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ABSTRACT

A key problem in traffic engineering is the optimization
of the flow of vehicles through a given road network.
Improving the timing of the traffic signals at
intersections in the network is generally the most
powerful and cost-effective means of achieving this goal.
Recent efforts have resulted in the development of a
fundamentally different approach for optimal centralized
signal timing control that eliminates the need for an
open-loop model of the traffic network dynamics. The
approach is based on a neural network (NN) serving as
the basis for the control law, with the internal NN weight
estimation occurring real-time in closed-loop mode via
the simultaneous perturbation stochastic approximation
(SPSA) algorithm. This paper investigates the
application of such a non-network-model-based approach
and illustrates the approach through a simulation on a
nine-intersection, mid-Manhattan, New York network.
The simulated traffic network contains varying short and
long-term congestion behavior and short-term stochastic,
nonlinear effects. The approach results in a net 10%
reduction in vehicle wait time relative to the performance
of the existing, in-place strategy.

1 INTRODUCTION

A major component of advanced traffic management for
complex road systems is the signal phase timing for the
signal-controlled intersections. This 1s an extremely
challenging control problem for most realistic settings.
Modern traffic control (1.e., signal timing) algorithms that
have been implemented for centralized control of
complex networks require an open-loop model for the
traffic dynamics which is then used to determine the
signal control parameters. In order to accommodate
complex network dynamics, this model may take the
form of a set of differential/difference equations
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(Papageorgiou 1990 and Smith and Ghali 1990) or a
neural network (Nataksuji and Kaku 1991) or a fuzzy
logic or rule-based expert system (Kelsey and Bisset
1993 and Ritchie 1990). Whatever the type of model
used, it is serving as a representation of the effect of the
current signal timings on the traffic flow in the network.
Such an approach, however, will produce suboptimal,
centralized control in realistic road networks of many
intersections and for time periods of many months
duration, since there are numerous unmodelable
interactions and seasonally changing effects. In
particular: "To develop a ‘general theory' for the
stochastic behavior of a traffic system is out of the
question. Even if it were possible, such a theory would
be so complex as to be of no practical value." (Newell
1989, p. 258). Hence, a reduced or non-network-model-
based approach to centralized traffic control provides an
attractive alternative and has recently been developed in
Spall (1992), Spall and Cristion (1994), and Spall and
Chin (1994). Spall and Chin (1994) provides a more
technical presentation of the algorithm for traffic control
while Spall (1992) provides the mathematical basis and
Spall and Cristion (1994) develops the integration of the
algorithm with neural networks.

The unique aspect of the control strategy in this
approach is that it does not require a mathematical (or
other) model of the traffic network dynamics (which is
typically constructed "off-line" using past traffic data in
its determination of the centralized controller signal
parameters). It is based on a neural network function
approximator for use in the control function, and this
processor can obtain its structure directly from traffic
system observations rather than from a system network
model. This feature eliminates the problem of non-
robustness of system model-based controls to operational
traffic situations that differ significantly from situations
represented in the data used to build the system model
(this non-robustness can sometimes lead to unstable
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system behavior). Further, the non-reliance on network
modeling will of course simplify the adaptation of the
controller to modifications in the underlying measure of
effectiveness (MOE).

The NN/SPSA complex works as a coordinated
process to control the traffic. The NN represents a
function that transforms recorded traffic conditions into
the appropriated traffic signal timing parameters whereas
the SPSA algorithm optimizes the weights used in the
NN (see Section 2 for details). The NN responds to the
short-term variations in traffic and interpolates, or
extrapolates from previous responses if necessary, to
produce appropriate timing parameters for nontypical
traffic incidents. The SPSA algorithm smooths over
stochastic variations in traffic during its NN weight
estimation, which occurs over a period of several days,
and tolerates inaccuracies in MOE estimation since it
accounts for noise in traffic flow data (Spall 1992).

In addition to the above considerations, true
intelligent control requires that the controller
automatically adapt to the inevitable long-term (say,
month-to-month) changes in the system. This is a
formidable requirement for the current model-based
controllers as these long-term changes encompass
difficult-to-model aspects such as seasonal variations in
flow patterns, long-term construction blockages, changes
in the number of residences and/or businesses in the
system, etc. In fact, in the context of the Los Angeles
traffic system, Rowe (1991) notes that the difficulty in
adapting to long-term changes is a major limitation of
current traffic control strategies. The non-network-
model-based approach, however, is able to producc a
controller that converges toward optimal, centralized,
instantaneous (cycle-by-cycle) signal timings while
automatically adapting to long-term (month-to-month)
system changes. Such an approach could thus be
incorporated by advanced traffic control planners to
reduce the cost and need for frequent traffic control
strategy upgrades in a traffic system.

