Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

CONSTRUCTIVE AND VIRTUAL MODEL LINKAGE

David R. Pratt
Matthew A. Johnson

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943, U.S.A.

ABSTRACT

The U.S. Army has two disparate combat models, Janus
and Distributed Interactive Simulation (DIS) based sys-
tems. Both facilitate training, tactical development and
weapons analysis. However, a major problem is that enti-
ties existing in the Janus Combat Model cannot interact
with DIS entities. This paper address how to make this
interaction possible, producing a synergy between the
combined models, each model benefitting the other.

The first step was to identify the differences between
the Janus and DIS environments. Next, a software archi-
tecture was developed to store and manipulate data
regarding both simulations. A communications architec-
ture was created to allow data flow between the two envi-
ronments. Finally, algorithms were developed to allow for
interaction between Janus and DIS entities.

The resulting product, the World Modeler (WM),
integrates Janus, a two dimensional, constructive combat
model, into the three dimensional, entity-level virtual bat-
tlefield of DIS. Janus entities interact in real-time with
other entities in the DIS virtual world. It is a software sys-
tem operating on a low-end Silicon Graphics (SGI) work-
station with TCP/IP and UDP/IP networking capabilities.

1 INTRODUCTION

Over the past scveral years there has been a rapid growth
in the development and use of virtual models. Many of
these models have been made possible by the tremendous
increase in the computer power and the equally impres-
sive decrease in machine cost. While few will argue the
improvement and fidelity of the visual models, the same
cannot be said for the physical models that drive the sim-
ulations. The use of “visual physics,” the practice of mak-
ing something look realistic, whether or not physically
correct, is common. This, when combined with the real-
time, asynchronous, and variable nature of these models,
have made virtual models an analyst’s nightmare. Accord-

1222

ingly, the analytic community has not been overly recep-
tive to the use of such models. Distributed Interactive
Simulation (DIS) is a typical paradigm used by these vir-
tual models as described in (Institute for Simulation and
Training 1993).

In contrast, the traditional models have relied heavily
on deterministic, discrete, closed, event-driven models.
The focus of these models has been on the calculations,
reproducibility, and accuracy of the model. Many of the
models have gone undergone a rigorous Validation and
Verification (V&V) process to ensure the accuracy and
truthfulness of their algorithms. Janus is a typical analyti-
cal constructive model. (Department of the Army 1993a
and 1993b).

As a result of the different requirements of the mod-
els, the two types of models operate with radically differ-
ent paradigms. The Janus LINKed to DIS (JLINK) project
is an attempt to bridge these two distinct paradigms in
order to develop a single cohesive view of the simulated
environment (Marti 1994). In this paper we will cover the
architecture and functionality of the WM, the interface
between the two systems.

2 JANUS

The Janus Combat Model, as described in (Department of
Army 1993b), is a constructive, monolithic combat model
used primarily by the U.S. Army. Its main purpose is two-
fold. First, it is used as a combat development tool, ana-
lyzing both weapon system and tactics. Second, Janus is
used as a training tool by leaders for the purpose of tactics
training and staff planning. Janus’ ability to train unit
staffs in Command and Control (C2) makes it one of the
most widely used of the Army’s constructive models.
Janus portrays both individual entity level systems as
well as aggregate level units such as platoons or batteries.
Janus users develop combat scenarios consisting of force-
on-force engagements between two opposing forces. Due
to the stochastic modeling of entity engagements, execu-

Constructive and Virtual Model Linkage 1223

tions (referred to as runs) of the same scenario will pro-
duce slightly different results. The study of several runs of
the same scenario lend to the analysis of the tactics, force
structure and weapons systems used. This analysis is used
both for training and combat tactics development.

Janus employs high resolution algorithms which
accurately model numerous weapons platforms; ranging
from a dismounted riflemen to an MLRS battery. This
high fidelity modeling allows Janus to be a valid environ-
ment for combat development. Military systems
employed in ground combat are the primary modeling
focus of Janus.

Janus is monolithic in nature, operating on a single
computer system. Its numerous (up to sixteen) two-
dimensional displays provide the user with a highly
detailed, electronic map display of the battlefield. Tradi-
tionally, running a VAX/VMS and Textronix terminal
system, the primary user interaction is through a four-but-
ton puck and tablet and the two-dimensional display. With
the UNIX version of Janus, the workstation mouse serves
as the primary input device.

