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ABSTRACT

Sufficient experience has been gained over the last
decade in simulation validation, verification, and testing
(VV&T) to establish basic principles about its character-
istics. This paper presents 15 principles of simulation
VV&T. These principles help the researchers, practi-
tioners and managers better understand what model
VV&T is all about. They serve to provide the under-
pinnings for the VV&T techniques that can be used
throughout the life cycle of a simulation study. This
paper also surveys current software VV&T techniques
and current simulation VV&T techniques. Understanding
and applying these principles and employing proper test-
ing techniques throughout the life cycle of a simulation
study are key factors in increasing the probability of
success in a simulation study.

1 INTRODUCTION

The U.S. General Accounting Office (GAO) prepared
three reports due to concerns about the credibility of
federally funded computerized models. The first report,
presented to the U.S. congress in 1976, identified the
need for improved management and model development
activities (U.S. GAO 1976). The second one described
the modeling process and presented a very high-level
approach to model evaluation (U.S. GAO 1979). The
third one, presented to the National Security Subcom-
mittee of the House of Representatives, described
improved assessment procedures for the credibility of
Department of Defense simulation studies (U.S. GAO
1987). All three reports described simulation modeling
problems that have emerged due to the lack of under-
standing the principles of simulation model validation,
verification, and testing (VV&T).

Principles are important to understand the founda-
tions of simulation model VV&T (Balci 1996). The prin-
ciples help the researchers, practitioners and managers
better comprehend what model VV&T is all about. They

147

serve to provide the underpinnings for the 45 VV&T
techniques, described by Balci (1994), that can be used
throughout the life cycle of a simulation study. Under-
standing and applying these principles is crucially impor-
tant for the success of a simulation study.

Simulation is the process of constructing a model of
a system which contains a problem and conducting
experiments with the model on a computer for a specific
purpose of experimentation to solve the problem. Cred-
ibility of simulation results not only depends on model
correctness, but also is significantly influenced by accu-
rate formulation of the problem. Therefore, VV&T tech-
niques must be employed throughout the life cycle of a
simulation study.

Model Validation is substantiating that the model,
within its domain of applicability, behaves with satis-
factory accuracy consistent with the study objectives. In
other words, in model validation, we substantiate that the
input-output transformation of the model has sufficient
accuracy in representing the input-output transformation
of the system. Model validation deals with building the
right model. It is conducted by running the model under
the same input conditions that drive the system and by
comparing model behavior with the corresponding
system behavior.

Model Verification is substantiating that the model is
transformed from one form into another, as intended,
with sufficient accuracy. Model verification deals with
building the model right. The accuracy of transforming a
problem formulation into a model specification or the
accuracy of converting a model representation in micro
flowchart into an executable computer program is evalu-
ated in model verification.

Model Testing is demonstrating that inaccuracies
exist or revealing the existence of errors in the model. In
model testing, we subject the model to test data or test
cases to see if it functions properly. “Test failed” implies
the failure of the model, not the test. Testing is conduct-
ed to perform validation and verification. Some tests are
devised to evaluate the behavioral accuracy (i.e.,
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validity) of the model, and some tests are intended to
judge the accuracy of model transformation from one
form into another (verification). We commonly refer to
the whole process as model VV&T or model testing.

The purpose of this paper is to present discrete-cvent
simulation model VV&T principles and to survey current
software VV&T techniques and current model VV&T
techniques. Although the principles are presented for
discrete-event simulation studies, many of them are also
applicable for continuous and combined simulation stud-
ies and for other types of modcling studies. Section 2
describes the principles. The VV&T techniques are
surveyed in Section 3. Section 4 presents concluding
remarks and research directions.

2 PRINCIPLES OF SIMULATION VV&T

The fifteen principles presented herein are established
based on the experience described in the published liter-
ature and the author’s experience during his research in
simulation model VV&T since 1978. The principles are
listed below in no particular order. For a more detailed
description of the principles, see (Balci 1996).

2.1 Principle 1: The VV&T must be conducted
throughout the entire life cycle of a simulation
study

The VV&T is not a phase or step in the life cycle of a
simulation study, but a continuous activity throughout
the entire life cycle (Balci 1994, Nance 1994). The life
cycle is composed of ten phases, ten processes, and 13
VV&T stages. Balci (1994) presents 45 VV&T tech-
niques and describes how they can all be applied
throughout the life cycle of a simulation study.