The control strategy here (like any other demand-
responsive controller) requires real-time sensor data
related to the traffic flow. In some cases, the MOE of
interest can be formulated directly in terms of the sensor
data, e.g., an MOE measuring vehicles/unit time passing
through the network intersections can be calculated
directly from common loop detectors at the intersections
that provide vehicle counts. In other cases, the MOE
may involve quantities not directly rclated to the
available sensors, e.g., an MOE that reflects total vehicle
wait time near intersections cannot be determined
straightforwardly if only upstream loop dctector data are

available. In such cases, some very localized
(decentralized, link-specific) modeling would be required
to relate the sensor data to the MOE (this requirement,
of course, applies to any control technique). This
modeling, however, is usually much simpler than
attempting to model the underlying traffic dynamics that
relate the signal timings to the MOE at a network-wide
level (as discussed earlier). The reason for this relative
simplicity 1s that the relationship between the sensor data
and MOE is typically much more direct, short-term, and
localized to specific traffic queues than the effect of a set
signal timings from multiple signals on the network-wide
traffic flow and associated MOE. For example, loop
detectors near an intersection can provide data for
reliable estimation of vehicle wait time at the intersection
(see, e.g., Wallace, Courage, and Hadi 1991, Section
4.3.4.1, or Tsay, Kang, and Hsiao 1991); these estimated
wait times can then be summed to provide the estimated
network-wide wait time.  Although the means of
evaluating MOEs must be addressed, the approach
presented here is not specific to a particular MOE. Our
approach 1s beneficial in the sense of reducing the
modcling effort, if required, to only the sensor-MOE
relationship at most to accomplish system-wide traffic
control.

2 OVERVIEW OF CONTROL STRATEGY

The fundamental non-network-model-based and system-
wide control strategy develops, at the outset, a general
mathematical function that takes any current data values
on the state of the traffic conditions (e.g., instantaneous
upstream traffic counts and perhaps speed) and produces
a set of signal timings (length of green phase or split,
cycle length, etc., for the subsequent light cycle of all
controlled signals) in such a way as to optimize the
performance of the system over a period of several
hours. This control function is implemented in this
approach by a neural network (NN), which 1s a powerful
technique for approximating complex nonlinear functions
such as the "true," but unknown, optimal control for
signal timings. Essential to the performance of the NN
are the values of the connection weights in the NN. The
major unique feature of the non-network-model-based
approach 1s the simultaneous perturbation stochastic
approximation (SPSA) method by which these NN-
controller weights are estimated ("trained") by observing
the effect on the traffic of small NN weight perturbations
and the resulting small signal timing changes. Figure 1
illustrates the overall relationship between the NN
control, the traffic system to be controlled, and the SPSA
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training process. The SPSA method is specifically
designed to accommodate stochastic traffic fluctuations
encountered during the training process.

Non-sensor Inputs{ NN signal . Traffic Sensor
(time-of-day, Control timings System measurements
weather, etc.)

----- Path followed only when SPSA training for NN weights is

P

Figure 1: Overall Relationship Between Traffic System
and NN/SPSA Controller

It is sufficient to view the NN as a certain collection
of nonlinear functions with unknown coefficients (called
connection weights) that must be estimated. After the
weights are specified, the NN acts as a function by
taking a set of inputs and producing a set of outputs
(analogous to a polynomial with specified coefficients).
Theory given in, say, Funahashi (1989) shows that any
reasonable mathematical function can be approximated to
a high level of accuracy by a NN if (and only if) the
weights are properly estimated. In the present case, the
NN is being used to approximate the (unknown) optimal
control function for the signal timings. Thus, although
there is a wealth of literature on NNs in many types of
applications, the focus here is simply in using them as a
function approximator. The SPSA methodology, to be
summarized in the next section, then proceeds to train
and continually and adaptively adjust the NN weights.
This is done in such a way that the resulting system-
wide signal controls are responsive and converge toward
optimality for the variations of traffic flow patterns
encountered during the immediate daily period of
operation.

3 ALGORITHM FOR DETERMINING NN
WEIGHTS IN CONTROLLER

As discussed above, the NN-based control depends on a
set of weight coefficients, which must be estimated.

