordination between optimization and
simulation.

The optimization procedure uses the outputs from
the simulation model which evaluate the outcomes of the
inputs that were fed into the model. On the basis of this
evaluation, and on the basis of the past evaluations which
are integrated and analyzed with the present simulation
outputs, the optimization procedure decides upon a new
set of input values (see Figure 2). The optimization
procedure is designed to carry out a special "non
monotonic search," where the successively generated
inputs produce varying evaluations, not all of them
improving, but which over time provide a highly efficient
trajectory to the best solutions. The process continues

until some tennination criterion is satisfied (usually
given by a limit expressing the user's preference for the
amount of time to be devoted to the search). The
underlying components of our method, scatter search and
tabu search, are briefly sketched in the next two sections.

3 SCATTER SEARCH

Two of the best-known meta-heuristics are genetic
algorithms and tabu search. Genetic Algorithm (GA)
procedures were developed by John Holland in the early
1970s, at the University of Michigan (Holland 1975).
Parallel to the development of GAs, Fred Glover, at the
University of Colorado, established the principles and
operational rules for tabu search (TS) and a related
methodology know as scatter search (Glover 1977).

Scatter search has some interesting commonalties
with GA ideas, although it also has a number of quite
distinct features. Several of these features have come to
be incorporated into GA approaches after an intervening
period of approximately a decade, while others remain
largely unexplored in the GA context.

Scatter search (Glover 1994) is designed to operate
on a set of points, called reference points, that constitute
good solutions obtained from previous solution efforts.
The approach systematically generates linear
combinations of the reference points to create new
points, each of which is mapped into an associated
feasible point. Tabu search is then superimposed to
control the composition of reference points at each stage.
Tabu Search (see e.g., Glover and Laguna 1993) has its
roots in the field of artificial intelligence as well as in the
field of optimization. The heart of tabu search lies in its
use of adaptive memory, which provides the ability to
take advantage of the search history in order to guide the
solution process. In its simplest manifestations, adaptive
memory is exploited to prohibit the search from
reinvestigating solutions that have already been
evaluated. However, the use of memory in our
implementation is much more complex and calls upon
memory functions that encourage search diversification
and intensification. These memory components allow
the search to escape from locally optimal solutions and in
many cases find a globally optimal solution.

Similarities are immediately evident between scatter
search and the original GA proposals. Both are instances
of what are sometimes called "population based"
approaches. Both incorporate the idea that a key aspect
of producing new elements is to generate some fonn of
combination of existing elements. On the other hand,
several contrasts between these methods may be noted.
The early GA approaches were predicated on the idea of
choosing parents randomly to produce offspring, and
further on introducing randomization to determine which

Combining Simulation and Optimization 1-17

components of the parents should be combined. By
contrast, the scatter search approach does not
correspondingly make recourse to randomization, in the
sense of being indifferent to choices among alternatives.
However, the approach is designed to incorporate
strategic probabilistic biases, taking account of
evaluations and history. Scatter search focuses on
generating relevant outcomes without losing the ability to
produce diverse solutions, due to the way the generation
process is implemented. For example, the approach
includes the generation of new points that are not convex
combinations of the original points. The new points then
may contain information that is not contained in the
original reference points.

Scatter search is an information driven approach,
exploiting knowledge derived from the search space,
high-quality solutions found within the space, and
trajectories through the space over time. The
combination of these factors creates a highly effective
solution process. The incorporation of such designs is
responsible for endowing our system with the ability to
solve complex simulation-based problems with
unprecedented efficiency.

4 TABU SEARCH BASICS

One way of intelligently guiding a search process is to
forbid (or discourage) certain solutions from being
chosen based on information that suggests these
solutions may duplicate, or significantly resemble,
solutions encountered in the past. In tabu search, this is
often done by defining suitable attributes of moves or
solutions, and imposing restrictions on a set of the
attributes, depending on the search history. Two
prominent ways for exploiting search history in TS are
through recency and frequency memories. Recency
memory is typically (though not invariably) a short-term
memory that is managed by structures or arrays called
"tabu lists," while frequency memory more usually
fulfills a long term search function. A standard form of
recency memory discourages moves that lead to solutions
with attributes shared by other solutions recently visited.
A standard form of frequency memory discourages
moves leading to solutions whose attributes have often
been shared by solutions visited during the search, or
alternately encourages moves leading to solutions whose
attributes have rarely been seen before. Another
standard form of frequency memory is defined over
subsets of elite solutions to fulfill an intensification
function.

