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ABSTRACT

This paper describes, in general ternls, nlethods to
help design the runs for simulation nl0dels and in
terpreting their output. Statistical nlethods are de
scribed for several different purposes, and related
problenls like conlparison, variance reduction, sen
sitivity estinlation, nletanl0deling, and optilllization
are nlentioned. The 11lain point is to call attention to
the challenges and opportunities in using sirllulation
models carefully and effectively.

1 INTRODUCTION AND SCOPE

Building a good sinlulation model can be a lot of
work. You have to figure out how to nl0del the sys
tenl, express the nl0del in whatever software you're
using, collect data on the corresponding real system
(if any) to set the silllulation model's in pu 1. paranl
eters, verify that the sinlulation nl0del, as expressed
in the software, is \vorking properly, and validate the
sinlulation's output against the corresponding output
fronl the real systenl (if any). After all that, you
should feel pretty good.

But not too good. If you stop there you've wasted
a lot of effort, since now it's the sinlulation nl0del's
turn to go to work for you. And I don't mean just
running it (once) on your computer and looking at the
results (which you doubtless did anyway just to get it
to run). What you really have now is far ITIOre than
just "a" simulation 1110del-you have a great vehicle
to test out a lot of different ideas without a lot 1110re
work on your part (although your computer will now
get very busy, but that's good-and cheap, unlike
your time invested to build the model), and to learn
a lot about your model and the system it's sinlulating
in ternlS of perfornlance and possible improvenlent.

To do all this effectively, though, you have to think
carefully about just how you're going to exercise your
model. And, perhaps unfortunately, the nl0st com-
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1110n kinds of sinlulation nl0dels can fool you (al
though not intentionally) if you're not circumspect
about how you interpret their output.

J\!Iy purpose in this tutorial is to call your attention
to these issues and indicate in general ternlS ho\v you
can deal \vith thenl. I \von't be going into great depth
on a lot of technical details, but \vill refer you instead
along the \va}' to any of several texts on sirl1ulation
that do, to introductory tutorials on this subject in
the last fe\v \VS(;s, and to more advanced and spe
cialized vVSC reviews.

Section 2 takes up the issue of randolllness in sinl
ulation, Section ;3 considers planning your runs, and
Section 4 looks at the role of tinle in sinlulation. Anal
ysis of a single variant is described in Section 5, and of
alternative variants in Section 6. Sections 7-10 touch
on variance reduction, sensitivity estinlation, meta
nl0dels, and sinlulation optinlization. This paper is
an update of Kelton (1994,199.5).

2 DIDO VS. RIRO

Sonle sinlulations take as input only fixed, nonran
dOlll values, typically representing paranleters that
describe the nl0del and the particular variant of it
you're evaluating. If the system you're simulating
is really like this, then you can get by with such
a determ.inistic sinlulation nl0del. The nicest thing
about this is, since there's no randonlness in the in
put, there's no rand0111neSS in the output either-if
you repeat the si111ulation you'll get the sallle thing
over again. Thus, your answers are exact, at least
up to roundoff. Figure 1 illustrates the idea in a
nlanufacturing exa111ple, where the inputs are the nla
chine cycle times, the interarrival tinles bet\veen suc
cessively arriving batches of parts, and the sizes of
the these batches; the outputs are the hourly produc
tion and the machine utilization. The big dots for the
inputs represent their (deternlinistic) values, and the
big dots for the outputs represent the (deter111inis-
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Figure 1: DIDO Sill1ulation
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tic) output performance 11leasures obtained by trans
forming the input via the simulation's logic into the
output. To abuse the conlputer-science anti-I11axinl
of C;IGO (Garbage In, Garbage Out), this situation
might be called DIDO (Deterministic In, DeterI11i~1

istic Out). You might still have to I1lake a lot of dIf
ferent runs, but for the purpose of evaluating a lot of
different input-paraI11eter conlbinations rather than
to deal with uncertainty in the output.

But many (I1laybe 1110St) systenlS involve SOI1le kind
of uncertain, randolll input, so realistic sinlulation
nl0dels ought to provide for such variable input as
\veIl· these are called stochastic silllulation 1110dels.
In f~ct, ignoring randonlness in the input can nlake
for dangerous errors in the sinlulation out put. For in
stance, even in sinlple queueing nloclels, \V hich forlll
the basic building blocks for a lot of silllulations,
the averages (expected values) of outpu t perfornlance
nleasures like queue length and \vaiting tiI1le depend
directly on the llariance (as \vell as other things) of
the service-tinle distributions. So ignoring randolll
ness actually gets you the \vrong ans\ver, rather than
just COlllplicates your life. Besides, .you Illig~t be iI~