Once these weights are properly specified, there will be
a fully defined function that will take state information
on traffic conditions (e.g., traffic counts and perhaps
speed throughout the traffic system) at any given time of
day and collectively produce optimized signal timings for
the subsequent cycle of each traffic signal. It is within
these weights that information about the optimal control
strategy is embedded. To reflect reality, it is important
that the weights contain short-term, time-of-day
information and that they be able to evolve in the long-
term (month-to-month) in accordance with the inevitable
changes in the transportation system. The SPSA
algorithm for weight estimation is based on observing
traffic patterns when slight changes are made to the
weights and thus to the current signal timing settings;
these "slight changes" are done in a special way that is
at the heart of the algorithm and that maximizes the
amount of information available for optimization while
minimizing disruptions to the traffic system.

A step-by-step summary of how the SPSA algorithm
would be implemented, to achieve optimal traffic control,
will now be given. A more detailed discussion of the
mathematical basis and procedure for implementing the
SPSA technique for traffic control is presented in Spall
and Chin (1994) and in Spall and Cristion (1994) for
more general control applications.

1. An initial weight vector for the NN controller is
constructed first by implementing the NN in an open-
loop and so-called "back-propagation” mode using
several days of traffic count and current (suboptimal)
traffic signal controller data. The data can be
supplied either by a traffic engineering database or by
a realistic computer simulation of the traffic network
to be controlled. The simulation should employ a
reasonable (though suboptimal) control strategy for all
of the signals in the traffic network being addressed.
After this initialization phase, the NN controller
should be able to approximately emulate the initial
real or prescribed control strategies. We should
emphasize here that the computer simulation
suggested above is for initialization purposes only,
and its operation and employed strategies are not
critical to the optimal strategies to be derived
subsequently by the SPSA algorithm.

2. Given the current weight vector estimate, change all
values slightly in the manner described in Spall and
Chin (1994) and Spall and Cristion (1994).

3. Monitor the traffic system throughout the control time
period (e.g., several hours) and form the sample loss
function (sum of prescribed MOEs) based on the
observed system behavior.



Adaptive Traffic Control Technique 1127

4. During the same control time period on the following
like day (e.g., possibly weekday-by-weekday), repeat
steps 2 and 3 with a complementary slight change in
the weight vector estimate, as described in Spall and
Chin (1994) and Spall and Cristion (1994).

5. With information from steps 3 and 4 on separately
calculated loss functions, take one iteration of the
SPSA algorithm, which updates the values of the
elements of the weight vector.

6. Repeat steps 2-5 with the new weight values until the
traffic flow is optimized (i.e., shows convergence to
a maximum or minimum as desired) based on the
chosen loss function.

There are several practical aspects of the above
procedure that are worth noting. First, since each
iteration of SPSA requires two days, we would expect
that adequate convergence to the optimal weights for the
traffic system would take a month or two. While this
real-time adaptive optimization or training is taking
place, the controls will not, of course, be optimal.
Nevertheless, by initializing the weight vector at a value
that is able to produce the initial signal timings actually
in the system (or in a reliable simulation), the algorithm
will tend to produce signal timings that are between the
initial and optimal timings while it is in the training
phase. Hence, there should be no significant control-
induced disruption in the traffic system during the
training phase. After the converged weight values have
been obtained, we will have derived a NN-based control
processor that produces optimized light timings for any
given intra-light cycle traffic flow conditions and for all
signals in the traffic system. In order to adapt to the
inevitable long-term changes in the underlying traffic
flow patterns, the controller may be allowed to continue
in its training mode operation indefinitely.

4 EXAMPLE OF SPSA-BASED SYSTEM-WIDE
ADAPTIVE TRAFFIC CONTROL APPROACH

4.1 Introduction

This section illustrates by simulation an application of
the SPSA real-time adaptive control approach for system-
wide traffic signal control described above. The six-step
training process outlined in Section 3 is employed here
to construct a NN-based controller. In particular, we are
considering control for one four-hour time period and are
estimating, across days, the NN weights for the collective
set of traffic signal responses to instantaneous traffic
conditions during this four-hour period. The software
used here is a modified version of SPSA control software
that was originally designed for a smaller scale traffic

system problem (see Spall and Chin (1994)); the
simulation was conducted on an IBM 386 PC, and the
software is written in the programming language C++.
The traffic dynamics were simulated using state-space
flow equations similar to those in Papageorgiou (1990)
or Nataksuji and Kaku (1991) with Poisson-distributed
vehicle arrivals at input nodes. Of course, as described
throughout this paper, the controller does not have
knowledge of the equations being used to generate the
simulated traffic flows, but it is able to adapt to the
system by efficient use of small system changes and
observation of resulting system performance.