This research is based on UNIX Janus Version 4.0
running on HP 715 and 735 workstations. This version
utilizes polygonal terrain and individual building repre-
sentations which differ significantly from previous ver-
sions of Janus.

3 BATTLEFIELD DISTRIBUTED SIMULATION
-DEVELOPMENT

Battlefield Distributed Simulation - Development (BDS-
D) is an Army program designed to equip the Louisiana
Maneuver Battle Labs with the latest DIS systems. BDS-
D will test future weapon systems and technologies, pro-
posed force structure, and tactics. This concept is
expected to save millions of dollars in development costs,
and to reduce system development time by a factor of five.
BDS-D provides a virtual battlefield where man-in-the-
loop simulators and other intelligent platforms can inter-
act and thoroughly test future technologies. If a particular
technology application appears valid, continued invest-
ment occurs. If not, large amounts of money are not spent
on continued development (McDonough 1993).

BDS-D represents the most state-of-the-art DIS syn-
thetic environment. Through DIS, geographically-dis-
persed simulations are interconnected and interact in a
distributed virtual battlefield. Advance Technology Dem-
onstrations (ATDs) continually upgrade this environment.
Linking Janus to DIS via the WM is one such ATD (U.S.
Army 1994)

4 WORLD MODELER

Construction of the WM began in the Fall of 1993 in the
Department of Computer Science, Naval Postgraduate
School as part of the Army’s Anti-Armor Advanced Tech-
nology Demonstration (A2ATD) research effort (U.S.
Army 1994). As part of this project, the primary purpose
of the WM is to allow interaction between Janus and DIS
entities in support of A2ATD’s Exercise Four.

The WM runs on its own SGI platform with a TCP/IP
connection to Janus and a UDP/IP connection to DIS.
Janus and the WM communicate with a local protocol.
The WM communicates with the rest of the systems using
DIS protocols. The logical architecture is shown in Figure
|. The actual system had the WM messages and the DIS
Protocol Data Units (PDUs) going over the same physical
wire as shown in Figure 2.

DIS Simulator 4———N‘

DIS CGF

DIS

Janus Workstation Network

World Modeler
JLINK System ‘

Figure 1: Conceptual System Structure

DIS Simulator

DIS CGF

Ethernet

Janus Workstation Network

World Modeler

v

Figure 2: Physical System Structure

To reduce time, development of the WM took place
on a low-end SGI workstation. This choice of hardware
allows the use of existing NPS developed NPSNET soft-
ware as necessary. Storage of information is patterned
directly after NPSNET allowing significant reuse of NPS-
NET algorithms and code. Database formats are also con-
sistent with NPSNET. (Pratt, 1993)

1224 Pratt and Johnson

5 WORLD MODELER FUNCTIONALITY

To effectively act as a translator between the two para-
digms, the WM must perform four major functions: man-
age the nctwork, dead reckon Janus entities, reconcile
Janus entity locations with the terrain, and arbitrate
cngagements between Janus and DIS entities. By per-
forming these functions, the WM is the nexus by which
Janus interacts in the DIS environment.

5.1 Network Management

Arguably, the most important function of the WM is net-
work management. Due to the differences in the models,
the type and frequency of required updates varies. Since
Janus is an event driven model, a priority queue is main-
tained containing all scheduled events, typically, when an
entity completes its assigned movement segment, when
time delay for river fording is completed, and when artil-
lery fire are scheduled. Entities are processed only when
one of their events reach the head of the queue. Thus, a
stationary entity will never be managed. This strongly
contrasts with the DIS paradigm which is based upon the
entity state vice discrete events. Whenever a DIS entity
changes state (e.g. orientation, position error, or appear-
ance) it sends out a PDU. Table 1 shows some of the dif-
ferences in the entity terrain and movement state
parameters. Furthermore, due to the unreliable delivery of
UDP, a packet will also be sent out on a periodic basis,
notionally every five seconds, to let the other systems on
the network know it is still alive.

Table I: Entity Movement and Terrain Parameters

Functionality Janus DIS

Movement Speed X, Y, Z Velocity

X, Y, Z Acceleration

Position X, Y X, Y, Z

Orientation

Heading | Heading, Pitch, and Roll

To reduce network load, the WM only receives
updates from Janus when an event for an entity has tran-
spired. This mimics the event driven model of the system.
To comply with DIS requirements, the WM dead reckons
the Janus entities over the terrain and ensures that PDUs
are sent out as required.