Conducting the VV&T for the first time in the life
cycle when the experimental model is complete is anal-
ogous to the teacher who gives only a final examination
(Hetzel 1984). No opportunity is provided throughout the
semester to notify the student that he or she has serious
deficiencies. Severe problems may go undetected until it
is too late to do anything but fail the student. Frequent
tests and homeworks throughout the semester are intend-
ed to inform the students about their deficiencies so that
they can study more to improve their knowledge as the
course progresses.

The situation in the VV&T is exactly analogous.
The 13 VV&T activities throughout the entire life cycle
are intended to reveal any quality deficiencies that might
be present as the simulation study progresses from the
communication of the problem until the implementation
of the simulation results. This allows us to identify and
rectify quality deficiencies during the life cycle phase in
which they occur.
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Every organization conducting a substantial simula-
tion study should have a department or group called
Simulation Quality Assurance (SQA). The SQA group is
responsible for total quality management and closely
works with the simulation project managers in planning,
preparing test cases, and administering some of the
VV&T activities throughout the simulation study. The
SQA is a managerial approach which is critically essen-
tial for the success of a simulation study. Oren (1981,
1986, 1987) presents concepts, criteria, and paradigms
which can be used in establishing an SQA program with-
in an organization.

2.2 Principle 2: The outcome of simulation model
VV&T should not be considered as a binary
variable where the model is absolutely correct
or absolutely incorrect

Since a model is an abstraction of a system, perfect
representation is never expected. Shannon (1975) indi-
cates that “it is not at all certain that it is ever theo-
retically possible to establish if we have an absolutely
valid model; even if we could, few managers would be
willing to pay the price.”

The outcome of model VV&T should be considered
as a degree of credibility on a scale from O to 100, where
0 represents absolutely incorrect and 100 represents
absolutely correct. As the degree of model credibility
increases, so will the model development cost. At the
same time, the model utility will also increase, but most
likely at a decreasing rate.

2.3  Principle 3: A simulation model is built with
respect to the study objectives and its
credibility is judged with respect to those
objectives

The objectives of a simulation study are identified in the
Formulated Problem phase, and explicitly and clearly
specified in the System and Objectives Definition phase
of the life cycle. Accurate specification of the study
objectives is crucial for the success of a simulation
study.

The study objectives dictate how representative the
model should be. Sometimes, 60% representation accu-
racy may be sufficient; sometimes, 95% accuracy may
be required depending on the importance of the deci-
sions that will be made based on the simulation results.
Therefore, model credibility must be judged with respect
to the study objectives. The adjective “sufficient” must
be used in front of the terms such as model credibility,
model validity, and model accuracy to indicate that the
judgment is made with respect to the study objectives. It
iIs more appropriate to say “the model is sufficiently
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valid” than saying “the model is valid.” Here “sufficient-
ly valid” implies that the validity is judged with respect
to the study objectives and found to be sufficient.

2.4  Principle 4: Simulation model VV&T requires
independence to prevent developer’s bias

The model testing is meaningful when conducted in an
independent manner by an unbiased person. The model
developer with the most knowledge of the model may be
the least independent when it comes to testing. The
developers are often biased because they fear that nega-
tive testing results may be used for their performance
appraisal. Similarly, the organization which is contracted
to conduct the simulation study is also often biased
because negative testing results can damage the cred-
ibility of the organization and may lead to the loss of
future contracts.

2.5 Principle 5: Simulation model VV&T is
difficult and requires creativity and insight

One must thoroughly understand the whole simulation
model so as to design and implement effective tests and
identify adequate test cases. Knowledge of the problem
domain, expertise in the modeling methodology, and
prior modeling and VV&T experience are required for
successful testing.

However, it is not possible for one person to fully
understand all aspects of a large and complex model
especially if the model is a stochastic one containing
hundreds of concurrent activities.

The model developers are usually the most qualified
to show the creativity and insight required for successful
testing since they are intimately knowledgeable about the
internals of a model. However, they are usually biased
when it comes to model testing and they cannot be fully
utilized. Therefore, the inability to use model developers
effectively for testing increases the difficulty of testing.

2.6  Principle 6: Simulation model credibility can
be claimed only for the prescribed conditions
for which the model is tested

The accuracy of the input-output transformation of a
simulation model is affected by the characteristics of the
input conditions. The transformation that works for one
set of input conditions may produce absurd output when
conducted under another set of input conditions.