4.2 The Simulated Traffic Flow and Form for NN
Controller

The studies conducted here are based on the simulation
and test case treated in Chin and Smith (1994) (ie., a
mid-Manhattan, NY business sector). Two studies
were conducted for a simulated 90-day period: one which
implemented steady, long-term growth in Poisson arrival
rates over the total period, and another which introduced
a 10% step increase in arrival rates at day 10 during the
total period. Both are realistic and difficult control
scenarios; the long-term change might represent a new
office complex development and the step change might
represent a single business opening. For the long-term
change, all input queue arrival rates experience a net
increase of .08% of the original level per day for each of
the 90 days in the study or a total increase of 7.2% after
90 days. In both studies the simulated traffic network
runs between 55th and 57th Streets (North and South)
and from 6th Avenue to Madison Avenue (East and
West) and therefore includes nine intersections with 5th
Avenue as the central artery. Figure 2 depicts the
scenario. The time of control covers the four-hour
period, from 3:30 p.m. to 7:30 p.m., which represents
evening rush hour. The technique could obviously be
applied to any other period during the day as well. In
the four-hour control period several streets have their
traffic levels gradually rising and then falling. Their
traffic arrival rates increase linearly from non-rush hour
rates starting at 3:30 p.m. The rates peak at 5:30 p.m. to
a rush hour saturated flow condition and then subside
linearly until 7:30 p.m. Back-up occurs during rush
hour. Nonlinear, flow-dependent driver behavioral
aspects are embedded in the simulation. Some streets
have unchanging traffic statistics during the total time
period while others have inflow rates from garage-
generated egress at the end of office hours from 4:30
p.m. to 5:30 pm. The simulation has been extensively
tested to ensure that it produces traffic volumes that
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correspond to actual recorded data for the Manhattan
traffic sector. (A complete discussion of the
development and testing of the baseline simulation and
the details of its operation are given in Chin and Smith
(1994)).

Bth Ave, Sth Ave. Madison Ave.

I > 5B6th St.

£—_© 551h St

Figure 2: Traffic Simulation Control Area
(Mid-Manhattan)
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For the controller, we used a two-hidden-layer, feed-
forward NN with 42 input nodes. The 42 NN inputs
were (i) the queue levels, at each cycle termination, for
the 21 traffic queues in the simulation, (11) the per-cycle
vehicle arrivals at the 11 external nodes in the system,
(1i1) the time from the start of the simulation, and (iv) the
9 outputs from the previous control solution. The output
layer had 9 nodes, one for each signal light's green/red
sphit. The two hidden layers had 12 and 10 nodes,
respectively. For this NN, there were a total of 745 NN
weights that must be estimated as part of the control
algorithm.

The controller is designed to map, in a centralized
fashion, the above listed information into optimal values
for the green-time/total-cycle-time for the succeeding
cycle of each of the nine signals in the traffic network.
The controller operates in a real-time adaptive mode in
which its cycle-by-cycle responses to traffic fluctuations
are gradually improved, over a period of several days or
weeks, based on an MOE consisting of the calculated
total traffic system wait time over the daily four-hour
period. Note that since the underlying MOE tor the NN
controller weight estimation is based on system-wide
traffic data (i.e., data downstream from each traffic signal
as well as upstream ) over a several-hour time period, the
effect of signal settings, turning movements, etc. several
minutes into the future, after each cycle, and the future
accumulation of traffic at internal queues is factored into
the formation of the controller function.

Although not included in the current study, the

calculation of the MOE in an actual implementation
would require upstream traffic sensor data and a simple
model that relates the upstream data to the downstream
queue development and vehicle wait time for each queue,

independently. As discussed in the Introduction, this is
viewed as a much simpler requirement than modeling
sensor/queue interactions collectively for the entire traffic
network, which the SPSA methodology does not require.
Of course, the placement of additional sensors at
intersections could eliminate the modeling effort. The
current example demonstrates the capability of the SPSA
algorithm to collectively and effectively deliver an
adaptive control of signals for an entire traffic network
with nonlinear and stochastic traffic flows (and either
slowly changing or step increasing demand) using a
network-wide battery of point-based traffic data inputs.
Consistent with the SPSA methodology, the controller
output timings change continuously (cycle-to-cycle) as a
function of the instantaneous input traffic flow data (1.e.,
resulting from Poisson samples) while the underlying NN
weights that define the control function are changed on
a day-to-day basis in a gradually adaptive training
process. The adaptive process was operated continuously
over the 90-day span of the simulation while the Poisson
arrival rates of the traffic in the network were
undergoing the added feature of net gradual changes as
described above.

