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ABSTRACT

Two or more multiplicative congruential random-
number generators with prime modulus combined
by means of a method proposed by Wichmann and
Hill yield a random-number generator equivalent to
a multiplicative congruential random-number gener-
ator with modulus equal to the product of the mod-
uli of the component multiplicative congruential gen-
erators. The period of a random-number sequence
obtained by the Wichmann-Hill method is equal to
the least common multiple of the periods of the com-
bined sequences. One of the two purposes of this
paper is to present a necessary and sufficient set of
efficiently verifiable conditions, for the period to be
equal to its maximum, which is the maximum of the
least common multiple. Each of the conditions will be
always satisfied or will be more easily verifiable, when
the modulus of each of the component generators is
safe prime. The other purpose is to derive an effi-
ciently evaluatable formula for serial correlations of
the maximum-period sequences by the Wichmann-
Hill method. The authors recommend (i) to make
the modulus of each of the component generators safe
prime, and (ii) to chose the multipliers of the compo-
nents so as to (a) maximize the period and (b) make
the serial correlations small in absolute value.

1 INTRODUCTION

Random numbers are requisite variables for random
sampling, discrete-event simulation, etc. In ran-
dom sampling, throwing icosahedral dice or consult-
ing a table of random digits could suffice, but gen-
erating random numbers in a computer is no worse;
in discrete-event simulation, a method of generating
random numbers (to be precise, pseudo-random num-
bers) in a computer is indispensable. (Quasi-random
numbers are more suitable for numerical integration
with a fixed-dimensional integrand and for global op-

timization, than pseudo-random numbers are (Sec-
tion 6.2 of Bratley, Fox, and Schrage 1987); for more
information about quasi-random numbers, we refer to
the profound book by Harald Niederreiter (1992).)

The common method of computer generation of
random numbers i1s the multiplicative congruential
generator (MCG). However, the period of the se-
quence obtained by the MCG cannot exceed the max-
imum size of integer representable on the computer;
this limitation on the period can be fatal to applica-
tions in a high-speed computer where the number of
required random numbers exceeds the period.

Wichmann and Hill (1982) have proposed a method
of combining three MCG’s with prime modulus rep-
resentable on computers with a word size of at least
16 bits. Their combination yield a random-number
sequence with a very large period for applications
in 16-bit computers; indeed, the period of the se-
quence obtained by their method is equal to the
least common multiple of the periods of the combined
MCG sequences, even when the number of component
MCG’s with prime modulus is arbitrary (L’Ecuyer
and Tezuka 1991).

In this paper, we shall see a necessary and sufficient
set of conditions, for the period of a Wichmann-Hill
sequence to be equal to its maximum, which is the
maximum of the least common multiple. It can be ef-
ficiently verified whether each of the conditions holds
or not, without evaluation of the least common mul-
tiple.

A prime number p greater than two is said to
be safe prime, if (p — 1)/2 is also a prime number
(Marsaglia and Zaman 1994). A safe prime num-
ber is a proper modulus of an MCG, for two reasons
(Marsaglia and Zaman 1994): A safe prime modulus
guarantees

(i) that approximately half of all the candidate val-
ues for the multiplier of the MCG satisfy the
maximum-period condition, and

(i1) that the period of the sequence of non-
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overlapping t-tuples from the maximum-period
sequence by the MCG is at least half of the max-
imum period, with few exceptions in the value
of t.

Let J denote the number of MCG’s combined
by the Wichmann-Hill method. An MCG with
safe prime modulus is a proper component of the
Wichmann-Hill combination, for two reasons: A safe
prime modulus of each of the J component MCG’s
assures

(i) that approximately 1 —1/27 of all the candidate
vectors composed of J multipliers of the MCG’s
satisfy the maximum-period condition for the
Wichmann-Hill method, and

(i1) that the period of the sequence of non-
overlapping t-tuples from a maximum-period se-
quence by the Wichmann-Hill method 1s at least
half of the maximum period, with few exceptions
in the value of t.