Short and long term components based on recency
and frequency memory can be used separately or
together in complementary TS search strategies. Note
that this approach operates by implicitly modifying the

neighborhood of the current solution. Tabu search in
general includes many enhancements to the scheme
sketched here, and we refer the interested reader to
Glover and Laguna (1993) or Glover (1996). The details
of the short-term and long-term adaptive memories, and
a recovery strategy for both intensifying and diversifying
the search are discussed in the following section.

5 AN OVERVIEW OF THE ALGORITHM

We assume that a solution to the optimization problem
can be represented by a n-dimensional vector x, where X;

may be a real or an integer bounded variable (for i = 1,
... , n). In addition, we assume that the objective function
value fix) can be obtained by running a related
simulation model that uses x as the value of its input
factors. Finally, a set of linear constraints (equality or
inequality) may be imposed on x.

The algorithm starts by generating an initial
population of reference points. The initial population
may include points suggested by the user, and it always
includes the following midpoint:

X; = I; + (u; - 1;)/2,

where u; and I; are the upper and lower bounds on X;,

respectively. Additional points are generated with the
goal of creating a diverse population. A population is
considered diverse if its elements are "significantly"
different from one another. We use a distance measure
to determine how "close" a potential new point is from
the points already in the population, in order to decide
whether the point is included or discarded.

Every reference point x is subjected to a feasibility
test before it is evaluated (i.e., before the simulation
model is run to determine the value of fix)). The
feasibility test consists of checking (one by one) whether
the linear constraints imposed by the user are satisfied.
An infeasible point x is made feasible by formulating and
solving a linear programming (LP) problem. The LP (or
mixed-integer program, when x contains integer
variables) has the goal of finding a feasible x· that
minimizes the absolute deviation between x and x*.

The population size is automatically adjusted by the
system considering the time that is required to complete
one evaluation of fix) and the time limit the user has
allowed the system to search. Once the population is
generated, the procedure iterates in search of improved
outcomes. At each iteration two reference points are
selected to create four offspring. Let the parent
reference points be Xl and X2, then the offspring X3 to X(,

are found as follows:

148 Glover, Kell,Y, and Laguna

X3 =Xl + d

Xt =Xl - d

Xs = Xl + d

X() =X2 - d

where d = (Xl - x2)/3. The selection of Xl and X2 is biased
by the values fiXI) and fiX2) as well as the tabu search
memory functions. An iteration ends by replacing the
worst parent with the best offspring, and giving the
surviving parent a tabu-active status for given number of
iterations. In subsequent iterations, the use of two tabu
active parents is forbidden.

5.1 Restarting Strategy

In the course of searching for a global optimum, the
population may contain many reference points with
similar characteristics. That is, in the process of
generating offspring from a mixture of high-quality
reference points and ordinary reference points member of
the current population, the diversity of the population
may tend to decrease. A strategy that remedies this
situation considers the creation of new population.

Our implementation of a restarting mechanism has
the goal of creating a population that is a blend of high
quality points found in earlier explorations (we call these
the elite points) complemented with points generated in
the same way as during the initialization phase. The
restarting procedure, therefore, injects diversity through
newly generated points and preserves quality through the
inclusion of elite points.

5.2 Adaptive Memory and the Age Strategy

Some of the points in the initial population may have
poor objective function values. Therefore, they may
never be chosen to play the role of a parent and would
remain in the population until restarting. To additionally
diversify the search, we increase the "attractiveness" of
these unused points over time. This is done by using a
form of long-term memory that is different from the
conventional frequency-based implementation.

In particular, we introduce the notion of "age" and
define a measure of "attractiveness" based on the age and
the objective function value of a particular point. The
idea is to use search history to make reference points not
used as parents "attractive," by modifying their objective
function values according to their age.