In the simulation of a traffic intersection, for exam-
ple, a stationary simulation model can be built assuming
constant arrival rate of vehicles during the evening rush
hour and its credibility may be judged sufficient with

respect to the evening rush hour input conditions.
However, the simulation model will show invalid behav-
ior when run under the input conditions of the same traf-
fic intersection between 7:00 a.m. and 6:00 p.m. During
this time period, the arrival rate of vehicles is not
constant and a non-stationary simulation model is
required. Hence, establishing sufficient model credibility
for the evening rush hour conditions does not imply
sufficient model credibility for input conditions during
other times.

The prescribed conditions for which the model cred-
ibility has been established is called the domain of appli-
cability of the experimental simulation model (Schle-
singer et al. 1979). Model credibility can be claimed
only for the domain of applicability of the model.

2.7  Principle 7: Complete simulation model
testing is not possible

Exhaustive (complete) testing requires testing the model
under all possible inputs. Combinations of feasible
values of model input variables can generate millions of
logical paths in the model execution. Due to time and
budgetary constraints, it is impossible to test the accu-
racy of millions of logical paths. Therefore, in model
testing, the purpose is to increase our confidence in
model credibility as much as dictated by the study objec-
tives rather than trying to test the model completely.

How much to test or when to stop testing is depen-
dent on the desired domain of applicability of the experi-
mental model. The larger the domain the more the test-
ing is required. The domain of applicability is
determined with respect to the study objectives.

In model testing using test data, it must be noted
that the law of large numbers does simply not apply. The
question is not how much test data is used, but what
percentage of the valid input domain is covered by the
test data. The higher the percentage of coverage the
higher the confidence we can have in model credibility.

2.8 Principle 8: Simulation model VV&T must be
planned and documented

Testing is not a phase or step in model development life
cycle; it is a continuous activity throughout the entire
life cycle. The tests should be identified, test data or
cases should be prepared, tests should be scheduled, and
the whole testing process should be documented.

Ad hoc or haphazard testing does not provide
reasonable measurement of model accuracy. Hetzel
(1984) points out that “‘such testing may even be harmful
in leading us to a false sense of security.” Careful plan-
ning is required for successful testing.
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2.9  Principle 9: Type L, IL, and III errors must be
prevented

Three types of errors may be committed in conducting a
simulation study (Balci and Nance 1985). Type I Error is
committed when the simulation results are rejected when
in fact they are sufficiently credible. Type I Error occurs
when invalid simulation results are accepted as if they
are sufficiently valid. Type Il Error is the error of solv-
ing the wrong problem and committed when the formu-
lated problem does not completely contain the actual
problem.

Committing Type I Error unnecessarily increases the
cost of model development. The consequences of Type II
and Type III Errors can be catastrophic especially when
critical decisions are made on the basis of simulation
results. Type III Error implies the solution of the wrong
problem and the simulation study results become irrel-
evant when it is committed.

The probability of committing Type I Error is called
Model Builder's Risk and the probability of committing
Type II Error is called Model User’s Risk (Balci and
Sargent 1981). The VV&T activities must focus on mini-
mizing these risks as much as possible. Balci and Sargent
(1981) show how to quantify these risks when using
hypothesis testing for the validation of a simulation
model with two or more output variables.

2.10 Principle 10: Errors should be detected as
early as possible in the life cycle of a simulation
study

A rush to model implementation is a common problem in
simulation studies. Sometimes simulation models are
built by direct implementation in a (simulation) program-
ming language with no or very little formal model spec-
ification. As a result of this harmful build-and-fix
approach, experimental model VV&T becomes the only
main credibility assessment stage. On the other hand,
detecting and correcting major modeling errors at this
stage is very time consuming and expensive.

Detection and correction of errors as early as possi-
ble in the life cycle of a simulation study must be the
primary objective. Sufficient time and energy must be
expended for each of the 13 credibility assessment stages
(Balci 1994). Correcting errors detected in later phases
of the life cycle i1s much more time consuming and
expensive. Some vital errors may not be detectable in
later phases resulting in the occurrence of Type II or III
error.

Nance and Overstreet (1987) advocate this principle
and provide diagnostic testing techniques for models
represented in the form of condition specification. A
model analyzer software tool is included in the definition
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of a simulation model development environment so as to
provide effective early detection of model specification
errors (Balci and Nance 1992).

2.11 Principle 11: Multiple response problem must
be recognized and resolved properly

Due to the multiple response problem described by
Shannon (1975), the validity of a simulation model with
two or more output variables cannot be tested by
comparing the corresponding model and system output
variables one at a time using a univariate statistical
procedure. A multivariate statistical procedure must be
used to incorporate the correlations among the output
variables in the comparison.

