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ABSTRACT

In this paper we show that although overlapping batch
quantiles (OBQ) is asymptotically very similar to
overlapping batch means, its performance for finite
sample sizes is not. We show that the bias, the variance
and the mean-squared-error of OBQ are not smooth
functions of the batch size but rather cyclic. The cyclic
behavior of OBQ depends on the marginal distribution,
the point estimator of quantiles and the autocorrelation
function and it diminishes with the sample size.

We conclude that very large sample sizes and batch
sizes are needed to obtain reliable standard error
estimators when using OBQ, even for independently and
identically distributed data.

1 INTRODUCTION

In some simulation applications quantiles are of interest
instead of, or in addition to, the mean and the variance.
Given that simulation output {X} comes from a process
with marginal cdf Fy, the qth quantile, x,, of the
process satisfies Fx(xq) =P{X< xq} =¢g. Throughout
this paper we assume that there is a unique x, satisfying

the above equation and that the marginal density gy is
continuous around x,.

In this paper we analyze overlapping batch quantiles
(OBQ) as the standard error estimator of the point
estimators of the quantiles. More specifically we
introduce two versions of OBQ and four point estimators
of quantiles and analyze the asymptotic and finite sample
size properties of OBQ for each point estimator.

We show that the bias and the variance of OBQ
estimators go to zero with the same rate as the bias and
the variance of overlapping batch means (OBM). We
also show that the asymptotic relations between OBM
and non-overlapping batch means (NBM) exist between
OBQ and non-overlapping batch quantiles (NBQ).

Finite sample size performance of OBQ is, however,
more problematic than that of OBM. The main problem
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arises from the fact that the expected value and the
variance of OBQ are cyclic functions of the batch size,
m. Therefore the performance of OBQ highly depends
on the choice of batch size within a cycle. Furthermore
the "best" batch size within a cycle changes with the
distribution shape, the quantile value, g, and the choice
of point estimator for the quantile. We show that no
point estimator performs better than the others for all g
and all distributions. The classical factors that affect
OBM also affect OBQ, namely the sample size and the
autocorrelation structure. They determine the choice of
the "best" cycle. The term "best" may be used to refer to
minimal bias, minimal variance or to minimal mse.

In this paper we present results of analytical studies
and conjectures derived from the empirical studies.
Because of space limitations, this paper includes no
proofs and only a bit empirical evidence. Details of this
study can be found in Wood (1995).

In Section 2 we present a literature survey of the four
point estimators of quantiles as well as their standard
error estimators. In Section 3 we introduce the two
versions of OBQ that we analyze. Sections 4 and 5
contain our analysis and discussion of the asymptotic
and finite sample size performance of OBQ,
respectively. In Section 6 we present the results of our
empirical comparison of OBQ and NBQ. In Section 7
we summarize our findings and discuss the difficulties
with practical applications of OBQ.

2 A LITERATURE SURVEY OF QUANTILE
ESTIMATORS

We survey point estimators of quantiles and their
statistical properties. We then survey methods for
estimating the standard error of quantile estimators.

2.1 Point Estimators of Quantiles

We study and compare four point estimators of quantiles
from among the many in the literature. After introducing
these four estimators together with their statistical
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propertics we mention some of the other point
estimators. For all four point estimators, implicitly or
explicitly, data need to be ordered. Given the data set
{X1. X0 X, ] let Xy S X(p) S <X,y denote the

ordered set. Then X(,,) is called the ™ order statistic.

The first two point estimators that we study consist of a
single order statistic and the last two are linear
combinations of two order statistics.

The first point estimator chooses the order statistic by
taking the ceiling function of ng. That is, the point
estimator is ¥, (ce)= X(yy» where r= [ng] is the
smallest integer greater than or equal to ng. The second
estimator chooses the order statistic by taking the floor
function of ng. We denote this estimator by x,(f7) and

it is equal to X(,), where r=|nq] is the largest integer
smaller than or equal to nq.

Approximations for the expected value and the
variance of %, (ce) and %,(f7) are ( see, e.g., Gibbons

1971, p. 36).

R

and for identically and independently distributed (iid)
data

-2
r(n+1-r) _]( r )]
v(x =070 . 0 F .
( (’)) (n+2)(n+1)2 {gx[ L

The above equations hold exactly for uniform
distributions and are large sample size approximations
for other continuous distributions.

A large sample size approximation for the variance of
%,(ce), and therefore %, (f1), for autocorrelated data is,

from Heidelberger and Lewis (1984),

V(X)) =07 po 6 7y c0)
where

n-1

h
Po =q(]—(/)+ 22(]-;] COV(II'II+/I)
h=1

and

Iy = (1)

1 if Xh <)Cq
0 otherwise

The third estimator, proposed by Avramidis and
Wilson (1995), is the linear combination

FylleA)=aX 051 T A= OXr, 05,

where a=[ng+0.5]—-(ng+0.5). The weights result
from taking the empirical cdf to be a piece-wise linear
function, Fx(x), equal to (i=0.5)/n at x= X, and
equal to zero for x < X(I) and equal to one for x > X(n).