Some of the principles of random-number genera-
tion in Section 3.6 of the second edition (1981) of the
encyclopedic book by Donald E. Knuth (1969) im-
plies (i) that serial correlations of a random-number
sequence should not be large in absolute value, and
(ii) that the overlapping or non-overlapping t-tuples
of random numbers should form a good lattice, when
they are viewed as points in the unit cube of ¢-
dimensional space.

Efficiently evaluatable formulae for serial corre-
lations of the sequence obtained by some types of
MCG’s are derived by Dieter and Ahrens (1971). In
this paper, we shall see an efficiently evaluatable for-
mula for serial correlations of the maximum-period
sequences obtained by the Wichmann-Hill method.

The quality of the lattice structure of the points
from an MCG sequence can be quantified by the
spectral test originated by Coveyou and MacPher-
son (1967), which is the most meaningful test known
so far, for assessment of the lattice structure of the
MCG (Section 3.3.4 of Knuth 1969; Fishman and
Moore 1986). The quality of the lattice structure of
the points from a Wichmann-Hill sequence can be
also quantified by the spectral test; there is an MCG
equivalent to the Wichmann-Hill method (H. Zeisel
1986; L’Ecuyer and Tezuka 1991).

The author’s recommendation on the Wichmann-
Hill combination is to

(i) make the modulus of each of the component
MCG’s safe prime, and

(ii) chose the multipliers of the component MCG’s
so as to make (a) the period equal to the maxi-

mum, (b) the serial correlations of the maximum-
period sequences small in absolute value, and
(c) the lattice structure of the points from a
maximum-period sequence good.

The rest of this paper is organized as follows. In
Section 2, we first see the period for a prime-modulus
MCG (PMMCG), which can be a component of the
Wichmann-Hill method, second an efficiently evalu-
atable expression for serial correlations of a PMMCG
sequence, and then how the quality of the MCG is
quantified by the spectral test. In Section 3, we first
investigate a necessary and sufficient set of efficiently
verifiable conditions, for the period of a Wichmann-
Hill sequence to be equal to its maximum, second
examine an efficiently evaluatable expression for the
serial correlations of the Wichmann—-Hill sequences,
and then consider how the quality of the Wichmann-
Hill method is quantified by the spectral test. Finally
in Section 4, we review the results of the paper.

2 THE PRIME-MODULUS MULTIPLICA-
TIVE CONGRUENTIAL GENERATOR

An MCG (multiplicative congruential generator) is
determined by three integers

m: the modulus, m > 2;
a: the multiplier, 0<a<m,
Xo: the initial value, 0< Xg<m.

The case where m = 2 is excluded because of its
triviality. The sequence { X, | n > 0} of integers in
the range [1, m — 1] is obtained by the recursion

Xp=aX,_.1 modm (1)

for each n > 1. The corresponding sequence {U, |
n > 0} of numbers on the interval (0, 1) is obtained
by the normalization

Un = Xn/m 2)

for each n > 0.

We call an MCG whose modulus is a prime num-
ber (greater than two) a PMMCG (prime-modulus
MCG). Wichmann and Hill’s method combines
two or more PMMCG’s. The value of the modu-
lus m of a PMMCG is usually chosen to be close
to the largest integer representable on the computer.
The value of the multiplier a affects the period, serial
correlations, and lattice structure, of the sequence.

The initial value Xy may be arbitrary, as long as
0< Xg<m.
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2.1 The Period
2.1.1 The Period of the Sequence

The sequences { X, |n >0} and {U, | n > 0} of
a PMMCG, defined by (1) and (2), have the same
period
A min{!>1|X,4; = X, foreachn > 0}.

This is called the period for the PMMCG. When
the modulus m is fixed, the multiplier a changes the
period A. The period A is at most m — 1, which is the
maximum period for the PMMCG.

Later in Section 3.1.1, we shall see that it is not
necessary that each of the PMMCG’s composing the
Wichmann-Hill method has its maximum period, for
the Wichmann—Hill method to have its maximum pe-
riod. Thus, we consider the period A that need not
reach the maximum.

