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ABSTRACT

As an advanced tutorial, we discuss batching meth­
ods for determining point-estimator precision for
steady-state simulation experiments. We empha­
size hatching methods in which each batch pro­
vides a point estimator analogous to that of the ex­
periment, hut we mention other methods that use
batches, especially the more-general idea of stan­
dardized time series. Despite the preponderance of
literature on confidence-interval estiIl1ation for the
mean using adjacent nonoverlapping batches, we fo­
cus on estimating the point estimator's standard er­
ror and consider both general point estimators and
general batching relationships. Literature on multi­
variate batching exists, but we focus on the univari­
ate problem. We consider the initial-transient prob­
lem only in passing. Specific issues include form of
the point estimator, definition of the batch statis­
tics, form of the batch-statistics estimator, optimal
batch size (including various definitions of optiman,
and determining batch size. This paper is a short
summary of the issues, with a fairly con1plete bib­
liography.

1 INTRODUCTION

Consider a simulation experiment that produces
steady-state data {Yi; i == 1, 2, ... }. The purpose of
the experiment is to estimate (), a property of the
steady-state distribution function Fy. The prop­
erty eis a performance measure of the model being
simulated, often a mean or variance or quantile.

2 POINT ESTIMATION

Point estimation is typically straightforward. Early
observations whose distributions Il1ight differ sub­
stantially froIl1 Fy are weighted lightl~ often dis­
carded entirely. The point estin1ator, (), is chosen

Wheyming Tina Song

Department of Industrial Engineering
National Tsing Hua University

Hsinchu, Taiwan 300, REPUBLIC OF CHINA

to mimic (), typically the sample mean, sample vari­
ance, or a simple function of the relevant order
statistics. Although sometimes point estimators
are defined to be the average of batch statistics,
the grand estimator (obtained by using all of the
data at once) is often simpler to compute and has
better statistical properties, in particular smaller
bias. (The average of batch means is the grand
Il1ean, so in that special important case the point
estimators are identical.) The purpose of batching
is to estimate the precision of the point estimator,
not to improve the point estimator.

3 BATCH STATISTICS

The i th batch is composed of the observations
}'i, ... ,Yi+m-l for i == 1,2, ... , n - m + 1, where m
is the batch size and n is the run length. The i th

batch statistic ~ is a miniature version of 8, again
typically a sample mean, sample variance, or sim­
ple function of the relevant order statistics. When
appropriate, a grand estimator can be used in the
batch statistic; for example, centering a batch vari­
ance on the grand mean is better than centering it
on the batch mean.

4 STANDARD-ERROR ESTIMATION

Batch statistics are combined to estimate the vari­
ance of e, or its square root the standard error. The
batch-statistics estimator for the variance is

where d is a function of nand m, chosen, for exam­
ple, to yield Ev;rA[O] == VarA[B] for independent
data. A is a subset of {I, 2, ... , n - m+ I} and IAI is
the cardinality of A. Not surprisingly, the choice of
A has little effect on bias, and variance is n1inimized
if ~4 == {I, 2, ... , n - m. + I}, the case of overlapping
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batch statistics. Maybe surprisingly, computation
of batch means and batch variances is O(n); batch
quantiles require O(n In n) computation.

Rather than thinking of V;;A [0] as an estima­

tor of VarA[O] , one can think ~f estimating the
asymptotic constant nlimVarA[O]. The change in
the batch-statistics estimator is simple: multiply
by n. But this relationship is true only asymp­
totically, and the difference can be noticeable for
surprisingly long runs.

5 OPTIMAL BATCH SIZE

Optimal batch size is usually discussed in one
of two contexts: confidence-interval estimation or
standard-error estimation. Criteria for confidence­
interval procedures include probability of cover­
ing () , expected interval length, variance of in­
terval length, and (more generally) the probabil­
ity of covering an arbitrary point (}o. Because
confidence-interval estimation is inherently multi­
criterian, seemingly contradictory advice abounds
in the literature. Choosing ten to thirty batches
is fine for fixed n if only coverage probability and
expected length are considered, but does not yield
the consistency needed for the asymptotic results
underlying sequential methods. And more batches
are useful when using control variates or obtaining
smaller variance for the confidence-interval length.

Standard-error estimation is simpler because it
allows a single criterion. The ~al S[iterioE is the
mean squared error (mse) of VarA[()]. If () is the
sample mean, then asymptotic arguments lead to
an mse-optimal batch size

(

2 ) 1/3
r1i*= 2n

Cb/1
+1,

CY/O

where c~ and Cy are the known bias constant and
variance constant of the batch-statistics estimator,
Ii = L~=-oo IhliCorr(Y'i,Y'i+h), and the additive
constant is chosen to yield batch size of one Jor
independent data. Much less is known when () is
not a sample mean, but that r1i* grows with the
cube root of n seems quite general.

6 DETERMINING BATCH SIZE

Many papers over the last few decades have sug­
gested methods for choosing the number of adja­
cent nonoverlapping batches to obtain reasonable
confidence intervals for the mean, often based on
tests of independence. In the last few years papers

have appeared on estimating m'"', the central prob­
lem being how to efficiently estimate '"'11 /'0, which
can be interpreted as the autocorrelation's center of
gravity. Very recently some papers have considered
mse-optimal batch sizes for specific point estima­
tors that are not means. Given n saved observa­
tions, O(n) batch-means algorithms exist that can
be used without tuning; no such algorithms exist
for general point estimators.

7 WHAT WE DON'T KNOW

Despite knowing quite a lot about batch means, no
method is available for estimating the variance of
y~ when the data come one at a time and are not
saved. Such a method should use finite memory
and somehow increase batch size as the run length
increases. It should not need to know the run length
a przorz.

Little is known about batch sizes when the point
estimator is not "f". Creating a literature for each
possible point estimator seems daunting. General
methods will probably be created from two gen­
eral results: that VarA[O] is O(n- 1

) and that r1i* is
O(n 1/ 3 ).

How to transfer the technology is also an open
question. In practice, there are often tens of per­
forn1ance measures (), all needing a point esti­
mator and associated measure of precision. The
practitioner has not the time, and often not the
knowledge, to use any method that is not com­
pletely automated. Batch means has an advantage
compared to other methods of estimating point­
estimator precision because it generalizes so well to
non-mean point estimators, which might allow the
same method to be used for all point estimators.

More fundamentally, the research community
does not agree on a set of criteria for good algo­
rithms, and the research community and the prac­
titioner community too seldom discuss the criteria.
For example, the authors think that a good begin­
ning would be the creation of an automated method
to allow statistically meaningless point-estimator
digits to be deleted from simulation output reports.
Even such a minor suggestion for indicating point­
estimator precision in practice leads, however, to
interesting, non-trivial issues.
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