The fourth estimator, from Schmeiser (1975), is the
linear combination

.;'q([CS)-:aX( +(]—a)X(

|_(n+l)q_]+l) ’_(n+l)qJ)’

where a=(n+1)g—|(n+1)g|. The weights are
chosen so that the estimator is unbiased for data with
uniform marginals.

All four point estimators are consistent estimators of
the quantile, x,; that is, their bias and variance go to

zero as the sample size increases.

All four point estimators share the same average cycle
length, ACL =1/min{q,(1-q)}. There is a single
cycle length, CL=ACL, if ACL is an integer.
Otherwise there are two cycle lengths: | ACL] and

[ACLT. The two cycle lengths occur in a frequency

such that they average to ACL in the long run. For
example when g=0./ (or 0.9) the cycle length is 10.
When g=0.3 or (0.7) there are two cycles of length 3 and
4 averaging to 1/0.3.

Some of the other methods for estimating quantiles
include the use of histograms and empirical cdf's
(Schmeiser 1977, and Jain and Chlamtac 1985). Another
method, developed primarily for estimating quantiles for
autocorrelated data, is the maximum transformation
method (Heidelberger and Lewis 1984).

2.2 Standard-Error Estimators of Quantiles

The literature on standard-error estimation for quantiles
is limited. Iglehart (1976) discusses the use of
regenerative cycles. Seila (1982) discusses batching
regenerative cycles. A method that does not require
regenerative systems is the maximum transformation
method of Heidelberger and Lewis (1984).

Overlapping batch quantiles is first proposed by
Schmeiser, Avramidis and Hashem (1980). Hashem and
Schmeiser (1994) contains a C code for OBQ.

We analyze overlapping batch quantiles in Sections 4

and 5 and provide empirical comparison to NBQ in
Section 6.
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3 DEFINITIONS OF OBQ

In this section we first review the original definition of
OBQ from Schmeiser, Avramidis and Hashem (1990),
and then propose a second version by changing the
centering term. We argue that the second version
smoothes the cyclic behavior of OBQ.

Assume that one of the four point estimators of the gt
quantile is chosen. Let the point estimator be

%,()=f(X1.X3,....,X,). Then by definition the j
batch estimator is 2;(-):f(Xj,Xj+,,...,Xj+,,,_|). The
original definition of OBQ is

n—m+l )

> (#E-2,6)

OBQ(= (n=m)(n—m+1) 2

The choice of m affects the statistical properties of
2J
*q

centering term, X, (). however, is independent of the

(+), especially for small values of m. The value of the

batch size. It is our intuition that the independence of
Xg4(+) from the choice of m increases the sensitivity of

OBQ to cyclic effects. The alternative centering term we
propose is the average of the batch quantiles

)?q('):(n—m+])_lzn‘m*-])?j(-). The second

j=I q
version of OBQ then is

0BQ(2) =

m ) n—flﬂ ()?Lj/ (.) B Iq(.))2 .
j=1

(n=m)(n—-m+1

The centering term, X, has the same cyclic properties of

the batch estimators and therefore, intuitively, decreases
the effects of cycles on OBQ.

The centering term affects the performance of OBQ
when the point estimator is either the ceiling function,
x,(ce), or the floor function, %,(f1). The point

estimators that use a linear combination of two order
statistics, X,(lcA) and %, (lcS), seem to be affected

insignificantly by the centering term. This behavior was
observed for all marginal distributions and quantile
values studied.

The decrease in the cyclic behavior from OBQ(1) to
OBQ(2) makes the choice of the "best" batch size within
a cycle less important and the penalty for choosing a
wrong m less significant.

4 ASYMPTOTIC PERFORMANCE OF OBQ

In this section we show that the asymptotic properties of
OBQ resemble those of OBM (and overlapping batch

variances (OBV), in all aspects except the cyclic

behavior. In all limits we assume that the batch size, m,

is an increasing function of the sample size, n.

We show that as the sample size, 1, and the batch size,

m, go to infinity

(i) nm bias(OBQ) is finite and attains CL different
values (or [ ACLT+| ACL ] values if ACL is not an
integer) depending on the position of the batch size
within a cycle,

(ii) the batch size that minimizes nm bias(OBQ)
depends on the distribution shape, quantile value, g,
the point estimator, and the autocorrelation function,

(111) (n3 /m)V(OBQ) goes to a finite constant
independent of the distribution shape and point
estimator.

In the next two subsections we discuss the asymptotic
properties of OBQ, first for iid data and then for
autocorrelated data.