Let a designate a primitive element modulo m.
Each multiplier a can then be expressed in the form

a = o' mod m, (3)

where ¢ is a uniquely determined positive integer less
than m. The period A when a in (3) is used for the
PMMCG is given by

A= (m—1)/ged(i,m—1). (4)

The greatest common divisor ged(i,m — 1) can be
evaluated efficiently by Euclid’s algorithm. Equa-
tion (4) states that X is a divisor of m—1, and implies
that the maximum period m—1 is attained if and only
if ged(i,m—1) = 1.

Consider the case where m is a safe prime num-
ber, i.e., where the prime factorization of m —1 1s ex-
pressed as 2-[(m—1)/2]. If the exponent i = m—1 or
(m — 1)/2, then A = 1 or 2, respectively; other-
wise A = m — 1 for i odd and A = (m — 1)/2 for
i even: Approximately half of all the candidate values
for the multiplier of the MCG satisfy the maximum-
period condition; besides, no multiplier except 1 and
m — 1 has its period less than half of the maximum
(Marsaglia and Zaman 1994).

2.1.2 The Period of the Sequence of Non-
Overlapping t-tuples

Factors of the maximum period of a random-number
sequence are undesirable; they provide periodic sub-
sequences of a maximum-period sequence (Marsaglia
and Zaman 1994). The number of prime factors of the
maximum period m—1 of a PMMCG with modulus m
is minimized to be two, if the (prime) modulus m is
safe prime. In this case, the period of the sequence of

non-overlapping ¢-tuples from the maximum-period
sequence by the PMMCG is equal to m — 1, the max-
imum period, for t odd, or equal to (m —1)/2, half of
the maximum period, for ¢ even, unless ¢ is divisible
by (m —1)/2.

Consider an example where the modulus of a
PMMCG for 32-bit computers is the greatest safe
prime number 2147483579 less than 23!. The maxi-
mum period for the PMMCG has the prime factor-
ization 2 -1073741789; the period of the sequence of
non-overlapping t-tuples from the maximum-period
sequence by the PMMCG is equal to the maximum
period for t odd, or equal to half of the maximum pe-
riod for t even, unless ¢ is a multiple of 1073741789.

2.2 Serial Correlations

If the serial correlation (sometimes called the serial
correlation coefficient)

m-—2 m—2
(m=1) > UnUnygs — (Z U,%)
— n=0

n=0
€ = m—2 m—2
m-nS - (Sw)
n=0 n=0

at lag s of the maximum-period sequence {U, | n >
0} of random numbers obtained by an PMMCG is
large in absolute value, then U, and U, 4, are not to
be regarded as independent. It is necessary to have
serial correlations small in absolute value, though it
is not sufficient (Section 3.3.3 of Knuth 1969; Sec-
tion 7.2 of Niederreiter 1992).

The serial correlation ¢; at lag one can be calcu-
lated efficiently: The correlation at lag one has an ex-
pression (equation (4.12) of Dieter and Ahrens 1971)
for it in terms of the Dedekind sum o(a, m):

_ maoa(a,m)

T m=2)m=-1)
The Dedekind sum o(a,m) can be computed effi-
ciently by some methods (Dieter and Ahrens 1971;
exercise 3.3.3-17 of the second edition (1981) of
Knuth 1969). (For a definition of the Dedekind
sum o(a,m), see Knuth’s (1969) definition of a gen-
eralized Dedekind sum, with the integer ¢ equal to
zero.) Therefore, the correlation at lag one can be
evaluated efficiently.

The serial correlation ¢, at lag s > 2 can be cal-
culated efficiently by a method for evaluating a serial
correlation at lag one; the lag-s correlation for the
multiplier a 1s equal to the lag-one correlation for an-
other multiplier a® mod m.
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2.3 Multidimensional Lattice Structure

As George Marsaglia (1968) has indicated, an MCG

has a defect that, if over-
lapping t-tuples (Up, Uy, ..., Ui—y), (U, Us, ..., Us),
(Uz,Us, ..., Uiy1),. . .of random numbers obtained by

the MCG are viewed as points in the unit cube of
t-dimensional space, then all the points lie in a rel-
atively small number of (¢ — 1)-dimensional equidis-
tant parallel hyperplanes. The set of all such points
1s called a lattice.