terested in the output's randonlness itself-lIke vaTI
ability in hourly production. Of course, if you put
randOI1l stuff into the sinlulation logic it's going to
give you randonl stuff out-RIRO. Figure :2 illustrates
the idea in the sanle nlanufacturing exanlple, except
no\v the inputs are probability distributions for the
three quantities, regarded as randonl variables. The
sirnulation proceeds by "drawing" realizations fronl
the input probability distributions (indicated by the
Il1ultiplicity of big dots fronl the input distributions)
and transfornls thenl into an observation on each of
the (unkno\vn) output distributions (ind~cat:ed ~y the
single big dot fronl each of the output dIstrIbutIons).

The \vhole point of this tutorial can be pretty nluch

Figure 2: RIRO Sill1ulation

SUI11I1led up by the fact that there's only a single big
dot fronl the output distributions in Figure 2. The
purpose of such a sill1ulation is to learn (infer) son:e
thing about these unknown output distributions, l~~e

11l;lvbe their expected values, variances, or probablh
ties
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on one side of SOI1le fixed tolerances. But all you
get froI1l one run of a stochastic simulation is a single
observation on each of the output distributions, froI11
\vhich you obviously can't tell much about the gov
erning output distribution (especially if, by unluck
of the dra\v, you got an unusual value of the output
under its distribution).

So you have to think of a sinlulation run's output
on SOllle perforIllance nleasure as a single observa
tion on the output distribution; sOI1lething very dif
ferent could just as \vell have happened, just as some
thing ver:y different could just as \vell have happened
on sonle other day in the actual nlanufacturing facil
ity. Thus, you have to take care to perforIll the right
kinds of simulation runs (design the sill1ulation exper
inlents) and do the right kinds of statistic al analyses
on the output data generated fronl the sinlulation.
The rest of this tutorial \vill indicate SOIlle of the is
sues involved in these statistical questions as they ap
ply to output data fronl a stochastic sinlulation.

3 EXPERIMENTAL DESIGN, OR THE
SIMULATION AS TOMATO

Regardless of the type of simulation you have, you
need to think ahead of time about exactly \vhat sce
narios you'll be asking your model to evaluate. Sonle
tinles this is easy, having been specified by executive
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fiat or being just plain obvious. But nl0st of the tirne
it's not so clear, and you'll find yourself wondering
what values the input paranleters should take, and in
what combinations with each other. You might also
want to know what the effect is of changing some
input paran1eter, and perhaps whether the effect of
such a change might depend on (interact with) where
the other parameters are set.

In these situations, fornlal experin1ental-design
procedures can be of great help; you just need to
think differently about then1 in the context of a sin1u
lation model. Traditionally, the ~~experinlent" is some
kind of physical situation; an agricultural experinlent
n1ight be ainled at evaluating the effect of factors like
different seed hybrids, fertilizers, and watering sched
ules on the yield of t0l11atoes, so a tOInato-growing
experiment with different factor-level conlbinations
would be carried out and the results analyzed. The
only things different about a simulation experinlent
are that you have a conlputer progran1 rather than a
tomato plant, the responses are the output nleasures
like hourly production and nlachine utilization rather
than yield of tomatoes, and the input factors are pa
rameters like mean cycle tin1es, variance of interar
rival tin1es, and maximum batch sizes, rather than
seed hybrid, fertilizer, and watering (I guess another
difference is that sonletin1es simulations run faster
than tomatoes gro\v). So you can design the sin1
ulation experiment in the same way, and analyze it
similarly as \vell in terms of measuring effects of fac
tors and interactions among them.

Big simulations usually involve a lot of input fac
tors, and you'll have to do son1e paring down of their
nunlbers before you can do a \vorkable analysis. For
this purpose there are several factor-screening designs
to help separate which factors matter (and should
thus be retained as factors) and \v hich ones don't
(which should be frozen at some reasonable values
and eliminated as factors).

For more on experimental design in the simulation
context, see chapter 12 of Banks and Carson (1984),
Cook (1992), Hood and Welch (1992), Chapter 12 of
Law and Kelton (1991), Ramberg et al. (1991), Swain
and Farrington (1994), and Sanchez (1994).

4 DOES TIME GO BY?

An issue that has as great an impact on what you
do with your model as the deterministic/stochastic
issue is whether time plays a role in the system and
your model of it. Sonle simulations don't involve the
passage of time, and are called static; examples in
clude Monte Carlo evaluation of integrals and pre
diction with a cross-sectional regression model. The

design-and-analysis approach is conceptually sin1ple
here (although n1ay still be conlpu tationally scary):
just repeat, or replicate, the model as nlany tin1es
as necessary to get the precision you need. \1 ethods
fronl classical statistical analysis can usually be used
directly. For instance, in estinlating an integral via
a static IvIonte C~arlo sin1ulation, just get n1any in
dependent estinlates and then take the average, stan
dard deviation, and nlaybe forn1 a confidence interval
in the elen1entary \vay.