4.1 IID Data

Results 1 and 2 concern nm bias(OBQ(1)) for iid
uniform data.

Result 1: For iid uniform data with density function
gx, point estimator iq(ce), and for batch sizes that

satisfy |_mq-|/(m+1) = q,

lim nm bias(OBQ(1)) = —24(1 - fl)g)_(z .

n—oo

The importance of Result 1 is that, unlike OBM for iid
data, the limit is not zero even when the batch size is
chosen so that the batch estimator is unbiased. Changing

the coefficients of OBQ from m[(n—m)(n—m+ 1)]_] to
(m+2)[(n=m)(n—m+ l)]_] makes nm bias (OBQ(1))

go to zero instead of to —2q(l—q)g}2. However this
would be a distribution-specific change.

Result 2: While estimating the median, ¢=0.5, for iid

uniform data ‘with density gy and point estimator
xy(ce),

I, T, .
lim nmbias(OBQ(I) = 91 ~9)&x il miseven{
n—eo -2q(1-q)gyx~ if misodd

If the point estimator is X, (f1)

o .
lim nmbias(OBQ(1))={ ~9(179)8x  if miseven
n—oco +2q(1-qg)gy~ 1f misodd
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and if the point estimator is cither .f'q(l('A) or .f'q(lCS)

n—seo ~2q(1-q)gx’ if misodd
No point estimator and no batch size makes
nm bias(OBQ(1)) go to zero in this special case.
Empirical cvidence shows that the same is true for
OBQ(2) when estimating the median for 1id uniform
data.

Empirical evidence also shows that nm bias(OBQ)
attains CL (or [ ACL]+| ACL }) finite values for other
marginal distributions and quantiles and that
(n3 /m) V(OBQ) attains a single finite value.

4.2 Autocorrelated Data

The arguments in this section are based on the reciprocal
relationship between the quantiles and the probabilities:
P{X; <x,}=q. When we are interested in estimating

the q‘h quantile of a process, g is known and the
unknown quantity is x,. When we are interested in
estimating the probability that any observation is less
then x,, the unknown quantity is g. Furthermore the

variances of the quantile estimator and the probability
estimator are related by V(fq(ce)) =V(q) g}z(xq) for
large sample sizes. We use this relation between the
variances of the estimators and the asymptotic properties
of overlapping batch probabilities (OBP) to obtain
Conjecture 1 below.

The usual estimator of probability is g = n7! 2:1:1 I;,
where /; is the indicator function defined by (1). Since

the probability estimator is the sample mean of the
indicator function, the asymptotic properties of OBM
apply to OBP. That is, from Song and Schmeiser
(1995),

lim nm bias(OBP) = —y¥

n—oo
and
3 5
lim LV(OBP):i(yf)’)',
n—oo M 3
where

Yf = 22}’ COV(II’ 11+h)'
h=1

3 _ 2 . .
lim nmbias(OBQ(1)) ={ dq(1-q)gx it mis even}.

and

vy =1+23,Cov(l), I1y)-
h=1

Conjecture 1 : For covariance stationary data

lim nm bias(OBQ) = — 1 gx*(x,)+ Cp(®)

n—yoo

and

3
A 4/ p o 2
lim %= V(0BQ) = 2(r] 87" (x,)) .

n—oo M

where C,(¢) attains CL (or [ACL7+| ACL ] ) finite
values as a function of the position of the subsequence of
batch sizes within a cycle.

Conjecture 1 implies that nOBQ 1s an mse consistent
estimator of nV(fcq), since it shows that the bias of

OBQ is proportional to //(nm), and the variance is

proportional to m /n. It also shows that similar to
OBM (and OBV) mse optimal batch size should be
1/3

proportional to n'’3,

proportional to n In addition, given that m is

the ratio of mse(OBQ) to

.2 .
[V(xq )] goes to zero with n?'3.

5 FINITE-SAMPLE SIZE PERFORMANCE OF
OBQ

In Sections 5 and 6 we consider only OBQ(2), and write
OBQ, for the reason discussed in Section 3: smoother
behavior.

In this section we show that the cyclic behavior of
OBQ, and the changes in the cyclic behavior depending
on the distribution shape and the quantile value, make it
very difficult to choose the "best" batch size and the
"best" point estimator.

In our finite sample size discussions we use the
criterion that an acceptable mse is one that satisfies

\/mse(OBQ) < V(34(+))/10. @

For all of our figures we indicate the mse value that
satisfies the above criterion with a solid line.

