Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

OBJECT-ORIENTED MILITARY SIMULATION DEVELOPMENT AND APPLICATION

Ronald D. Painter

CACI Products Company
1600 Wilson Boulevard
Suite 1300
Arlington, Virginia 22209, U.S. A

ABSTRACT

The Department of Defense (DoD) is currently
embracing object-oriented programming as a possible
solution to problems that beset current simulation tools.
The object paradigm, while extremely powerful, has
associated costs that must be considered. To realize
object-oriented programming benefits such as object
reuse (sharing objects between simulations), data hiding
(encapsulation), and code reuse and extension
(polymorphism), the DoD modeling and simulation
community must build objects to a set design standard.
The immediate need facing the military simulation
community is to agree on and build a framework for
object-oriented simulations.

1 INTRODUCTION

Object-orientation is the current buzz word in the DoD
simulation community. Virtually all new simulations
built today, or planned in the near future, use object
technology. The real question facing the simulation
community is whether object-based simulations will
display beneficial characteristics when compared to
simulations built using a procedural approach. This
paper examines the reasons why the DoD simulation
community has embraced the object paradigm, and then
presents issues and requirements that must be met in
order to successfully implement object-oriented methods
into military simulations.

2 WHAT IS OBJECT-ORIENTED?

One problem with a term such as object-oriented
programming is that it means different things to
different people. Outside the computer domain, an
“object” is something perceptible with one of the five
senses. Inside the computer domain, object-oriented can
mean an architectural design or a set of computer
language constructs. As an architecture, object-oriented
is a design composed of objects that each system or
subsystem manipulates. An object-oriented architecture
then leads to the concept of decomposing a system into

1185

separate discernible objects. In computer language
constructs, programmers decompose objects into classes
of data structures. Developing object-oriented programs
involves encapsulating abstract data types into, for lack
of a better word, base objects. Encapsulating data into
base objects almost certainly includes information hiding
so that abstract data types can only be acted on (used or
changed) in explicit ways. To achieve a reasonable level
of data hiding, the procedures for acting on the abstract
data types must be bundled with the data.

To build an object-oriented system from base objects,
programmers must be able to build components (other
objects) that can use a number of base objects yet
maintain the properties possessed by the original objects.
This idea is called inheritance. Two types of inheritance
are multiple and polymorphic. Multiple inheritance
allows an object to inherit properties from two different
objects that, in turn, inherited their properties from a
common ancestor. Polymorphic inheritance is the ability
to enhance or modify the functional interaction of a
higher level object, using the original abstract data types
in the base objects as a foundation.

Smalltalk, LISP, and Prologue were the first computer
languages with object characteristics. Although these
languages have been around many years, few large
systems have been built using them. Their unavailability
in a uniform implementation across multiple platforms
limited their use. Smalltalk, LISP, and Prologue, also
suffered from a lack of readable code and explicit data
type checking which made code written by one
developer difficult to correct or understand by another
developer. Although highly abstract, these languages
were capable of expressing complex concepts with a few
lines of code (which led to the problem stated above)
and easy to reuse. ADA was the first computer language
in which the DoD attempted to incorporate object-
oriented features into a language that would see
widespread use. While ADA has full data encapsulation
and data hiding, it lacks the polymorphic and multiple
inheritance characteristics necessary for object-oriented
design. ADAs type data checking and readability does,
however, allow reuse of its packages between
simulations.



1186

One of the most difficult issues in building objects in
an object-oriented paradigm is selecting base objects on
which everything is built; that i1s defining the taxonomy.
The classical approach to programming, which has led to
most of the useable programs today, uses top down
design. Yet object technology, because it builds up from
base objects to more complex objects, requires a bottom
up design approach. We have learned, however, from
our experience in procedural languages, that bottom up
designs often lead to unworkable code. Designing an
object-oriented simulation, therefore, implies carefully
combining key features of the top down and bottom up
design approaches.

Top down and bottom up design concepts are only
partially useful to object-oriented programming. An
effective object-oriented programming design
philosophy must first design the objects with which the
system interacts and not design the system to interact
with objects. A word of caution however, as this means
that the total system function is deferred until the last
stages of object building.

3 DOD SIMULATION REQUIREMENTS

In the past, each service constructed and used unique
simulations to analyze their own weapon systems.
Projects would often build a complete warfare level
simulation to analyze their own requirements and system
performance. Military down-sizing has significantly
reduced the number of simulation analysts available to
each service, making inter-service simulation efforts
imperative.

At the moment, program offices are expected to
"contribute" a simulation of their weapon system to an
approved warfare model for analysis. Building large-
scale warfare models is becoming a joint service project
with the United States Army contributing the ground
war, the United States Air Force contributing the air war,
and the United States Navy contributing the naval war.
In addition, the constant change of tactics and weapon
systems demands a flexible, easily changed simulation
system. The reality of these new and challenging
requirements has led the DoD to embrace the object-
oriented paradigm.