But n10st sin1ulations of industrial interest involve
the passage of tinle as an irnportant elen1ent; these are
dynamic sin1ulations, and the design-and-analysis ap
proach can be a lot harder (as discussed in Section 5).
From here on I'll assunle that a dynaInic simulation
is \vhat you've got.

5 EVALUATING A SINGLE CONFIGU
RATION

As a first step, you n1ight \vant to evaluate the output
fronl j lIst a single configuration of the n10del. This
section discusses issues involved in doing so, which
will then be con1ponents of I110re an1bitious goals like
conlparing alternati ve configurations or optirnizing.

5.1 What to Watch?

In a stochastic sinlulation you'd really like to know
all about the output distributions in Figure 2, but
that's asking \vay too n11Ich in ternlS of the nun1ber
and n1aybe length of the replications. So you usually
have to settle for various sun1mary measures of the
output distributions. Traditionally, people have fo
cused on estimating the expected value (mean) of the
output distribution, and this can be of great interest.
For instance, knowing son1ething about the average
hourly production is obviously important.

But things other than n1eans might be interesting
as well, like the standard deviation of hourly produc
tion, or the probability that the n1achine utilization
for the period of the simulation will be above 0.80.
In another example you might observe the m.axim-um
length of the queue of parts in a buffer son1ewhere
to plan the floor space; in this connection it n1ight
be more reasonable to seek a value (called a quantile)
below which the n1axin1un1 queue length will fall with
probability 0.9.5.

So think beforehand about what you'd like to get
out of your simulation; it's easier to ignore things you
have than go back and get things you forgot.
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5.2 Multivariate Output

\rou'll probably \vant to get several different things
out of your sinlulation; the stylized siIl1ulation of Fig
ure 2 indicates two outputs, but dozens or scores
nlight be nl0re like it. Since these are all conling
out of the Sal1le sin1ulation runs, they're likely to be
related in sonle \vay. For instance, high hourly pro
duction is probably associated \vith high utilization of
the nlachine. So \vhat you really have is a l'fctor of
output nleasures, and so I1lultivariate statistical anal
yses can sonletin1es help you with estinlating all the
output paranleters sin1ultaneously, as \vell as \vith un
derstanding ho\v they nlight be related to each other.

For details in the sinlulation context and further
references see C~harnes (1991), section 9., of La\v and
Kelton (1991), and Seila (1991,1992).

5.3 How Long?

A fundanlental issue in your planning is whether you
want performance measures over the long run (tech
nically infinite, sonletinles called stead.lJ state) or for
a specific (finite, sometin1es called terTninatlng) fixed
tinle period. The ans\ver to this question is not a sinl
ulation issue, but rather one concerning the goals of
your study. The answer also has obvious iIl1pact on
how long you run your sirnulations; it also, perhaps
less obviously, affects the kind of statistical analyses
you can do on your output.

If a tenninating sinlulation is appropriate for your
goals, things are easy (at least in concept) . .J ust run
your lllodel for whatever tirl1e period is called for,
and get your output nleasures. That's one (replica
tion, that is). Then repeat (replicate) this until :you're
happy \vith your results (described in rnore detail in
Section .5.4 belo\v). A cOll1plete run of the silllula
tion constitutes a sall1ple of size one (so isn't \vorth
nluch), bu t standard statistical 11lethods can be ap
plied to the results across independent replications.
The inlportant thing is that you do 11lultiple repli
cations, not just one run, and use the output values
from the entire replications as the fundanlental "'data
points" for the basic ingredients in statistical analy
SIS.

On the other hand, if you really \vant steady-state
Ineasures, the statistical-analysis problell1s becollle a
lot harder (and, of course, your sinlulation runs be
conle a lot longer). There are sonle things you can
do, though, \v hich are described in Section .5.5 belo\v.

5.4 How to Express Things?

Traditionally, people have expressed statistical anal
yses of sinlulation output data in the fornl of confi-
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dence intervals (or confidence regions in the case of
rnultivariate output). Conlpared to hypothesis tests,
nlany people feel that confidence intervals are more
infornlative and useful.

Increasingl)', though, clever graphical displays are
being used, \\' hich nlay not even involve formal infer
ential statistical analysis. For instance, histograllls
or dot plots of the output can indicate clear patterns
that 11light not other\vise enlerge from nurnerical mea
sures. For nl0re on graphical tools for describing sim
ulation output, see C;rier (1992).