The reverse occurs when two update Janus. The WM
receives all of the DIS PDUs. It then filters the packets to
determine if events have occurred. If so, Janus is updated
at the next heartbeat. This has the effect of discarding the

DIS heartbeat messages and reducing the number of times
Janus is updated.

5.2 Terrain Reconciliation

The two models also differ in their representation of the
terrain. The Janus terrain is geared for efficiency of repre-
sentation and computation and uses a two-dimensional
regular grid of elevation posts and bit encoding. Each one
of the grid elements are assumed to be homogenous over
the entire grid. Since Janus only uses a two-dimensional
iconic representation of the entity, it does not record entity
orientation and elevation. Whereas, in the DIS environ-
ment the majority of the terrain consists of polygons
which can be of arbitrary size and shape. This is directly
related to the three-dimensional out-the-window view of
most DIS systems. As a result, the WM must take the X,
Y location of the entity and compute elevation based upon
a polygonal terrain representation. To give the entity a
realistic appearance, the pitch and roll of the entity must
also be computed from the underlying polygon.

To further complicate matters, Janus uses a modified
version of the UTM Coordinate scheme while DIS uses a
geocentric Cartesian coordinate based upon WGS 84
datums. Hence, the WM must also perform proper coordi-
nate conversion between the two models.

5.3 Dead Reckoning

Since Janus only processes the entities when an event
occurs, the WM has to interpolate the location of the Janus
entities between updates. In addition, DIS events which
are not also Janus events must be handled. For example,
when an entity crosses a polygon seam, it is not an event
in Janus, but if the entity changes orientation, it is a DIS
state change necessitating a PDU transmission. The WM
is responsible for sending out all appropriate PDUs.

As stated above, the information required by the
models varies, in some cases rather dramatically. Perhaps
one of the most glaring examples is the way paths are
maintained. In the DIS world, there is no concept of future
path segments. Each entity is assumed to be moving
according to some well-defined algorithm and state data.
When the entity deviates from its projected location and
orientation, a new PDU is sent out with the new state
information. For most systems, this results in naturalistic
motion. As an entity goes around a corner, a large number
of PDUs will be sent out to represent the entity’s curved
path.

In Janus, the path that an entity will follow is known
as the start of the exercise, it is part the scenario’s set-up
files. Currently the path is limited to fifty segments. When
it gets to the end of a segment, the entity snaps to its new
heading. This, however, results in a visual anomaly that

Constructive and Virtual Model Linkage 1225

clearly delineates Janus entities. To seamlessly simulate
the Janus entities into the DIS model, the WM performs
basic turn smoothing. As a result, for a brief amount of
time the WM controls the entities rather than Janus. By
resolving the visual anomaly, Janus entities are virtually
indistinguishable from other DIS entities.

5.4 Event Arbitration

The differences between Janus and DIS are also notice-
able when resolving engagements. Since Janus is a mono-
lithic model, it resolves all of the engagements internally.
On the other hand, DIS handles engagements differently,
as a notification and response process. This process is
described briefly below.

54.1 Buffering of Events

At each synchronization point, Janus sends all fire and
detonation events scheduled for the next time step to the
WM. Since some of these events have not yet happened,
the WM builds a time-based priority queue of the events.
As part of the main simulation loop, the buffer is checked
to see if any of the times of the events are less then the
real-time clock. If so, the appropriate PDU is sent out to
describe the event.

5.4.2 Impact Determination and Reporting

In Janus, all of the events are internal. This simplifies the
firing and impact reporting process. In DIS, the firing
entity sends a Fire PDU. The entity also determines the
location and type of the impact and sends a Detonation
PDU when the round impacts, as shown in Table 2. Thus,
the munition’s fly out is modeled by the firer. This works
well in Janus since we are able to use the Probability of hit
/ Probability of kill (Ph/Pk) tables for direct fire to tell if
we got a hit. For indirect fire, we just report the location
of the hit.

Table 2: Which System does Impact Determination

Firer \ Target Janus DIS
Janus Janus Janus
DIS DIS DIS

5.4.3 Kill Arbitration

As in Table 3, the target is responsible for determining the
effect of the detonation rather than the firer. When a Janus
entity engaged another Janus entity or two DIS entities are
involved, the problem is straightforward. Each respective

system handles the arbitration and reports a change in sta-
tus to Janus.

