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ABSTRACT

This paper provides an overview of the simulated an-
nealing algorithm and describes its historical founda-
tion in thermodynamics as well the genesis and evo-
lution for solving difficult optimization problems. An
example illustrating its application to graph problems
is provided as well as a look at ongoing, state-of-the-
art research using SA.

1 INTRODUCTION

Few developments in the field of optimization have
generated as much enthusiasm and criticism or
spawned as many practioners and detractors as the
invention of the simulated annealing (SA) algorithm.
This paper describes the genesis and evolution of this
remarkable optimization technique and how this com-
puter simulation of a thermodynamic system can be
used to solve many types of optimization problems.

Along with a few other types of generalized opti-
mization schemes, SA is considered a meta-heuristic.
Its generality and applicability stems from its foun-
dation in thermodynamics and statistical mechanics.
Thus, it can be used to solve many combinatorial
optimization problems (COPs) and some continuous
variable problems (Bonomi and Lutton 1984). The
SA algorithm searches the set of solutions, referred
to as a configuration space (Tovey 1988), in much
the same manner as a thermodynamic system changes
from one energy state to another. The development
of SA therefore established a mathematical analogy
between optimization problems and thermodynamic
systems thus creating a new foundation from which
to analyze and solve such problems. It has over the
years been extensively studied with varying degrees
of enthusiasm, criticism, and a great deal of experi-
mentation (see e.g., Bonomi and Lutton 1984, Eglese
1990).
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2 WHAT IS BEING SIMULATED?

The genesis of SA comes from attempts to simulate
the effects of a heat bath on various chemical sub-
stances. This was accomplished by Metropolis, et al.
(1953) who established criteria to simulate how ther-
modynamic systems change from one energy level to
another. These criteria, based on the laws of thermo-
dynamics, require that a system of particles exhibit
energy levels in a manner that maximizes the thermo-
dynamic entropy at a given temperature value. At the
same time, the average energy level must be propor-
tional to a constant, the temperature. This average
is based on some ensemble of energy states any one
of which the system may be in at any particular mo-
ment.

This ensemble of energy states implies that the sys-
tem “visits” such energy states spontaneously, but
subject to the constraints mentioned above. Bonomi
and Lutton (1984) state these requirements as a sim-
ple nonlinear math program in which the entropy of
the state vector 1s maximized subject to the con-
straints that the expected kinetic energy is propor-
tional to a fixed contant, the temperature and that
the total probability of system states equals 1. This
simple math program leads to requirements on how
the system changes from one energy level to an-
other. In simulation parlance, this is referred to as
the Metropolis Acceptance Criterion which defines the
probability that some candidate energy level is ac-
cepled as the current energy level in the next time
increment and is given by the following expression:

e BB/t AE >

1
1 AE <O )

Pr{Accept AF} = {

The steady-state probabilities m;(¢) for some state ¢

is given by
o= Bilt

B(1)

where B(t) is the well-known Boltzmann partition

mi(t) = (2)
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function of statistical mechanics and F; is the en-
ergy level associated with some energy partition (a
well-defined range of energy values) denoted by state
1 (Metropolis, et al. 1953). A simulation using this ac-
ceptance probability therefore obeys the laws of sta-
tistical mechanics in a discrete manner and therefore
permits simulation studies of materialsin a heat bath.

3 THE ROAD TO OPTIMIZATION

It was only a matter of time till analogies were
made between thermodynamic systems and combi-
natorial optimization problems. Both deal with large
ensembles—in the former case, there are large num-
bers of particles; in the latter case, there are large
numbers of objective function values. But the sim-
ilarity in complexity and size was eclipsed in the
early 80’s. At that time Kirkpatrick, et al. (1983)
and, independently, Cérny (1985) reasoned that the
Metropolis Acceptance Criterion could be used in a
simulation of the annealing process. It is well known
in the field of metallurgy, for example, that anneal-
ing a substance—slowly cooling a material—can re-
lieve stresses and aid in the formation of a perfect
crystal lattice. By allowing particles to move about,
but with gradually decreasing kinetic energy, condi-
tions tend to prevail that lead to such perfect crystal
lattices and low energy system states. They realized
that an analogy between energy state values and ob-
jective function values in optimization problems was
possible.