The spectral test quantifies the defect of an MCG.
In the t-dimensional spectral test to an MCG with
the modulus m and the multiplier a, we calculate the
maximum distance d;(a, m) between adjacent hyper-
planes, taken over all families of parallel hyperplanes
that cover the points in t-dimensional space, and con-
clude that, the smaller the value of d;(a, m) is, the
more uniformly distributed in ¢-dimensional space the
points are.

Given m, we cannot find a value of a that will make
di(a, m) less than the right-hand member of the in-
equality

di(a,m) > d;(m) def —yt—l/zm‘l/’,

where +; is Hermite’s constant (see equation (47) in
Chapter 1 of Conway and Sloane 1988). Thus, in

order to choose good values of a, we use the measure
My (a,m) = min dj(m)/di(a,m
7 ( ) 2grer t(m)/di(a,m)

suggested by Fishman and Moore (1986), which is the
worst case of the normalized measures of the spectral
tests in up-to-T-dimensional space. The value of the
Fishman—-Moore measure Mp(a, m) lies in the inter-
val (0, 1], and the closer to 1 it is, the better the MCG
is thought to be.

The exact value of 4, when ¢t < 8 i1s known, but
the exact value when ¢ > 8 is unknown, which means
that we cannot calculate the exact value of d;(m)
when t > 8; however, we can calculate a considerably
tight lower bound on d;(m) when 8 < t < 24, with
the value of C. A. Rogers’s (1958) upper bound on
the maximum center density of lattice packing, which
has been computed by John Leech (1967). (Page 20
of Conway and Sloane (1988) says that, the Rogers
bound was the best known for ¢ < 42 at the time of
publication of the book; it seems to the authors that
the state of mathematics on the topic has remained
the same.)

The values of lower bounds on the maximum
center density shown in table 1.2 of Conway and
Sloane (1988) affirm that the lower bound on d}(m)

when 8 < t < 24 has a relative error less than 6.5 %:;
hence, the bounds on di(m)’s lead to an estimator
of (lower bound on) M7 (a, m) whose relative error is
also less than 6.5 %, when 8 < T < 24.

The spectral test was invented by Coveyou and
MacPherson (1967). Their procedure for perform-
ing the test has been improved in Section 3.3.4 of the
second edition (1981) of Knuth (1969). His proce-
dure for performing the tests in up-to-7T-dimensional
space takes a time that grows superexponentially as
T increases; therefore, when T' > 8, it is quite slow.
Faster procedures have been proposed by Fincke and
Pohst (1985) and by Holger Grothe (1988); however,
they are numerically unstable, when they are imple-
mented unwarily (L’Ecuyer 1992). The authors wrote
a Fortran-77 code for performing the spectral tests by
Knuth’s procedure, which is numerically stable.

3 THE WICHMANN-HILL METHOD

Consider / PMMCG’s with different (prime) mod-
uli mM, m2), . mJ) For the jth PMMCG, let
a) and X denote the multiplier and the nth ran-
dom integer, respectively, and let 6¢) be a (nonzero)
integer with ged(m(),60)|) = 1. The Wichmann-
Hill method combines the PMMCG’s. Their se-
quence {W, | n > 0} of numbers on the inter-
val (0,1) is obtained by the formula

J
W, = (Z §DXU) /mU) | mod 1
Jj=1

J
= (Z i >U,<g')) mod 1

i=1

for each n > 0. Here U,(lj) is the random number on
the interval (0, 1) obtained by the jth PMMCG.

3.1 The Period
3.1.1 The Period of the Sequence

Let MV, A2V M) denote the periods for the
PMMCG’s constituting the Wichmann-Hill method.
The period p for the Wichmann-Hill method is equal
to the least common multiple lem(A(1), A(2) || A9
of A/ AR M) (cf. lemma Q in Section 3.2.1.2
of Knuth 1969).