Table 3: Which system does Kill Arbitration

Firer \ Target Janus DIS
Janus Janus DIS
DIS Janus DIS

When a DIS entity engages a Janus entity, the models
are forced to interact, imposing a significant arbitration
challenge to Janus. The Detonation PDU contains the fir-
ing entity, the type of munition and the point of impact.
From this information the WM reconstructs the engage-
ment in order for Janus to reconstruct the event in a format
that can used in Janus’ Ph/Pk tables. The reverse is true
when Janus engages a DIS entity. Rather than Janus doing
the arbitration, the DIS entity remains alive until the entity
determines its own state.

6 Structure of the World Modeler

In this section, we discuss the software structure used to
track information about the virtual world, how we manage
network traffic, and how we efficiently control the inter-
action between Janus and DIS entities. The architecture
chosen for the WM allows for reading and writing to asso-
ciated message buffers in parallel with the execution of
the main application loop of the WM.

6.1 Initialization of the World Modeler

Before Janus can interact in the DIS virtual world, the two
different environments of Janus and DIS must be recon-
ciled within the WM. The initialization process of the
WM performs this reconciliation.

The first step is to load the DIS-JANUS equivalence
table into the WM. This data file contains information on
the different entity types which Janus recognizes as part of
its simulations. DIS entity type equivalences are matched
with each Janus weapon system. The intent is to ensure
that Janus entities are correctly portrayed in the DIS envi-
ronment and vice versa. For example, we do not want
Janus to mistake a DIS Soviet T-72 tank for a U.S. Brad-
ley Fighting Vehicle.

Next the terrain data file is read. Currently, both
Janus terrain and DIS terrain are derived from the same
S1000 terrain database. Janus, however, does not explic-
itly track information on entity elevation values. The WM
maintains a copy of the terrain to determine elevation and
orientation values for Janus entity positions and munition
effects.

1226 Pratt and Johnson

Due to the time critical nature of the network connec-
tions, opening the network is the last step before execution
starts. The WM establishes a TCP/IP connection to Janus
and a UDP/IP connection to the DIS network. When these
connections are established, the associated message buff-
ers begin to fill with Janus and DIS cntity information.
The Janus message buffer is read and the Janus entities are
loaded into the WM entity array which stores information
on all Janus and DIS entities. Janus entities are flagged as
such to allow for different processing in the main loop.
These entitics are the only Janus cntities which will par-
ticipate in the simulation, because Janus does not intro-
duce new entities during the simulation.

After the Janus entities are loaded, the DIS message
buffer is read. These entities are then loaded into the WM
entity array. Due to the DIS paradigm, creation and dele-
tion of entities in the DIS world is dynamic. The WM only
tracks entities which are currently being updated via the
DIS PDUs on the Ethernet. Once the DIS entities are
loaded in the array, Janus is then updated with all the new
entities. Since Janus does not allow the creation of new
entity types during execution, all undefined types are
mapped to default vehicles. Janus acknowledges the
receipt of this data with a synchronization message. This
message signifies the completion of the WM initializa-
tion. The WM clock starts and the main application loop
begins.

6.2 World Modeler Main Application Loop

The main application loop continuously executes the pri-
mary functions of the WM. Figure 3 contains a graphical
representation of the main software modules in the main
loop. This loop continues until the simulation is termi-
nated from either Janus or the WM. Another DIS applica-
tion cannot terminate the Janus-DIS connection.

When the simulation begins, the Janus clock runs a
heartbeat faster than the WM. The frequency of the heart-
beat is based upon the Janus processing time. Janus takes
time to do internal algorithms such as line of sight and Ph/
Pk calculations. As a result, the Janus cycle time varies
from one heartbeat to the next. The heartbeat can be set to
different lengths prior to the simulation, but is fixed dur-
ing a run. At the end of each heartbeat, Janus and the WM
synchronize their world representations, as such they must
have completed their respective processing cycles. The
smaller the heartbeat, the less drift occurs between the two
systems due do to the different algorithms, but the larger
the chance of Janus falling behind. Four seconds appears
to be a reasonable heartbeat for scenarios containing up to
200 Janus entities.