Once the analogy was made, it was easy to see some
advantages in using SA for solving such COPs. Us-
ing the Metropolis Acceptance Criterion, transitions
from one solution state to another can be defined us-
ing the following expression.

e Bt +
pij(tk) = {16116 J / i ji >0 (3)
fii <0
where G, is the probability of generating candidate j
given the current state ¢ (this means that j € N (i), or
j is in the neighborhood of 7) and Afjt = max{0, f; —
fi}.

This transition probability implies that wuphill
moves are possible with a probability inversely related
to the height of the hill and decreasing with decreas-
ing temperature. This aspect of SA is one of its most
attractive features—it can avoid becoming trapped in
local optima and, hence, has a greater chance of find-
ing the global optima. Indeed, this is what anneal-
ing is all about—cooling the system slowly enough so
that the minimum energy state or minimum objective
function value can be realized.
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Because the changes from one state to another can
be expressed as a transition probability, it was pos-
sible to model the annealing process as a Markov
chain. This naturally lead researchers to investigate
its mathematical properties. It was clear early on
that the stationary distribution converged to the op-
timum state vector (Aarts and Korst 1989). If m(¢) is
the stationary distribution at temperature ¢ and q* is
the optimum state vector where the total probability
of optimal states is equal to 1, then the ¢*" element of
the vector is very similar to (2) where the objective
function value f; is merely substituted for the energy
level and N(t¢) is a normalization coefficient analo-
gous to the Boltzmann partition function (Aarts and
Korst 1989).

e"f-/t 4
(2
() = 5 (1)
It is easy to see that
lim7(t) = q" (5)

t—0

(Aarts and Korst 1989). From a mathematical point
of view, this requires running SA at a fixed temper-
ature for an infinite number of iterations—not very
practical to say the least.

The question therefore arose as to whether it was
possible to lower the temperature at each iteration
and still converge in probability to the optimum state
vector. Since the talisman of annealing is lowering the
temperature, how fast the temperature is lowered be-
came a rich area of investigation. If the temperature
is lowered too quickly, we end up quenching the sys-
tem. This corresponds to finding a local optimum,
not a global optimum. But if the temperature is low-
ered at each iteration, the state distribution must be
modeled as an inhomogeneous Markov chain.

Mitra, et al. (1986) and Hajek (1988) determined
various formulations (using different approaches) for
such cooling schedules which yield an inhomogeneous
Markov chain that is strongly ergodic and therefore
converges in distribution as well as probability using
the form

ty = ; (6)
log(c+ k)
where t; is the temperature at time index k. Thus,
if v[I*¥l is a state probability vector at time index k,
then by using (6),

lim vl*¥l = q" (M)
k—oco
These mathematical aspects, its hill-climbing ca-

pability, convergence in probability and distribution,
and the ease of implementation (described below)
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gave rise to a great deal of enthusiasm for the algo-
rithm (Eglese 1990). Yet, there was also the disquict-
ing fact that SA, in its generic form, is a “dumb” op-
timization scheme; it is blind to the global optimum
and can find it only to leave it in the next iteration
searching the entire configuration space in total igno-
rance of the quality of the solution it left. This lead
to many criticisms of the method and a great deal
of research designed to highlight its limitations (sce
e.g., Johnson, et al., 1989).

Enhancements to the generic implementation are,
however, often obvious and easy enough to imple-
ment. The most popular method is to keep track
of the best solution obtained up to the current itera-
tion. On the other hand, in iferated descent one can
perform repeated local searches with random starting
solutions often with similar results (Dowsland 1993).
It therefore seemed that the convergence properties of
SA were attractive only from a scientific and mathe-
matical point of view, and that its practical use as an
optimization scheme is often overstated. Indeed, this
may explain why SA has so many variations, promot-
ers, and detractors (Eglese 1990). There is, however,
ongoing research into how to make SA more effective
as described below.

Thus, with the mathematical justifications for SA
complete, many researchers explored the application
of SA on many different types of problems. This re-
vealed several important implementation i1ssues that
are addressed in the following section.

4 IMPLEMENTATION ISSUES

In addition to the cooling schedule, several implemen-
tation issues must be addressed before any reasonable
SA algorithm can be developed for a specific problem.
The following hightlight the more salient implemen-
tation issues all of which must have some clear artic-
ulation.

e An appropriate cooling schedule.
e A suitable objective function.
o A well-defined neighborhood structure.