At the start of the search process, all the reference
points X in a population of size p have zero age. At the
end of the first iteration, there will be p-l reference
points from the original population and one new

offspring. The ages of the p-l reference points are made
one and that of the new offspring zero. The process then
repeats for the subsequent iterations, and the age of every
reference point increases by one in each iteration except
for the age of the new population member whose age is
initialized to zero. (A variant of the above procedure
sets the surviving parent's age also to 0.)

Each reference point in the population has an
associated age an objective function value. These two
values are used to define a function of attractiveness that
makes an old high-quality point the most attractive.
Low-quality points become more attractive as their age
increases.

5.3 Neural Network Accelerator

This strategy is designed to increase the power of the
system's search engine. The concept behind embedding
a neural network is to "screen out" values x that are
likely to result in a very poor value of fix). The neural
network is a prediction model that helps the system
accelerate the search by avoiding simulation runs whose
results can be predicted as inferior. Engaging the neural
network accelerator is an option to the user. When the
neural network is used, information is collected about the
objective function values obtained by different
optimization variable settings. This information is then
used to train the neural network during the search. The
system automatically determines how much data is
needed and how much training should be done, based
once again on both the time to perform a simulation and
the optimization time limit provided by the user.

The neural network is trained on the historical data
collected during the search and an error value is
calculated during each training round. This error refers
to the accuracy of the network as a prediction model.
That is, if the network is used to predictf(x) for x-values
found during the search, then the error indicates how
good those predictions are. The error term can be
calculated by computing the differences between the

known fix) and the predicted j(x) objective function

values. The training continues until the error reaches a
minimum prespecified value.

The neural network accelerator can be used at
several risk levels. The risk is associated with the
probability of discarding x when fix) is better than
f(xbesr), where XbeSI is the best solution found so far. The
risk level is defined by the number of standard deviations

used to determine how close a predicted value j(x) is

of the best value f(xbesl)' A risk-averse user would, for

instance, would only discard X if J(x) is at least three

Combining Simulation and Optimization 149

standard deviations larger than f(Xbes,), in a minimization
problem.

6 THE OPTQUEST SYSTEM

A commercial implementation of the system described
above has been recently released under the name of
OptQuest (1996). In its current version, OptQuest has
been specifically customized to help users to find
optimal input parameter settings to simulation models
built with Micro Saint 2.0. (Micro Saint is registered
trademark of Micro Analysis and Design, Inc.) In order
to use OptQuest the user frrst creates a Micro Saint
model. Once the simulation model has been created, an
"Optimize" option can be selected within Micro Saint to
access OptQuest. The interaction between OptQuest and
Micro Saint can be summarized as follows:

1) Micro Saint invokes OptQuest and the most current
version of the simulation model is stored in the
corresponding model file.

2) OptQuest reads the model file from disk to allow the
user to select optimization variables from a
"Variable Catalog."

3) The user describes the optimization problem (which
may include constraints) in terms of the selected
variables and the system variable named objective,
which calculates fix) for a given simulation run with
input factors x.

4) OptQuest repeatedly calls Micro Saint to perform
simulation runs during the search for the optimal
solution.

5) Micro Saint returns simulation results (i.e., the value
of objective) to OptQuest.

6) Upon exiting OptQuest, the model may be updated
with the values found during the search.

The OptQuest design is quite flexible, since with limited
programming effort the simulator can be replaced to
customize the system for different applications.

6.1 A Job Shop Simulation

We illustrate the operation an some of the features of
OptQuest with a simulation of a Job Shop. The job shop
is simulated as network of queues. The job shop has
several different processing centers with one or more
identical machines in each center. Several types of jobs
have different routings through the job shop. We

consider a job shop with five different machine centers
(drills, grinders, lathes, punches, and saws). We also
consider that three different types of jobs (A, B, and C)
arrive to the job shop for processing. The Micro Saint
network representation of this model is shown in Figure
3.

Figure 3: Micro Saint task network.