Process Janus Messages

v

Yes
Heartbeat Interval Update
Exceeded? Janus
¢ No
Process DIS PDUs -

Y

Update Clock

Y

Dead Reckon Entities

Y

Update DIS

Y

Refresh 2D Map

Figure 3: . Main Application Loop

6.2.1 Process Janus Messages

The WM reads Janus messages from the Janus message
buffer. If the message deals with entity states, then the
entity array is updated. If the messages deal with munition
effects--fire and detonations--appropriate Fire and Deto-
nation PDUs are created. Since Janus runs a heartbeat
ahead of the WM, these events may not have occurred yet
in WM time. Thus, time stamps on the message and the
WM clock are continuously compared. If the event
occurred, these PDUs are written directly to the Ethernet
and broadcast to the DIS environment. If the events have
not yet occurred, they are placed in an event queue which
1s read during each cycle of the application loop.

6.2.2 Update Janus

The WM keeps track of when it last updated Janus. If the
last update occurred less than a heartbeat past, Janus is not
updated. If greater than the heartbeat, the WM updates
Janus with its current information on DIS entities. Also,
any new DIS entities which may have entered into the
simulation are also passed to Janus. Thus, the heartbeat is
used to limit the number of updates Janus receives and
ensure that Janus does not get too far ahead of real-time.
Continual updating of Janus about DIS entities slows

Constructive and Virtual Model Linkage 1227

Janus down. The heartbeat interval is designed to keep
Janus informed but not overwhelmed with updating cntity
information.

6.2.3 Process DIS PDUs

The WM reads the DIS message buffer containing PDUs,
parsing the PDUs by type. Entity State PDUs are used to
update the entity array. If a new entity has entered the sim-
ulation, it is added to the array. Fire and Detonation PDUs
are also filtered to see if they have any effect on Janus
entities. If not, they are discarded. If they effect Janus enti-
ties, the information is processed and Janus is immedi-
ately updated.

6.2.4 Update Clock

During each pass through the application loop, the current
time is assigned to the WM clock. This allows the WM to
keep track of the time difference between the current time
and the time that the entity array was last updated.

6.2.5 Dead Reckon Entities

The WM dead reckons entities based on their last known
position, orientation, velocity, and elapsed time. As dis-
cussed above, entity and terrain reconciliation also occurs
during this phase.

6.2.6 Update DIS

The WM is responsible for sending Entity State PDUs to
DIS according to the DIS 2.0.3 standards (Institute for
Simulation and Training 1993). To accomplish this task,
the WM scans its entity array to determine whether any
Janus entities meet the criteria for the generation of an
Entity State PDU. If so, the WM creates and sends the
PDU. The WM then reads the Janus event queue which
contains Janus fire and detonations events in PDU format.
If the current time is greater than the event time, the PDUs
are broadcast onto the net. If not, they stay in the queue to
be screened the next time through the main application
loop.

6.2.7 Refresh 2D Map

The final portion of the loop redraws the WM two-dimen-
sional display based on the most current information in
the entity array. The cycle then begins again and continu-
ously loops until Janus or the WM application has exited.

7 RESULTS AND CONCLUSIONS

A common problem in testing and evaluating systems
like JLINK is the creation of an initial scenario which
overloads the system to see if it works. This is commonly
called the “Big Bang” approach. We decided early on to
take a more rational approach. Testing of the JLINK sys-
tem was conducted using a series of scenarios similar to
those listed in Table 4. As shown in Table 5, each scenario
was slightly more complex than the previous one to iso-
late the additional functionality. Consequently, we could
debug errors before the scenarios became unmanageable.
While other scenarios were used to test specific functions,
the ones listed below were the “gold standards” for each
phase.

Table 4: Scenarios Used to Test JLINK

Scenario | Red | Blue | Total | Interaction
A 1 1 2 None
B 1 14 15 None
C 19 17 36 Combat
D 123 75 198 Combat

Table 5: Entity State and Application Loop Time

Ave. l;?;ljs Application
Scenario Activity PDUs Loop Time
per Sec. .
per Sec. . in Sec.
per Entity
A Static 0.394 0.197 0.014
A Static, 1.280 0.640 0.014
Rotating
Turrets
A Moving, 6.066 3.033 0.014
Static
Turrets
A Moving, 6.160 3.080 0.014
Rotating
Turrets
B Moving, 88.800 5.920 0.020
Rotating
Turrets
C Small 80.028 2223 0.021
Engage-
ment
D Large 161.568 0.816 0.200
Engage-
ment

1228 Pratt and Johnson

Scenario A tested the basic functionality of the sys-
tem. It ensured that the terrain and network portions of the
code were working correctly, and also gave us bench-
marks for the PDU traffic. It was found that the number of
PDUs were well within acceptable limits for the various
actions being performed by the entities.