Insofar as the cooling schedule is concerned, many
implementations use finite-time schedules based on an
initial temperature and a final temperature (Fleischer
1993). Other schedules that approximate (6), but
are easier and faster to calculate have been used (sce
e.q., Johnson et al 1989). Still others attempt to
adapt the cooling schedule to the type of problem at
hand by modifying the gross structure of the cooling
schedule (Ingber 1993).

Clentral to SA is the definition of a suitable objec-
tive function. This will depend on the type of prob-
lem at hand. For COPs, it can often be calculated in
conjunction with the selection of candidate solutions.
For continous variable problems, however, this can be
the slowest aspect of SA (Bohachevsky 1986).

Many C'OPs, for example naturally lend themselves
to a rcasonable neighborhood structure once an ob-
jective function is clearly defined (see the example
below). These structures must make it possible for
SA to explore all solutions (even if most are never
visited) and at the same time permit efficient calcu-
lation of Afj";.

Indeed, the particular neighborhood structure used
and the problem instance itself have implications
for how well SA performs. Many researchers have
explored various ways of modifying the neighbor-
hood size used in SA in order to improve its perfor-
mance. This has lead to differing and, at times, seem-
ingly contradictory results. Waterman and Goldstein
(1988) applied SA to several instances of the Trav-
eling Salesman Problem (TSP) using different neigh-
borhood sizes. They report that the finite-time per-
formance of SA degrades if the neighborhood size 1s
too large or too small, the implication being that
some optimal neighborhood size exists. Cheh, et al.
(1991) show that for some problems, including the
TSP, performance improved for smaller neighborhood
sizes. Yao (1991), on the other hand, reports that
larger neighborhood sizes improve the performance
of SA.

Fleischer (1993) and Fleischer and Jacobson (1994)
attempted to resolve these issues by showing that it is
possible to model SA as a Markov informaiion source.
Relying on information theoretic concepts, it became
apparent that the neighborhood structure can affect
the information rate or level of total uncertainty as-
sociated with SA. They showed that the higher the
entropy of the associated Markov chain, the better
SA tends to perform.

For many practical applications, these implementa-
tion issues do not present much difficulty. The follow-
ing section demonstrates an implementation scheme
for the minimum vertex cover problem.

5 AN EXAMPLE OF SA

Perhaps the best way to illustrate how SA can be
implemented is to use a simple example. Consider
the vertex cover (VC) problem. A vertex cover is a
set. of nodes such that all arcs in some graph G(V, E)
have at least one end impinging on a node in the
set. This problem, along with other related problems,
concern the determination of how many nodes (and
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which ones) constitute a mananum vertex cover. Such
COPs can be very diflicult when the number of nodes
becomes large and are, in fact, NP-hard (Garey and
Johnson 1979) and can be solved using SA. Figure 1
shows such a vertex cover where the shaded nodes
correspond to the vertex covering set.

/

/

Figure 1: A Vertex Cover

Since solutions to this problem correspond to spe-
cific combinations of nodes, a reasonable way of defin-
ing the configuration space would be to have all
combinations of nodes correspond to solutions. The
neighborhood structure could therefore be defined by
allowing candidate solutions to be obtained by adding
or subtracting any one node from the current set.
Changing the membership status of any one node
creates a new combination of nodes and, hence, a
new solution. Thus, if n is the number of nodes in
a graph, then the neighborhood can be defined as all
the new combinations obtainable by merely changing
the membership status—flipping—one of the n node’s
status to be either be in the set or out of the set. This
means that each combination has n neighboring so-
lutions.

Thus, in the same instance we have defined the
ohjective function to be some function based on the
number of nodes in the current set of nodes and we
have defined a neighborhood in which a candidate
solution is obhtained by flipping any one of n nodes.
Athough this makes defining candidate solutions casy,
it also permits all combinations of nodes to be part of
the solution space. This results in creating a solution
space S the size of which is given by the following:

s=> (1) = (5)

i=0

Therc is therefore an apparent tradeoff in simplifying
candidate sclection at the cxpense of cnlarging the
solution space.