The objective function in this problem creates a
tradeoff between minimizing the makespan and the cost
associated with the number of machines used in each
work center. Let the lower and the upper bounds be 1
and 10, respectively, for the number of machines in each
work center. Then the solution x = {1, ..., I} minimizes
the capital cost of equipment, while the solution x = { 10,
..., 10} minimizes the makespan. We consider that x =
{drills, grinders, lathes, punches, saws}. The OptQuest
screen shown in Figure 4 is used to select the variables
for optimization:

Figure 4: Variable selection screen.

The column labeled "Suggested Value" allows the user
to suggest a reference point x to be included in the initial

150 Glover, Kelly, and Laguna

population. The "Variable Selection" screen shows all
the variables defined in the simulation model, however,
only a few of them are appropriate to become part of the
optimization model. For instance, setting the value of
drillq as part of the optimization process is meaningless,
since this variable is used in the model to keep track of
the number of jobs waiting to be processed by an
available drill. The main OptQuest screen looks as
depicted in Figure 5 after a 10-minute run using the
"Aggressive Neural Network" option..

Figure 5: Main OptQuest screen.

6.2 Adding Constraints

We have mentioned that an important feature of
OptQuest is the flexibility to impose constraints on the
variables selected for optimization. In many situations it
is desirable to search for solutions that satisfy restrictions
that must be met by the system being simulated.
OptQuest allows the user to impose any number of
constraints, as long as they can be expressed as linear
combinations of the optimization variables.

To illustrate the use of constraints, let's turn our
attention again to the job shop problem. Suppose that we
would like to search for an optimal job shop
configuration that meets the following requirements:

1) The ratio of lathes to drills should be at least 2 to 1.

2) The number of drills and punches should not
represent more than 40% of the total number of
machines in the shop.

3) Given that machine costs (in thousands) are $100 for
a drill, $150 for a grinder, $80 for a lathe, $120 for a
punch, and $200 for a saw, the total cost of the
equipment should not exceed $2,OOOK.

These restrictions can be represented in terms of linear
constraints through simple algebraic transformations.
Once they have been transformed, the constraints can be
entered using the "Constraint Editor" in OptQuest. The
screen in Figure 6 shows the result of adding the linear
constraints that represent the requirements imposed on
the problem.

Figure 6: Constraint editor in OptQuest.

After running the optimization process for 10
minutes, the solution x ={2, 2, 5, 2, 2} is reported as the
best. It can be easily verified that this solution satisfies
all the constraints with fix) = 405.206.

It is interesting to note that the final objective
function value (i.e., the best found in 10 minutes of
search) is better than the one found for the unconstrained
model (i.e., 407.301). This might seem surprising at fITst
glance. However, restricting the search to regions where
good solutions lie allows OptQuest to find high quality
solutions faster. Therefore, if the user knows that good
shop configurations meet the specifications set by the
constraints, then by creating a constrained optimization
model, better configurations can be found in a smaller
amount of time.

6.3 Optimizing an Average Objective Function Value

We devote this subsection to address the optimization of
the average response (or average objective function
value). Instead of seeking a minimum or a maximum
value of the objective function in a single run, it may
sometimes be desirable to optimize its average value.
This can be done by changing the number of runs that the
simulator is asked to perform. One thing that it must
remembered is that an increase in the number of runs
causes an increase in the simulation time. So, the
number of search iterations that can be performed in a
fixed amount of time will decrease.

Suppose we change the number of runs to be 5 in
our example. Now, OptQuest attempts to find the best
values for drills, grinders, lathes, punches, and saws in
order to minimize the average objective function value

Combining Simulation and Optimization 151

obtained after 5 runs of the simulation. In other words,
the system attempts to find the best x such that !(x) is

minimized, where the average value is found by running
the simulation a given number of times with the same x
value and different seeds for the random number
generator. Detailed information concerning individual
runs is displayed by the system on a separate window.
This window is labeled "Run Data" and takes on the
form depicted in Figure 7 during the search process in
the job shop example.

Figure 7: Run data screen.

The 1O-~minute limit allows the search in this case to only
evaluate 85 solutions. This is due to the longer
simulation time needed to perform 5 runs instead of one
every time a configuration is tested.