Since AU) is a divisor of mU) — 1, an even number
(Section 2), it is true that lem(AD A .. A7),
which is equal to the period p, is a divisor of (m(l) -
1)(m® —1)...(m(Y) —1)/27-1; this is the maximum
period. The period u is equal to the maximum, if and
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only if

lem(AM A2 Ay =
=(mD -1)(m® -1)...(mI)—1)/27-1. (5)

Whether the moduli AV, A2), .. AU) of the
component PMMCG’s satisfy condition (5) or not
can be verified efficiently, without calculation of
lem(AMW, A®) . A()), for condition (5) holds if and
only if the following three conditions are satisfied si-
multaneously.

(i) ged(mUr) — 1,ml2) — 1) = 2 for each pair of j;
and j with j; < ja;

(ii) AG) = m) — 1 for some j;

(ifi) if (mU) = 1)/2 is odd, then AG) > (m() — 1)/2,
otherwise A\U) = m(7) — 1, for each j.

Condition (i) guarantees that (m() — 1)/2, (m(?) —
1)/2,..., (mY) — 1)/2 are relatively prime in pairs;
it is related to the choice of the moduli m(1), m(2)

, m{). Condition (ii) guarantees that at least
one of the PMMCG’s has its maximum period; it
is related to the choice of the multipliers a(V), a(®)
..., a¥). Condition (iii) allows us a possibility of at-
taining the maximum period for the Wichmann-Hill
method by combining PMMCG’s, with not each of
them having its maximum period; it is related to the
choice of both the moduli and the multipliers.

Consider the case where m™), m(2) ... m{J) are
safe prime numbers. Condition (i) is always satis-
fied. Whether condition (ii) is satisfied or not can
be easily verified, and condition (iii) is satisfied, un-
less we use a terrible multiplier a/) = 1 or m) — 1
(see Section 2.1). Approximately 1 — 1/27 of all the
candidate vectors composed of J multipliers of the
MCG’s satisfy the maximum-period condition for the
Wichmann-Hill method.

3.1.2 The Period of the Sequence of Non-
Overlapping t-tuples

The number of prime factors of the maximum pe-
riod (m(1) — 1)(m® —1)...(m) —1)/27=1 of the
Wichmann-Hill method is minimized to be J + 1, if
each of the (prime) moduli (1), A(2) ... ) of the
PMMCG’s composing the Wichmann-Hill method
is safe prime, ie., if (m(}) —1)/2, (m® — 1)/2,
... (mY) — 1)/2 are prime numbers. In this case,
the period of the sequence of non-overlapping t-tuples
from a maximum-period sequence by the Wichmann-
Hill method is equal to (m™ —1)(m®) —1)...(m()) -
1)/27-1, the maximum period, for ¢ odd, or equal
to (m™M — 1)(m® —1)...(mY) —1)/27, half of the

maximum period, for ¢ even, if ¢ is divisible by none
of (mM) — 1)/2, (m® —1)/2,..., or (mJ) —1)/2.

Consider an example where two PMMCG’s for 32-
bit computers are combined. When the two moduli
m1) and m(2) are the two greatest safe prime num-
bers 2147483579 and 2147483123 less than 231, the
maximum period for the Wichmann—-Hill method has
the prime factorization 2 - 1073741561 - 1073741789;
the period of the sequence of non-overlapping t-tuples
from a maximum-period sequence by the Wichmann-
Hill method is equal to the maximum period for
t odd, or to half of the maximum period for ¢ even, if
t is neither a multiple of 1073741561 nor a multiple
of 1073741789.

3.2 Serial Correlations

The Wichmann-Hill method possesses 27-1 differ-
ent maximum-period sequences. When the modu-
lus mU) and the multiplier al) of the jth compo-
nent PMMCG are fixed for each j, choice of the ini-
tial values Xél), X(()Z), e X((,J) determines the real-
ized sequence. A maximum-period sequence obtained
by the Wichmann-Hill method might as well be re-
garded as a random sample from a population with
size 27-!  under a natural assumption that the ini-
tial value X(g]) of the jth component is chosen at ran-
dom for each j. When all the 27-! samples, i.e.,
all the 2/-! maximum-period sequences, are collec-
tively taken into account, their serial correlation e;
at lag one has an expression for it in terms of 27 — 1
Dedekind sums:

e =
J-1 J—i
> > (e ( II m‘“’)
_ i=0 1<j1<j2< - <js-i<J k=1
= - . )
4H(1+1/m(j))—3—6/m H(m(j)-—l)
j=1 j=1
where m = H;‘I=1 mG) and

a = {aM[m/mM M =140 m/m» nP=14. . 4
a(J)[m/m(-’)]m“)‘l} mod m; notice that a and m
are the multiplier and the modulus, respectively, of
the MCG equivalent to the Wichmann-Hill method
(Section 3.3). The Dedekind sums can be calculated
efficiently (Section 2.2). Accordingly, the correla-
tion e; at lag one can be evaluated efficiently.

The serial correlation e; at lag s > 2 can be
calculated by an efficient method for evaluating a
serial correlation at lag one; the lag-s correlation
for the multiplier @ of the MCG equivalent to the
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Wichmann-Hill method is equal to the lag-one corre-
lation for another multiplier a* mod m.

3.3 Multidimensional Lattice Structure

As L’Ecuyer and Tezuka (1991) have pointed out,
the Wichmann-Hill method is equivalent to an
MCG: The sequence {W, | n > 0} obtained by
the Wichmann-Hill method 1s identical to a se-
quence of numbers on the interval (0,1) obtained

by an MCG with its modulus equal to ]_[f=1 mli),
multiplier equal to {a(”[(nf=1 m())/mMm*-1 4
a®[([Tj=y i)/ m 2 +
"'+a”’[(l_[f=1 m))/mt) Jm" =1} mod IL-J=1 mli),
and initial value equal to W, ]_[f=1 m).  The
equivalence of the Wichmann-Hill method to the
MCG enables the quality of the ¢-dimensional struc-
ture of points (Wo, W1, ..., Wi_1), (Wi, Wa, ..., W),
(Wy, W3, ..., Wi41), ... obtained by the Wichmann-
Hill method to be quantified by the spectral test to
the MCG.

4 CONCLUSIONS

The maximum period of a random-number sequence
obtained by the Wichmann-Hill method is achieved
if and only if conditions (i), (ii), and (iii) in Sec-
tion 3.1.1 hold simultaneously. Whether each of the
three conditions holds or not can be ascertained effi-
ciently. When the modulus of each of the component
PMMCG'’s is safe prime,

(1) condition (i) in Section 3.1.1 will be always sat-
isfied,

(i1) conditions (ii) and (iii) in Section 3.1.1 will be
more easily verifiable, and

(iii) the period of the sequence of non-overlapping t-
tuples from a maximum-period sequence by the
Wichmann-Hill method will be at least half of
the maximum period, with few uncommon ex-
ceptions explained in Section 3.1.2.

The serial correlation at lag one of the maximum-
period sequences obtained by the Wichmann-Hill
method has the expression given in Section 3.2. The
expression can be evaluated efficiently. An efficient
method of calculating the expression for the serial
correlation at lag one is applicable to efficient evalu-
ation of the serial correlation at lag s > 2.

The quality of the lattice structure of the points
from a Wichmann-Hill sequence can be quantified by
the Fishman-Moore measure for the spectral tests to
the MCG equivalent to the Wichmann-Hill method
(Section 3.3). The Fishman-Moore measure can be

(i) computed exactly for the tests in up-to-8-or-
lower-dimensional space, and

(ii) estimated with relative error less than 6.5 % for
the tests in up-to-24-or-lower-dimensional space,

as stated in Section 2.3.

The author’s recommendation on finding a
Wichmann—-Hill combination to be considered a re-
liable source of random numbers is to

(1) make the modulus of each of the component
PMMCG’s safe prime, and

(ii) chose the multipliers of the components so as
to make (a) the period equal to the maxi-
mum, (b) the serial correlations of the maximum-
period sequences small in absolute value, and
(c) the lattice structure of the points from a
maximum-period sequence good.

(Some numerical examples shall be presented at the
conference.)
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