This simplified generation technique, however, of-
ten ends up generating solutions that do not consti-
tute a vertex cover-—combinations of nodes that do
not cover every arc. More generally, some solutions
may violate the contraints of a given problem. One

way around this problem is to use some penalty func-
tion for solutions that violate the constraints of the
problem. For the VC problem, one objective function
formulation suggested by Aarts and Korst (1989), is
the following: Let V! C V be the subset of nodes cor-
responding to the current solution. Let E(V') be the
number of uncovered arcs given the nodes in V', A
suitable objcctive function can be defined as

Joe (V)= VI +AE(V) (9)

where A > | serves as a penally parameter (Aarts
and Korst 1989). Anecdotal evidence suggests that
allowing all combinations of nodes to be part of the
configuration space “smoothes out” the landscape of
SA making it casier for SA to find the global optima
(see e.g., Johnson et al. 1989, Fleischer 1993).

This method also leads to a very efficient way of
calculating A ]t Aarts and Korst (1989) define the

indicator variable
Ior(u) = {

Using this, it is possible to efficiently calculate the
change in objective function by

1 fueV’

0 otherwise

(10)

Af=[Iviu)=Ipywr(w)] | A Y 1=1] (11)
{v,v}eE
vgVv/
(Fleischer 1993). The following pseudo-code displays
the simplicity and ease of application that is the hall-
mark of the SA algorithm.
initialize:
Generate initial set.
Calc cooling schedule parameters.
anneal: do while &k < k*
1: k=k+1, calc t,
2: select random node u.
and temporarily change its
membership status.
3: calc Af(u).
4: if Af(u) <0
then goto accept
else generate a
U(0,1) random variable R
5: if R < e~ Aflw)/tk
then goto accept
else change the status of u
back and goto anneal
accept
6: adopt the change in status
of node u
7: goto anneal



Simulated Annealing 159

As the SA algorithm proceeds and the tempcra-
ture parameter decreases, the probability of accept-
ing a candidate solution violating the constraints is
reduced. Typically, at termination of the algorithm, a
solution which does not violate the constraints is pro-
duced. Like twinkling stars, the nodes blink in and
out of the current set randomly as they are flipped
and probabilistically settle into an optimal configura-
tion through the annealing process.

6 FUTURE DEVELOPMENTS

6.1 Simulating Realistic Annealing

It would be nice if it were possible to simulate how
a human being handles the annealing process in real
life and take advantage of the artisan’s experience
and expertise. Such a simulation could lead to im-
provements in SA’s performance. From glass blowers
to metallugists, the art of annealing requires some
sense and knowledge of how well something is being
annealed. Usually, these experts have some notion
of when parts of a system need to be reheated and
cooled again. This notion has lead some researchers
to consider non-monotonic cooling schedules. Glover
(1995) describes a method of non-monotonic trajecto-
ries in many different optimization settings. Osman
(1993) applied such non-monotonic cooling schedules
to SA for the vehicle routing problem.

Some approaches seek to adapt the type of cool-
ing schedule to a particular problem instance (Ingber
1995). Since the landscape of a solution space may be
hilly or smooth, how SA is cooled can have significant
impact on the quality of the solution. This requires
some a priort knowledge of the landscape which may
not always be possible. But coupling the annealing
process with some actual knowledge of how well the
system is “settling down” could be even more ben-
eficial. Like those hand-held amusements where one
tries to get a small bead into a hole, the problem of
annealing is to settle into the optimum state. The
closer the bead is to the hole, the more delicately
(lower temperature) one manipulates the puzzle. If
the bead is far from the hole, the more vigorously
the puzzle is manipulated. The use of some feedback
information (discussed below) could therefore lead to
improvements in SA’s performance.

6.2 Parallel Simulated Annealing

Another avenue of active research involves the use
of parallel computing. From massively parallel sys-
tems, known as Boltzmann Machines (Aarts and
Korst 1989), to smaller scale parallelization (Azen-
cott 1992), research on effective parallel algorithms is

moving along at a swift pace and SA is at the heart of
many of these techniques. Many problems using par-
allel computing schemes are based on SPMD (single
program, multiple data) designs where it is not nec-
essary to break up problems into independent sub-
problems. This allows parallel SA to be applied to
virtually any COP.

The rationale for parallel SA is that if two heads
are better than one, then two computers should be
better than one. Intuitively, if two processors execut-
ing SA are applied to a given problem, they ought to
find the global optimum sooner than only one proces-
sor. Roughly speaking, each processor would have to
cover or search only half the solution space in a given
amount of time. Adding more processors could speed
things up even more.