Of course, aninlation has beconle very popular and,
in sonle inlportant \\rays, effective. But it's essential
not to let yourself get s\vept along in the obvious vi
sual appeal of anin1ation to the exclusion of a proper
statistical evaluation. For the fifteen sinlulated nlin
utes that you had the patience to watch the anima
tion, ho\v do you kno\v t hat the nlodel was not in some
\veird state that's not representative of conditions as
a \vhole?

5.5 Difficlllties and Cautions

Alas, there are some pretty bad things you can do
to yourself if you're not pretty careful about how
your statistical analysis goes. rvlaybe the biggest mis
take is to take as the basic "'data" points for statis
tical analysis the individual observations CODling out
of a sil1lulation over tinle. For instance, you dare
not use the sequence of tinles in queue of successive
parts in their ra\v fornl in standard statistical calcula
tions (like "san1ple" variances). The problen1 is that
they're not independent-if one part has a big delay
in queue, the next one probably \vill too-which ren
ders most of classical statistical theory invalid, some
tinles \vith disastrous consequences. For instance, the
"sample" variance of the individual part delays in
queue \vill be biased low, perhaps severely, causing
you to underestin1ate the variance and place nl0re
confidence in your results' precision than you ought
to.

On the bright side, though, people have worked out
sonle fairly Sil1lple and practical methods for dealing
\vith sinlulation-generated data that usually work out
prett.y \vell. If you have a terminating simulation,
for instance 1 you just n1ake nlultiple replications and
treat the suoln1ary statistics from each replication
(averages, proportions, extremes, etc.) as the basic
"data" points, which can be plugged into standard
statistical fornlulas since the replications are identi
cally distributed and independent of each other.

vVith stead:y'-state sinlulations, though, things
aren't quite so easy. Here are some ideas that people
have COOle up with and tested out:
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Replication. Even though you want (siIllulated)
tinle to go to infinity, you can't. So just Illake
runs as long as you can and then replicate them,
pretending that the results give you a picture of
being "in" steady state. You then have inde
pendent replications, just like in the ternlinating
case, that you can plug into classical statistics.
The problem with this is that the initial condi
tions you use to start the sinlulation (like every
thing's empty) are probably pretty atypical of
steady state, which biases the run's output, at
least for a while. You can Illake sonle plots and
try to see vvhere things stabilize, deleting the out
put data prior to that point, or maybe try to find
better initial conditions that are nlore represen
tative of steady state.

Batch means. Since you want to get as close as you
can to steady state, just I1lake one enornl0usly
long run. But then you really have only one
repiication (data point), so you can't estinlate
variances or do statistical analysis. To "nlanu
facture" more observations out of this, split the
run up into "batches" of observations, and treat
the means of these batches as being indepen
dent unbiased observations of what's going on
in steady state. While the initial-condition bias
is less severe than with the Replication nlethod,
the batch 111eans are not really independent~ the
key is to have big batches, and people have devel
oped ways to help you decide ho\v big the batches
need to be for your situation.

TinIe-series models. The correlated, nonstation
ary simulation output series can be thought of
as a time series, just like econoIllic data such as
stock prices or housing starts over tinle. Then a
time-series model (like AR or ARJ\!IA) is fit to the
data, and the fitted 1110del is used for inference.

Standardized time series. A process version of
the centrallimi 1. theOrelll is applied to ""standard
ize" the output series, and methods for statistical
analysis have been worked out based on this.

Regeneration cycles. SOllle silllulations re-
turn now and then to a state from which they
"start over" probabilistically. For instance, if a
queue empties out at some point it looks just
like it did at the beginning (assullling it started
empty). This creates independent c:lJcles that are
Dlanipulated for statistical analysis.

Spectral analysis. Estinlates of the correlation
structure of the process are used to fornl a vari
ance estimate for statistical analysis.

l'ou get the idea that this is a hard probleIll, and that
there is no cOIllpletely satisfactory solu tion.

There's a very large literature on this subject, and
the above list is a pretty thin tour of these meth
ods. But they're all explained in detail else\vhere;
see Alexopoulos (199;3, 1994), chapter 11 of Banks
and C~arson (1984), chapter 3 of Bratley, Fox, and
Schrage (1987), Charnes (199;3), chapters :2, ;3, and :)
of FishIllan (1978), C;oldsman (1992), chapter 7 of
Khoshnevis (1994), Kleijnen (1987), chapter 9 of Law
and Kelton (1991), Lewis and Orav (1989), chapter 6
of Ripley (1987), Seila (1991,1992), and chapter 6 of
Thesen and Travis (1992).