In the next subsection we present examples with iid
data that show that the performance of OBQ depends on

the point estimator, marginal distribution, quantile value,
and the sample size.
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5.1 IID Data
5.1.1 Effects of the Marginal Distribution

For g=0.1 and n=10000, Figures 1 and 2 show the bias,
variance, and mse of the OBQ estimator plotted as a
function of batch size. The four curves in each subfigure
correspond to the four point estimators, as indicated in
the legend. In the first figure data are
Uniform (-1/0.6 , 1/0.6) and in the second they are
Exponential (//0.3). To simplify comparison the
distribution coefficients are chosen such that

q(l-q) g}z (xq) =1. Therefore, the value of our

maximum-mse criterion is 10™'° for both distributions.
Figure 1 shows that the bias of OBQ has big variation
within a cycle when the point estimator is either iq(ce)

or fcq(ﬂ). OBQ has the minimal bias when the point

estimator is fcq(ch). Therefore mse of OBQ is below

107'° for many batch sizes with £,(IcA). The high
q

variation of OBQ with other estimators makes the
penalty of choosing a wrong batch size higher. Figure 2
shows, however, that the above observations are specific
to the uniform distribution. For the exponential
distribution the absolute bias of OBQ seems to be the
same with )?q(lcS) and iq(ch). Since, in this case,

OBQ has less variance with iq(lcS), it has the minimal

mse with X, (lcS). Even with %, (lcS), however, only a

few batch sizes result in mse below 10710,
5.1.2 Effects of ¢q

Estimating extreme quantiles is more difficult than
estimating the median.  As |0.5-¢| increases,
estimating x, gets more difficult, in the sense that more

data are needed for the same amount of accuracy. We
observe the same effect of ¢ on the performance of
OBQ. With the same sample size when g=0.5 more
point estimators for more batch sizes satisfy our criterion
given by (2) than when either g=0.1 or g=0.9. The
performance of OBQ is, however, not symmetric for
g=0.1 and ¢=0.9 even for symmetric distributions.
Figure 3 shows OBQ with ¢=0.75 for 10000
independently and exponentially distributed data. Again,
to simplify comparison we set the coefficient of the

exponential distribution such that g(1-g¢g) g}z(xq) =1
When ¢=0.75 mse of OBQ is below 10719 for all the
estimators (except fcq( f1)) for batch sizes between 25

and 60. The penalty for choosing a wrong batch size is
less than that observed for g=0.1.

5.1.3 Effects of the Sample Size, n

As our results on asymptotic behavior of OBQ imply,
increasing the sample size improves the performance of
OBQ. This improvement is observed in bias and
variance, and consequently in mse of OBQ. Empirical

evidence shows that /mse(OBQ) / V(X ()), for the

optimal mse, decreases with n'3. We observed this
effect for all distributions and for all g values we studied.

Empirical evidence shows that bias(OBQ) decreases
with n and that V(OBQ) decreases with n3, consistent
with the asymptotic results of Section 4. When the
sample size is /000 no batch size results in an acceptable
mse level. Increasing the sample size increases the
number of batches that result in an acceptable mse value.

5.1.4 Effects of Point Estimator

Our empirical study shows that the choice of point
estimator effects the bias, variance and mse of OBQ for
finite sample sizes. We never observed fcq( f1) resulting

in the optimal or the smoothest mse curves. On the other
hand, one of the linear combination point estimators,
iq(ch) or iq(lcS), usually produces the smoothest mse

curves. No point estimator performs better than the
others for all distributions and quantiles.

5.2  Autocorrelated Data

In addition to the factors discussed in the previous
subsection, autocorrelation structure plays an important
role in selecting the right batch size. As the data become
more correlated, more specifically as yf /yg increases,
the mse-optimal batch size increases. Since the cyclic
behavior of OBQ diminishes with increasing batch size,
the problem shifts from choosing the right cycle to
choosing the right neighborhood for the right batch size.

6 COMPARISON OF NBQ AND OBQ

Our empirical study is consistent with

lim ;o 1 bias(OBQ) 1
lim;—s 0 nm bias(NBQ)

and

limnoe(n’ /m) V(OBQ) _ 2
limpoe(n® / m) V(NBQ) 3’

results analogous to OBM and NBM.



308 Wood and Schmeiser

7 DISCUSSION

In this paper we show that OBQ has asymptotic
properties similar to OBM and that it is an mse-

consistent estimator of nV(.f'q). However, unlike OBM,

the expected value and variance of OBQ show a cyclic
behavior with changing batch sizes. Therefore bias,
variance and mse of OBQ may change significantly by
changing the batch size by one. Since the optimal batch
size depends on ¢ and the marginal distribution, it is not
easy to determine the optimal batch size in practical
applications. Because of this cyclic behavior it not also
sufficient to determine the neighborhood of the optimal
batch size, which may include very bad batch sizes as
well as the best.

The cyclic behavior of OBQ diminishes with
increasing sample and batch sizes. Therefore to
minimize the possibility of choosing a very bad batch
size from an early cycle we advise picking from later
cycles, even for iid data. This strategy of course requires
a large sample size and computational time.
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