7 CONCLUSIONS

In this paper we have described recent advances in
optimization and simulation technologies that have made
possible the development of a system that can effectively
perform the task of optimizing simulations. We showed
the benefits of adapting the approach known as scatter
search in this context, while complementing this
methodology with appropriate tabu search elements.

We have also demonstrated the capabilities of a
commercial software package that successfully
implements the notion of optimizing a complex system
(in this case represented by a simulation model). The
software package includes a scatter search / tabu search
module, a mixed integer programming solver, and a
procedure to configure and train neural networks. All
these tools are integrated by a user-friendly interface.

We are currently undertaking additional research in
the area of optimizing simulations with the goal of
producing systems that are still more effective for
dealing with the growing complexity of practical
problems. The importance of integrating the
complementary realms of optimization and simulation
assures that future advances will have a high impact on
real world applications

REFERENCES

Glover, F. 1977. Heuristics for integer programming
using surrogate constraints. Decision Sciences
8:156-166.

Glover, F. 1994. Genetic algorithms and scatter search:
unsuspected potentials. Statistics and Computing
4: 131-140.

Glover, F. 1996. Tabu search and adaptive memory
programmin~advances, applications and
challenges. To appear in Interfaces in Computer
Science and Operations Research, eds. Barr,
Helgason and Kennington, Kluwer Academic
Publishers.

Glover, F. and M. Laguna. 1993. Tabu search. In
Modem Heuristic Techniques for Combinatorial
Optimization, ed. C. Reeves, 60-150. Blackwell
Publishers: Oxford.

Holland, J. H. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor.

OptQuest 96 User's Guide--The Micro Saint Simulation
Optimizer. Optimization Technologies, Inc.
Boulder, Colorado.

AUTHOR BIOGRAPHIES

FRED GLOVER is the U S West Chaired Professor in
Systems Science at the University of Colorado, Boulder.
He has authored or co-authored more than two hundred
published articles in the fields of mathematical
optimization, computer science and artificial intelligence,
with particular emphasis on practical applications in
industry and government. In addition to holding editorial
posts for journals in the U.S. and abroad, Dr. Glover has
been featured as a National Visiting Lecturer by the
Institute for Operations Research and the Management
Sciences and has served as a host and lecturer in the U.S.
National Academy of Sciences Program of Scientific
Exchange.

JAMES P. KELLY is an Assistant Professor of
Management Science in the College of Business and
Administration and Graduate School of Business
Administration at the University of Colorado in Boulder.

152 Glover, Kell,Y, and Laguna

He received his bachelors and masters degrees in Chemical
Engineering from Bucknell University in 1981. He
worked four years as a systems analyst and project
manager at Texas Instruments in Dallas, Texas. He
returned to graduate school and received his doctoral
degree in Applied Mathematics and Operations Research
from the University of Maryland in 1990. While at the
University of Maryland, his research into methods for
providing statistical confidentiality was funded by a series
of grants from the United States Bureau of the Census.
His current research interests are in the area of heuristic
combinatorial optimization and applied artificial
intelligence. Dr. Kelly has published several papers on
topics such as tabu search and simulated annealing in
various journals such as Operations Research, European
Journal of Operational Research, and the INFORMS
Journal on Computing. He is a member of INFORMS.
He is an associate editor for the INFORMS Journal on
Computing and an editor for the Journal ofHeuristics.

MANUEL LAGUNA is an Assistant Professor of
Operations Management in the College of Business and
Administration and Graduate School of Business
Administration of the University of Colorado at Boulder.
He received master's and doctoral degrees in Operations
Research and Industrial Engineering from the University
of Texas at Austin. He was the first U S WEST
postdoctoral fellow in the Graduate School of Business
at the University of Colorado. He has done extensive
research in the interface between artificial intelligence
and operations research to develop solution methods for
problems in the areas of production planning and
inventory control, routing and network design in
telecommunications, and automated drawing. Dr.
Laguna co-edited the Tabu Search volume of Annals of
Operations Research, and he is currently editor of the
Journal of Heuristics and Combinatorial Optimization:
Theory and Practice. He is a member of the Institute for
Operations Research and the Management Sciences, the
Institute of Industrial Engineers, and the International
Honor Society Omega Rho.