6 COMPARING ALTERNATIVES

J\!lost of the tiDle you'll be considering several different
configurations of a sinlulation I1l0del, perhaps distin
guished froIll each other by input-paraIneter values
or by logical and structural differences. On the basis
of SOIlle output perforIllance Illeasure, you Illight like
to estiIllate the difference bet\veen various pairings of
the configurations, perhaps expressed as a confidence
interval for a difference or Illaybe a test of the null
hypothesis that there is no difference. lYlost of the
Illethods described in Section 5.5 can be aclapted for
these kinds of goals. For instance, in a tenninating
sill1ulation you can use paired-saIllple confidence in
tervals for t he difference, discussed in any eleInentary
statistics book. T'he saIlle difficulties and cautions
apply, though, if you're interested in steady state.

Sinltdation is an ideal setting in which to apply any
of several selection and rank'ing techniques. For in
stance, you can invoke statistical I1lethods (basically
telling you ho\v Illuch data you need to collect) that
allo\v you to declare one of your alternatives as being
the best on SOllle criterion, and be highly confident
that you're right about your choice. vVhat makes
siIllulation an attractive setting for this is that these
techniques often require two-stage or sequential sam
pling (deciding on the sanlple size on the fly), vvhich
is a lot easier to do in sil1lulation than in grovving
tOIl1atoes.

For more depth on these subjects, see chapter 12
of Banks and Carson (1984), Goldsman, Nelson, and
SchIlleiser (1991), chapter 10 of Law and Kelton
(1991), Goldsluan and Nelson (1994), or chapter 7
of Thesen and Travis (1992).

7 VARIANCE REDUCTION

Section 5.5 dwelt on SOIne of the difficulties and dan
gers in dealing \vith siI11ulation data, but on the pos
itive side there are S0I11e iIllportant opport unities not
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available when experimenting \vith tomatoes. Ease of
sequential sampling, as D1entioned in Section 6, was
one example.

But a more important example is to reduce the
variance of the output without doing any (\vell, hardly
any) extra work. Such variance-reduction techniques
often proceed by exploiting your ability to control
the random-number generator driving the simulation,
and re-use random numbers to induce helpful corre
lations that reduce noise in the output.

For instance, when comparing several alternative
configurations of a D1anufacturing facility you could
use the same random numbers, properly synchro
nized, to drive all configurations. This \vould result
in the same jobs' arriving to the facilities at the saD1e
times, and with the same processing requirements.
Whatever differences in performance you observe are
thus attributable to configuration differences rather
than to "environmental" differences in the arriving
jobs (since there weren't any such differences). While
intuitively appealing, there is actually firm statistical
foundation for this, and the variance of the difference
is usually reduced. This strategy, kno\vn as com'm,on
rando'm numbers, is often used unconsciously by just
starting the runs for all alternatives \vith the San1€
random-number streams and seeds.

There are many other sophisticated variance
reduction ideas; for details see chapter 2 of Brat
ley, Fox, and Schrage (1987), chapter 3 of Fishn1an
(1978), chapter 11 of Law and Kelton (1991), Kleij
nen (1987), L'Ecuyer (1994), Le\vis and Orav (1989),
chapter 7 of Morgan (1984), Nelson (1992), and chap
ter .5 of Ripley (1987).

8 WHAT IF YOU WANT SENSITIVITIES?

Related to the question of con1paring alternatives is
the more micro-level question of measuring the effect
on the output due to a change in one or several of the
inputs. For example, how D1uch would hourly pro
duction increase if the mean cycle time on a critical
machine were reduced by a small amount? Vie\ving
the output as a (complicated) function of the input,
this is a question about a partial derivative of the
output with respect to one of the inputs.

A direct way to address this is to D1ake two sets
of runs-one at the original value and another at the
changed value of the input parameter-and then look
at the difference. There are other ways of doing this,
though, that are more clever (and maybe D10re com
plicated), yet are also n10re econoD1ical froD1 the point
of vie\v of the an10unt of siD1ulating you have to do.

Details on these D1ethods can be found in chap
ter 12 of Law and Kelton (1991), Glassern1an and
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C;lynn (1992), Ho (1992), L'Ecuyer (1991), and
Strickland (199:3).

9 METAMODELS

Thinking of the sin1ulation logic and action as being
a transforn1ation of inputs into outputs, the notion
arises that a simulation is just a function, albeit a
pretty con1plicated one that you can't write down as
some little formula. But it might be possible to ap
proxim,ate what the simulation does with some little
forn1ula, which could be particularly useful if a large
number of input-factor combinations are of interest
and it takes a long tin1e to run the simulation.