The fundamental requirements to which future
simulation objects must adhere to meet DoD needs
include:

e Verified, Validated and Accredited (VV&A)
» Reusable in the simulation
¢ Useable across simulations

Currently, many DoD simulations have undergone
verification (i.e., does it work as it was designed), few
have undergone validation (i.c., does it work like the real
"system") and almost none have undergone
accreditation. The demand for object reuse makes

Painter

accreditation much more important. Objects accredited
by the responsible service and program office will
eliminate political debates regarding the validity of a
systems representation when compared to another
system.

Encapsulating code in ADA (packages) or objects
written in C++ or MODSIM III code is a first step
towards meeting VV&A requirements. The real
advantage of full object-oriented languages such as C++
and MODSIM III, over ADA for instance, is their
inheritance mechanisms. These mechanisms allow a
programmer to modify or enhance a system’s properties
without altering the original system properties, and at the
same time, provide a mechanism for tracing changes in
the code.

The DoD also requires that a simulation operate at a
number of levels of fidelity (albeit with the commiserate
cost in computational time and program size). This
means a single simulation fills constructive analysis,
virtual analysis, and live exercise support roles.

4 ISSUES FACING THE DOD SIMULATION
COMMUNITY

Creating computer simulations that interact and interplay

with each other presents a formidable challenge that only

the object paradigm can solve. Again, the real issue

before the simulation community is selecting the

fundamental data abstract on which "base" objects act.

Each level of object interaction between simulations is

different but interrelated. The levels of interaction are:

e Objects used (as is) in another simulation

e Objects used by other objects

e Objects fully inherited and extended by others
objects

A fundamental difference exists between used objects
and inherited objects. Inherited objects, where methods
can be overridden and new methods incorporated,
require a computer language implementation match
between objects. With careful planning the
implementation match can be limited to the data
constructs and method invocation, but LISP and C++
objects for example, must be hand-crafted to work well
together.

Using a collection of objects from various simulations
"as 1s" seems, at first glance, to be a more tractable
solution. A number of object reuse standards such as the
Object Management Group's Common Object Request
Broker Architecture (CORBA), the Open Software
Foundation's Distributed Computing Environment
(DCE), Microsoft's Object Linking and Embedding
(OLE) and Apple's OpenDoc are in use or under
development. The fundamental concept for creating
reusable objects is developing a common framework that
will be used for calling base objects. This framework



Object Oriented Military Simulation 1187

requires both a generic and robust interface to other
objects and the underlying environment. Developing
this framework does not, however, address object
inheritance or the time domain of objects; the latter a
fundamental simulation precept.

The fundamental obstacle to successfully applying
object technology to DoD requirements is the lack of a
defined underlying environment. This environment is
composed of the following critical factors:
¢ coordinate systems
e motion
e energy propagation
o physical object interactions
e event timing

Different simulations seldom use the same coordinate
system. Even simple flat Cartesian systems have two
fundamental orientations, right handed and left handed.
When "spherical” coordinate systems are considered, an
almost infinite variety of coordinate systems are used.

The motion of simulation objects is also very complex
and may need to account for gravitational changes with
altitude or more conventional atmospheric conditions.
Satellites orbiting earth and trucks moving over a road
require completely different mathematical approaches in
terms of computational precision and computational
time.

Radar, infrared (IR), acoustic, and optical emitters and
sensors function as energy traveling through a medium.
A description of the medium adequate for radar
modeling is inadequate for IR modeling, which is much
more sensitive to its environment. Modeling acoustics
requires an order of magnitude more detail to achieve
results comparable to radar models.

Physical objects such as missiles, guns, and mines
attempt to kill other physical objects such as ships,
planes, and tanks. The level of interaction can vary from
simple probability of kill models to detailed
vulnerability models. Often, only parts of physical
objects are destroyed, such as when high speed anti-
radiation missile (HARM ) destroys the search radar of a
surface to air missile (SAM) system but leaves the rest
of the site intact.

Simulations can proceed in time steps, events steps, or
both. Continuous simulations run on digital computers
usually use very small time steps to avoid memory and
disk storage limitations. Event step simulations are
more widely used and two event step paradigms are in
extensive use today: event scheduling and process
scheduling. A simple event step simulation requires a
complex state matrix approach to ensure events are
properly scheduled. Process scheduling simulations
more closely imitate “real” systems by allowing
processes to begin and end independently. Multi-
threading the process event scheduler allows the user to
more easily simulate the physical processes of a system.

Another important factor, not listed with the preceding
items, concemns object fidelity. Building different levels
of fidelity into an object will require level-of-fidelity
standards that allow some level of interaction between
objects operating at different fidelities. For example, a
high fidelity radar model requires objects to fly
continuous paths with continuous derivatives for
changes in path direction. This is incompatible with the
low fidelity point-to-point movement of objects with an
average speed on each path segment.

5 OBJECT REQUIREMENTS FOR DOD
SIMULATIONS

A list of requirements for objects used in military
simulations would ensure that simulation objects
constructed by different services and organizations
remain compatible. 1 propose a set of general
requirements that could be used to construct
compatible simulations.