4.3 Results

Figure 3 presents the results of our simulation study of
the system-wide traffic control algorithm for long-term
changes. Figure 4 shows similar results for the step
increase case. In order to show true learning effects (and
not just random chance as from a single realization) the
curves in Figures 3 and 4 are based on an average of 100
statistically independent simulations. In Figure 3, the
middle curve displays the normalized average values of
total system (nine intersection) wait time over the four-
hour period of each day for the 100 simulations, and the
upper and lower curves are the bounds within which
90% of the sample data lies. The values in the curves
are normalized by the average response of an equivalent
traffic network controlled by a fixed signal split strategy.
The fixed strategy assumed a green-time/total-cycle-time
value of .55 for all signals along N-S arteries. This was
the prior strategy in-place in the Manhattan sector during
the recording of actual data. As evident in Figure 3, 30
days of the 90-day period were reserved as optional
"evaluation days" to demonstrate improved values of the
MOE. However, only data from the other 60 "training
days" were used in the SPSA algorithm, thus, the
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adaptive training period could have been reduced to only
60 days. In this case, the improvement would have been
more pronounced since the long-term change would have
had less time to evolve.
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Figure 3: Reduction of Total Wait Time for NN/SPSA
Control of Traffic Signal Timing with Long-Term Trend
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Figure 4: Reduction of Total Time for NN/SPSA Control
of Signal Timing with Step Increase in Flow

With the fixed-time strategy in use in the baseline
system, the total system wait time experienced a 5.4%
approximately linear increase over the 90-day period, on
the average, as a result of the 7.2% total linear increase
in traffic arrival rates. For the same system under
control of the SPSA-based algorithm, the total system
wait time showed a decaying exponential decrease in
spite of the linearly increasing arrival rates. After the
90-day period, the SPSA-controlled system showed an
average decrease in total system wait time of 4.6%.
Normalization of the SPSA-controlled system data by the
fixed-time strategy data resulted (see Figure 3) in a net
improvement for the SPSA-controlled system of 10%
relative to the fixed-strategy-controlled system. This
reduction in total wait time represents a reasonably large

savings with a relatively small investment, particularly
for high traffic density sectors. In comparison, major
construction changes to achieve a net improvement in
traffic flow of 10% in a well-developed area, such as for
the traffic system in mid-Manhattan, would be
enormously expensive.

In the step increase case, Figure 4 shows a
corresponding step increase in total system wait time
under the fixed-time strategy. For the traffic system
under SPSA control, a step increase also occurred in total
system wait time, but the wait time continued to decrease
without any transient behavior subsequent to this
phenomenon, and a 10% improvement is evident after
the 90-day test period. This result demonstrates the
broad robustness properties of the SPSA technique.
Furthermore, the total system wait time in both studies
displays a generally downward trend; given more time,
the system is expected to show continuing gradual
improvement. ‘

S. CONCLUDING REMARKS

It was shown that the SPSA optimization technique can
be used for practical real-time, long-term adaptive,
centralized, non-network-model-based control for a
moderate-sized traffic system. This was achieved by
using the SPSA algorithm to determine the weights for
a neural network controller that produces the optimized
signal timings collectively for each signal cycle within
a given time period based on observed intra-cycle traffic
conditions. Thus, this controller will operate in real-time
and make signal timing adjustments for multiple signals
in a traffic network to accommodate short-term
conditions such as congestion, business openings, nearby
accidents, brief construction blockages, adverse weather,
etc. It also has the ability to automatically accommodate
long-term system changes (such as seasonal traffic
variations, new residences or businesses, long-term
construction projects, etc.) without the cumbersome and
expensive off-line remodeling process that has been
customary in traffic control. The NN training process
gradually adapts to long-term changes in a manner that
1s essentially invisible to the vehicle operators in the
system and produces an optimized control on a system-
wide basis.
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