So people sometimes fit a regression model to the
siD1ulation n10del, with the dependent variable's be
ing the simulation output and the independent vari
ables 'being the input paran1eters to the simulation.
All the usual techniques for building regression mod
els come into play, like selecting important subsets
of the independent variables, modeling nonlinearities,
and considering interactions. Since this is a (regres
sion) D10del of a (simulation) model, it's sometimes
called a metam,odel.

For n10re on n1etan10deling, see Barton (1992),
Hood and Welch (1993), I(leijnen (1987), and chap
ter 12 of Law and Kelton (1991).

10 DOING THE BEST YOU CAN TO
FIND OPTIMAL CONFIGURATIONS

The ultimate, maybe, in using a siD1ulation model
is to find input-factor settings that optimize some
perforn1ance measure. This could involve several of
the above issues, including gradient estimation, meta
modeling, and comparing alternatives. Now opti
n1ization of nonlinear functions is a hard enough prob
len1 in itself, but in a stochastic simulation you have
uncertainty in terms of measuring the response, as
well as the statistical difficulties described in Sec
tion 5..5. So this is truly a tall order.

People have made important advances in this,
though. One idea is to estimate the partial derivatives
at a point (the gradient), then move in the direction
of steepest descent (if you're minimizing) or steep
est ascent (if you're maximizing). You could also fit
a regression metan10del as in Section 9 and then use
simple calculus to optimize it in lieu of the simulation
itself. There are, to be sure, many more techniques
(like adaptation of stochastic-programn1ing D1ethods)
that have been developed or are under investigation;
for more details see Azadivar (1992), Fu (1994), or
chapter 12 of Law and Kelton (1991).
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11 CONCLUSIONS

While all the details, methods, and cautions of doing
a good job at output analysis n1ay seen1 bewildering,
you really owe it to yourself to try to get as much hon
est, precise inforlnation out of your hard-built sin1ula
tion model as you can. While there are dangers and
difficulties at tin1es, there are also reliable and ro
bust methods available. rvloreover, son1e sin1ulation
software products now have output-analysis capabil
ities built in to facilitate things.

ACKNOWLEDGMENT

I'm grateful for support from the Minnesota Super
con1puter Institute.

REFERENCES

Alexopoulos, C. 1993. Advanced sin1ulation out
put analysis for a single systell1. In Proceedings of
the 199,'] vVinter Simulation Conference, ed. G.W.
Evans, Nt Mollaghasemi, E.C. Russell, and \V.E.
Biles, 89-96. WSC Board of Directors.

Alexopoulos, C. 1994. A review of advanced Il1ethods
for simulation output analysis. In Proceedings of
the 1994 Winter Si·m.ulation Conference, eel. J.D.
Tew, M.S. Manivannan, D.A. Sadowski, and A.F.
Seila, 133-140. WSC Board of Directors.

Azadivar, F. 1992. A tutorial on sill1ulation opti
n1ization. In Proceedings of the 1992 ~iVintfr Sim
ulation C'onference, ed. J.J. Swain, D. GoidsIl1an,
R.C. Crain, and J .R. Wilson, 198-204. WSC Board
of Directors.

Banks, J. and J .S. Carson, II. 1984. Discrete-event
syste·m. simulation. Englewood Cliffs, New Jersey:
Prentice- Hall.

Barton, R.R. 1992. Metamodels for Sin1ulation
Input-Output Relations. In Proceedings of the 19.9:2
Winter Simulation C10nference, ed. J.J. Swain, D.
C;0Idsn1an, R.C. Crain, and J .R. Wilson, 289-299.
WSC Board of Directors.

Bratley, P., B.L. Fox, and L.E. Schrage. 1987. A
guide to simulatlon. 2nd ed. New York: Springer

Verlag.
Charnes, J .rvI. 1991. Iviultivariate sin1ulation output

analysis. In Proceedings of the 1991 Winter Sim.
ulation C"onference, ed. B.L. Nelson, W.O. Kelton,
and G.M. Clark, 187-193. WSC Board of Direc

tors.
(~harnes, J.M. 1993. Statistical analysis of out-

put processes. In Proceed-ings of the 1993 H/'inter
Si'mulation Conference, ed. C~.W. Evans, M. Ivlol
laghasen1i, E.C. Russell, and \tV.E. Biles, 41-49.

\VSC' Board of Directors.
C~ook, L.S. 1992. Factor screening of n1ultiple re

sponses. In Proceedings of the 199:2 H'lnter Sln1

ulatlon C'onference, ed. J.J. Swain, D. Goldsn1an,
R.C~. C~rain, and J.R. \Vilson, 174-180. \VS(' Board
of Directors.