But some method of communication must exist be-
tween the parallel processors. Otherwise all we can
expect 1s two processors working independently and
solving the problem as efficiently as a single processor.
Indeed, two independent processors are just that—
two examples of a single processor. The only differ-
ence compared to a single processor is that our elec-
tric bill would double.

In Boltzmann Machines, this communication is at
the heart of its architecture. Each computer would be
analogous to, for example, a node in the graph prob-
lem described earlier. Each node would then execute
SA in order to minimize some function based on the
weight of selected arcs which are connected to other
nodes and, hence, processors (see Aarts and Korst
1989 for a complete description). For those types of
problems that do not have a structure amenable to

Boltzmann machines, the SPMD architecture is avail-
able.

6.3 Cybernetic Optimization by SA

Certainly, if some problem is to be solved by SA,
then knowing the best direction to move in (which
candidate solutions to accept) would natually be ad-
vantageous. More computational power coupled with
more intelligent search patterns would obviously im-
prove the efficiency of SA (see Glover 1989). But
because SA 1s a random search algorithm, only proba-
bilistic information is available for feedback purposes.
Thus, there is really no way to tell, with certainty, if
the current solution is optimal or not. But it i1s use-
ful information nonetheless. Ileischer and Jacobson
(1995) and Fleischer (1995) have recently developed
a method, cybernetic optimization by simulated an-
ncaling (COSA), that takes advantage of such prob-
abilistic information. This method provides useful
feedback information and encompasses a method of
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parallelization.

This information comes from other parallel com-
puters solving the same or related problems using
SA and takes advantage of SA’s convergence prop-
erties. Because of this property, parallel processors
will tend to converge to the same or similar solutions.
Consequently, the proximity of two or more solutions
make 1t possible to develop a Probabilistic Measure
of Quality (PMQ) that can be used to generate an
error signal. This PMQ can then be used to modify
the temperature control parameter that governs the
search mechanism inherent in SA. Thus, rather than
altering some direction, rate or acceleration by feed-
back, as in many feedback control systems, we can
alter the probabulitics and associated uncertainty lev-
els by feedback. This concept forms the foundation
of what is referred to as a Probabilistic Feedback
Control network. Put another way, if one is search-
ing for gold (an inherently probabilistic endeavor),
one is more likely to succeed if one spends more time
looking where all the other prospectors are looking.
SA can thus provide both aspects of feedback control:
the generation of an error signal and the capability to
utilize that information to modify a control parame-
ter.

The idea behind the PMQ is basically this: if two
or more processors generate solutions that are close to
the optimum an increasing proportion of time (z.e.,
convergence in probability), then the two solutions
should be close to each other an increasing proportion
of time. Conversely, if {wo or more processors gener-
ate solutions that are “close”™ to each other in some
sense, then il is more likely that at least one ts close
lo the optimum. Measuring how close two or more
solutions from parallel processors are to each other
can therefore provide information as to the quality of
the solutions, the PMQ. This probabilistic informa-
tion provides the basis for the generation of an error
signal.

The idea behind the control scheme is this: when
it is more likely that at least one processor is pro-
ducing a relatively good solution, then the algorithm
should lower the information rate and uncertainty as-
sociated with the next state by lowering the temper-
ature. This makes it more likely that the algorithm
will explore solutions that arc nearby for a greater
number of iterations. Conversely, if the solutions are
likely to be poor, then increasing the information rate
and uncertaintly lcvels by raising the temperature is
appropriate. This would increase the randomness of
the search and allow SA to ¢xplore more remote re-
gions of the solution space.

The PMQ metric can be based on the degree of
coincidence of the sets of solutions from several pro-

cessors such as the intersection set or the symmetric
difference of the sets depending on the nature of the
problem (Fleischer and Jacobson 1995). The size of
these sets can be used to modulate the temperature
in the manner described above (see Fleischer and Ja-
cobson 1995 for details).

7 CONCLUSION

From early attempts to simulate thermodynamical
systems to optimization strategies to parallel com-
puting, SA seems to be involved in many threads of
research. Recent advances and applications, in ad-
dition to its use with other optimization strategies,
suggest that SA will be intimately involved in many
successful research endeavors well into the future. It
is indeed, a cool algorithm notwithstanding some of
the heat 1t has generated in the past.
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Comparison of confidence regions, from “Analyzing Multivariate Qutput,” by John M. Charnes.
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