Scenario B tested the creation of different types of
entities, ensuring that the correct entities were created
based upon the DIS PDU traffic and the types created in
Janus. Aircraft, human, and ground vehicle movement
routines were tested extensively in this scenario which
accounts for it relatively high PDU per second per entity
average.

Scenario C is of particular interest because the enti-
ties were actually engaged in a combat mission, allowing
us to test the engagement arbitration code. As such, it was
the first real test of the entire system

Stress testing was done via the final scenario, Sce-
nario D. This represented almost a doubling of the number
of entities expected in the A2ATD scenario. As shown in
Table 5, the WM did not have trouble keeping up with the
entity count. Of note, we ran a long-haul version of this
test over the Internet from RAND in Santa Monica, CA to
the Naval Postgraduate School (NPS) in Monterey, CA
with no noticeable delays. The decrease in the average
number of PDUs per entities is due the number of entities
which remained stationary for prolonged periods of time.

The WM establishes a ground truth environment to
process both Janus and DIS entity data and events.
Through its process, the WM delivers the necessary func-
tionality to successfully integrate Janus and DIS.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Jed Marti, Dr. Chris
Burdorf, Keith Brendley, and Major Chris Pate for their
help on this project. David Ward and Bill Caldwell have
been extremely helpful in the continuation of the work,
the Janus Fast Movers project, and have debugged some
of the problems that were in the first version of the WM.
It would not have been possible with out all of their con-
tributions. Likewise, we owe a debt of gratitude to the
U.S. Army Materiel Systems Analysis Activity
(AMSAA) for funding this research as part of the AntiAr-
mor Advanced Technology Demonstration (A2ATD).

REFERENCES

Department of Army. 1993. The Janus 3.X/UNIX Model
Software Design Manual, Headquarters TRADOC
Analysis Center, ATRC-ZD, Ft. Leavenworth, KS.

Department of Army. 1993, The Janus 3.X/UNIX Model
System Design Manual, Headquarters TRADOC
Analysis Center, ATRC-ZD, Ft. Leavenworth, KS

Institute for Simulation and Training. 1993. Standard for
Information Technology - Protocols for Distributive
Interactive Simulation Applications, Draft 2.0.3,
Orlando, FL.

Marti, J. 1994. JLINK Integrating JANUS and BDS-D
Project Overview, Draft, RAND Arroyo Center, Santa
Monica, CA.

McDonough, J. G., 1993. Doorways to the Virtual Battle-
field, Proceedings from The First West Coast
EFDPMA Conference and Exhibition on Virtual Real-
ity: The Commitment to Develop VR, Illusion Engi-
neering, Inc., Westlake Village, CA.

Pratt, D. R. 1993. A Software Architecture for the Con-
struction and Management of Real-Time Virtual
Worlds, Ph. D. Dissertation, Naval Postgraduate
School, Monterey, CA.

U.S. Army. 1994. Anti-Armor Advanced Technology
Demonstration (A2 ATD), Experiments 2, 3, 4 and 5,
Independent Evaluation Plan and Test Design Plan,
Draft, Material Systems Analysis Activity, Aberdeen
Proving Ground, MD.

AUTHORS’ BIOGRAPHIES

DAVID R. PRATT is an Assistant Professor of Com-
puter Science at the Naval Postgraduate School (NPS),
Monterey, California. A former Marine Corps Captain,
Dr. Pratt earned both his M. S. and Ph. D. from NPS. His
research interests include the application of DIS technol-
ogy to new and existing problem domains. He is currently
a Principal Investigator on Synthetic Environments (SE)
database, Constructive Model Integration, and SE model-
ing tasks.

MATTHEW A. JOHNSON is currently an instructor in
the Computer Science Department of the U.S. Military
Academy, West Point, New York. A Captain of Infantry
in the U.S. Army, he earned his M. S. degree from NPS in
1994.