Fishn1an, G.S. 1978. Prznciples of discrete event Slnl

ulation. Ne\v York: John \Viley &: Sons.
Fu, IvI.C. 1994. A tutorial revi~\v of techniques for

simulation optimization. In Proceedings of the 1994
~Flnter Sim.ulation C'onference, ed. J.D. Te\v, ~J.S.

Ivianivannan, D.A. Sadowski, and A.F. Seila, 149
156. \VSC Board of Directors.

C;lassern1an, P. and P.\V. Glynn. 1992. Gradient es
timation for regenerative processes. In Proceedings
of the 199:2 ~·l·in ter S1m. uIa. t ion C'0nfere nce, ed. J..J .
Swain, D. Goldsn1an, R.C. Crain, and J .R. Wilson,
280-288. WSC Board of Directors.

C~oldsman, D. 1992. Sin1ulation output analysis. In
Proceedings of the 199:3 ~/Vinter Sim.ulation Confer
ence, ed. J ..J. S\vain, D. Goldsll1an, R.C. Crain, and
J .R. \Vilson, 97-103. \VSC Board of Directors.

C;0IdsIl1an, D. and B.L. Nelson. 1994. Ranking, selec
tion and n1ultiple con1parisons in con1puter sin1ula
tion. In Proceedings of the 1994 ~Vinter SirHulation
C1onference, ed . .J .D. Te\v, lVI.S. ~Ianivannan, D.A.
Sadovv'ski, and A. F. Seila, 192-199. vVSC Board of
Directors.

C;oldsillan, D., B.L :\elson, and B. SchIl1eiser. 1991.
Nlethods for selecting the best systen1. In Proceed
ings of the 1991 ~Vinter Sim.ulation C10nference, ed.
B.L. Nelson, \V.D. h~elton, and C; .Ivl. C~lark, 177
186. \VSC Board of Directors.

C;rier, D.A. 1992. C;raphical techniques for output
analysis. In Proceedings of the 1992 Winter Si1n
ulati011 Conference, ed . .J.J. Swain, D. Goldsn1an,
R.C. C~rain, and .J .R. vVilson, 314-319. WSC~ Board
of Directors.

Ho, Y.-C~. 1992. Perturbation analysis: concepts and
algorithms. In Proceedings of the 1992 ~l'''inter Sinl
ulation Conference, ed . .J.J. Swain, D. Goldsn1an,
R.C. C~rain, and.J .R. vVilson, 231-240. WSC Board
of Directors.

Hood, S ..J. and P.D. Welch. 1992. Experimental
design issues in sin1ulation with exan1ples fron1
semiconductor manufacturing. In Proceedings of
the 1992 vVinter Simulation Conference, ed . .J ..J.
S"vain, D. Goldsn1an, R.C. C~rain, and J .R. Wilson,
25.5-26:3. \tVSC Board of Directors.

Hood, S ..J. and P.O. \\relch. 1993. Response surface
ll1ethodology and its application in sin1ulation. In
Proceedings of the 1.993 ~Vlnter Simulation ('on
ference, ed. C;.\V. Evans, 1\1. ~\IollaghaseIl1i, E.C~.

Russell, and \V.E. Biles, 115-122. \VSC~ Board of



54

Directors.
K eIton , \ r "D. 1994. Anal:.' sis of 0 u t put da t a. In

Proceedings of the 1994 rJ'znter Slmulatlon C'onfer
ence, ed. J. D. Te\v, \1.S . .\lanivannan, D ..\. Sad
owski, and A.F. Seila, 62-68. \,\'SC~ Board of Di
rectors.

Kelton, \V.D. 1995. A Tutorial on design and analy
sis of sin1ulation experinlents. In Proceedl ngs of the
1994 rVznter Simulation ('onferen ce, ed. ('. Alex
opoulos, K. I(ang, \V.R. Lilegdon, and D. C;olds
man, 24-:31. \lVSC Board of Directors.

Khoshnevis, B. 1994. Discrete systems simulation.
Ne\\' yrork: I\IcC;ra\v- Hill.

I\Jeijnen, J .p.e. 1987. Statlsttcal tools for simulation
practitzonf rs. New 'I"ork: fvlarcel Dekker. Inc.