1. Physical objects composed of one or more base
objects should not directly interact with other
physical objects. When complex objects interact,
their actions should filter up and down through their
respective inheritance trees. In other words,
complex objects should only interact through their
inherited objects. A "simple" concept of an object’s
coordinate position should be directly available but
only through inheritance or brokered objects.

2. The base objects should only interface with their
base data structures. For example, a motion object
interacts with the base coordinate system yet is able
to conduct motion and report coordinates to other
objects, regardless of the simulation’s coordinate
system. When an object, a ship for example, is
moved to a simulation which operates on a different
coordinate system, only the coordinate transform
needs to be added to the ship’s motion object so that
it may use and move any of the objects in the
current simulation. Similarly, radar propagation
model interfaces will have to be defined to interact
with the different mediums.

3. The ability to inherit from and modify an accredited
object should be limited to a single inheritance
level. If the accreditation of objects extends beyond
simple systems to full physical platforms such as
ships, objects should be used "as is" without the
ability to invoke polymorphic behavior. The depth
of polymorphic inheritance should also be limited to
no more than three levels to maintain clarity of
understanding.

4. Multiple inheritance should be limited to inheriting
objects of different functions. Multiple inheritance
should be delayed as long as possible in the
polymorphic inheritance tree to eliminate the



1188

accumulation of useless code in future inheritances.
Simulation objects often inherit graphical
interactions much too early, requiring almost all
objects to be graphic capable.

5. After defining a base set of objects, the object-
oriented design should be hierarchical in nature.
Base objects represent the flat "playing field" that
interacts with the fundamental abstract data types.
A hierarchical design builds systems that are easily
configured to meet changing requirements.

Over time, we will find that most problem classes will
gravitate towards certain underlying abstract data
structures. For example, combat-level simulations may
have a tendency to use flat earth coordinates as their
coordinate system and multi-regional conflict models
may find spherical coordinate systems more
"economical"”. Yet the objects of one simulation class
could easily participate in the other simulation class.

Finally, we must also consider amount of data that
passes between user objects and the base object as user
objects set up their interaction with the environment.
Only small data requests should be required to retrieve
data from the environment and interact with it. Using a
standard interface to every simulation carries both
computation and code size penalties. I believe these
penalties can be more than compensated for by
optimizing the base objects interaction with their
environment.

6 WHERE ARE WE NOW?

A number of simulations already exist, or are under
construction, which use object technologies. One of the
largest models used and worked on today is the Multi-
warfare Assessment & Research System (MARS) at the
Naval Surface Weapon Center (NSWC) in both
Dahlgren (VA) and Panama City (FL). Written in
MODSIM III, MARS models naval warfare including
air, surface, subsurface, and littoral warfare. MARS has
different levels of object fidelity and can easily
participate in Distributed Information System (DIS)
exercises and perform detailed constructive analysis.

Another Navy warfare model, the Naval System
Simulation (NSS), version 1.0, uses object taxonomy
concepts from MARS and model concepts from the
Composite Warfare Model (CWM). While many other
models used today, such as the Concurrent Theater
Level Simulation (CTLS), are object-oriented, they do
not possess the full object technology needed to meet
future military simulation requirements for the next
generation of models.

Unfortunately, no model to date fully embraces the
new simulation concepts under the object paradigm.

Painter

7 SUMMARY

Joint warfare simulations in both virtual and real
exercises require rapid definition of their simulation
objects. The Joint Simulation System (JSIMS), the
Warfighting Simulation (WARSIM), and the National
Air and Space Model (NASM) have immediate
requirements that can only be successful met through the
employment of object technology. Joint service
development efforts such as JAST place similar
demands on constructive simulations. Current
discussions about integrating THUNDER (the Air
Force’s campaign model), CTLS, and NSS into the next
generation warfare model, called the Advanced Regional
Exploratory System (ARES), will drive the approach to
a new generation of constructive models for Cost and
Operational Effectiveness Analysis (COEA) efforts.
Much like the commercial computer software
community that has found success in using "standards
based" systems, the military simulation community will
only succeed by working together to build a coherent
object-oriented approach for DoD simulations.

REFERENCES

Cox, B. J. 1944. Object- Oriented Programming, An
Evolutionary Approach. New York: Addison-Wesley.
Meyer, B. 1988. Object-oriented Software Construction. .

London: Prentice-Hall International Ltd.
Shumate, K. 1984. Understanding ADA.. New York:
Harper & Row.

AUTHOR BIOGRAPHY

RONALD D. PAINTER is the Director of Simulation
for the Projects Division of CACI Products Company
where he serves as program manager for the THUNDER
and MARS models. As Engineering Director at United
Technologies Advanced System Division, he developed
the SimMaster object-oriented simulation framework
which has been used to successfully build nearly a dozen
new simulations. Dr. Painter served as the chief
Operations Analyst for the Advanced Medium Range
Air-to-Air Missile (AMRAAM) JSPO and was chief
analyst in the United States Navy’s Anti-ship Missile
Defense (ASMD) Program. He has been writing and
using discrete-event simulations throughout his career.