Law, A.M. and W.D. Kelton. 1991. Simltlattonmod
eling and analysis. 2nd ed. p,r e\v yrork: ~llcC~ra\v

Hill.
L'Ecuyer, P. 1991. An overvie\v of deri va ti ve esti

nlation. In Proceedings of the 1991 rr'lTltfr Szmu
lation (.'onference, ed. B.L. Nelson, \V.D. h~elton,

and (;.M. (~lark, 28-:36. WSC Board of Directors.
L'Ecuyer, P. 1994. Efficiency in1provenlent and vari

ance red uction. In Proceedl ngs of the 1 ()(l4 H'i nt er
Sim.ulatiol1 (.'onference, ed . .J.D. Te\\' . .\I.S. \Iani
vannan, D.A. Sado\vski, and A.F. Seila, 122-1;32.
WSC~ Board of Directors.

Le\vis, p.A.\\r. and E ..J. Orav. 19~~) . .~'lmula-
tionm eth odology for .'It atist ic ia ns. ope to tion ,,,. an a
lysts, and engineers. l'olulTlf' 1. Belnlont. C'alifornia:
Wads\vorth, Inc.

~lorgan, B.J .T. 1984. Ele111ents of snHulatloTL Lon
don: C~hapl11an and Hall.

Nelson, B.L. lQ92. Designing efficient SiIllulation ex
peril11ents. In Proceedzngs of the 199.3 ~rlTlier Sim
ulation C'onference, ed. J ..J. S\vain, D. (;oldsn1an,
R.C. C~rain, and J.R. \-Vilson, 126-1:32. \VSC~ Board
of Directors.

R.an1berg, .J .S., S.~/I. Sanchez, P.J. Sanchez, and L.J.
Hollick. 1991. Designing sin1ulation experin1ents:
Taguchi Illethods and response surface 111etan10d
els. In Proceedings of the 1991 ~Vinter L)'l1llula
tzon Conference, ed. B.L. Nelson, \V.D. h~elton, and
G.~I'l. C~ Iar k, 167-1 76. \VSC' Board of Direc tors.

R.ipley, B.D. 1QS7. Stochastic simulation . .\e\v y~ork:

John \Yiley (~ Sons.
Sanchez, S.~·l. 1994. A robust design tutorial. In

Proceedings of the 1994 a'inler Simulation C'onfer
ence, ed . .J .D. Te\v, ~I.S. rvlanivannan, D.A. Sad
o\vski, and A.F. Seila, 106-11;3. \VS(' Board of

Directors.
Seila, A.F. 1991. Output. analysis for sirIlulation. In

Proceedings of the 1991 ~rlT2ter SiTnalation C'on
ference, ed. B.L. Nelson, \V.D. Kelton, and G.~1.

I{cltoll

C~lark, 28-;36. \VSC Board of Directors.
Seila. A.F. 19~:1:? ~.\d\·anced output analysis for sin1u

lation. In Proceedi ngs of th e 1992 ~~linte r Simula
tion C'onference, ed. J.J. S\vain, D. Goldsman, R.C.
Crain, and .l.R. \Vilson, 190-197. \lVS(' Board of

Directors.
Strickland, S.C;. 199;3, C;radient/sensitivity estima

tion in discrete-event sin1ulation. In Procfedings of
the 1993 ~Vlntfr Simulation C'onference, ed. G.\-V.
Evans, ~l. \lollaghasenli, E.C~. Russell, and W.E.
Biles, 97-105. \VSC~ Board of Directors.

S\vain, .J.J. and P.A... Farrington. 1994. Designing
sin1ulation experinlents for evaluating rnanufactur
ing systel11s. In Proceedings of the 1994 ll'inter
Simulatlon C'onference, ed. J.D. Te\v, ~l.S. lVlani
vannan, D.A. Sado\vski, and A.F. Seila, 69-76.

\VSC' Board of Directors.
Thesen, "A. and L.E. Travis. 1992. Sirnulafion for

deCision nlGking. St. Paul, ~linnesota: West Pub
lishing C'0111pany.

AUTHOR BIOGRAPHY

w. DAVID KELTON is a Professor in the Depart
rnent of Quantit ative Analysis and Operations ~/lan

agen1ent in the College of Business Adnlinistration
at the Uni v(\fsi ty of C;incinnati, as well as a Fellow
of the carnpus-\vide Institute for Data Sciences. He
recei\"ed a B.S. in ~lathen1atics fron1 the lJniversity
of \Visconsin- ~Iadison, an ~/I.S. in ~\lathen1aticsfrorTI
Ohio Cniversity, and ~I.S. and Ph.D. degrees in In
dustrial Engillcering fron1 Wisconsin. In 1987 he was
vVSC' Progral11 (~hair and in 1991 was vVSC~ C;eneral
C~hair. He is currently the co-representative of the
L\FOR:\'1S C~ollege on Sin1ulation to the \lvse Board
of Directors.