2.12 Principle 12: Successfully testing each
submodel does not imply overall model
credibility

The credibility of each submodel is judged to be suffi-
cient with some error that is acceptable with respect to
the study objectives. We may find each submodel to be
sufficiently credible, but this does not imply that the
whole model is sufficiently credible. The allowable
errors for the submodels may accumulate to be unaccept-
able for the whole model. Therefore, the whole model
must be tested even if each submodel is found to be
sufficiently credible.

2.13 Principle 13: Double validation problem must
be recognized and resolved properly

If data can be collected on both system input and output,
model validation can be conducted by comparing model
and system outputs obtained by running the model with
the “same” input data that drives the system. Determina-
tion of the “same” is yet another validation problem
within model validation. Therefore, this is called the
double validation problem.

This is an important problem often overlooked. It
greatly affects the accuracy of model validation. If
invalid input data models are used, we may still find the
model and system outputs sufficiently matching each
other and conclude incorrectly on the sufficient validity
of the model.

The “same” is determined by validating the input
data models. We must substantiate that the input data
models have sufficient accuracy in representing the
system input process. Input data modeling deals with
characterization of the system input data (Johnson and
Mollaghasemi 1994). Simulation models are categorized
into two with respect to the way they are driven: trace-
driven and self-driven. In trace-driven simulation, the
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system input is characterized by the trace data collected
from the instrumented system. The trace data becomes
the input data model which should be validated against
the actual system input process.

In self-driven simulations, simulation model is driv-
en by randomly sampling from the probabilistic models
developed to represent the data collected on the system
input process. Usually, input data modeling is achieved
by fitting standard probability distributions to observed
data. The input data models should be constructed using
a multivariate statistical approach if the input variables
are correlated. Individually building a probabilistic
model for each input variable does not incorporate the
correlations among the input variables; therefore, a
multivariate probabilistic approach should be used.

2.14 Principle 14: Simulation model validity does
not guarantee the credibility and acceptability
of simulation results

Model validity is a necessary but not a sufficient condi-
tion for the credibility and acceptability of simulation
results. We assess model validity with respect to the
study objectives by comparing the model with the system
as it is defined. If the study objectives are incorrectly
identified and/or the system is improperly defined, the
simulation results will be invalid; however, we may still
find the model to be sufficiently valid by comparing it
with the improperly defined system and with respect to
the incorrectly identified objectives.

A distinct difference exists between the model cred-
ibility and the credibility of simulation results. Model
credibility is judged with respect to the system definition
and the study objectives, whereas the credibility of simu-
lation results is judged with respect to the actual problem
definition and involves the assessment of system defini-
tion and identification of study objectives. Therefore,
model credibility assessment is a subset of credibility
assessment of simulation results.

2.15 Principle 15: Formulated problem accuracy
greatly affects the acceptability and credibility
of simulation results

It has been said that a problem correctly formulated is
half solved (Watson 1976). Albert Einstein once indicat-
ed that the correct formulation of a problem was even
more crucial than its solution. The ultimate goal of a
simulation study should not be just to produce a solution
to a problem but to provide one that is sufficiently cred-
ible and accepted and implemented by the decision
makers. We cannot claim that we conducted an excellent
simulation study but the decision makers did not accept
our results and we cannot do anything about it. Ultimate-

ly we arc responsible for the acceptability and usability
of our simulation solutions although in some cases we
cannot affect or control the acceptability.

The accuracy of the formulated problem assessed by
the Formulated Problem VV&T (Balci 1994) greatly
affects the credibility and acceptability of simulation
results. Insufficient problem definition and inadequate
user participation in defining the problem are identified
as two important problems in the management of
computer-based models. The importance of the Formu-
lated Problem VV&T has not been recognized sufficient-
ly. The problem is mostly educational. In higher educa-
tion, students are not trained on how to formulate a
problem and how to assess its accuracy. Generally, the
interest lies in solving problems; therefore, typically an
instructor starts a lecture by saying “here is the problem,
let’s see how we can solve it.” As a result, the students
do not gain the much needed knowledge in problem
formulation and its VV&T. Consequently, when a real-
life problem is encountered, people usually jump into a
solution based on the communicated problem without
spending sufficient time and energy in properly formu-
lating the problem.

It must be recognized that if the Formulated Prob-
lem VV&T is poorly conducted resulting in Type III
error, no matter how fantastically we conduct the simula-
tion study, the results will be irrelevant.

3 VALIDATION, VERIFICATION, AND
TESTING TECHNIQUES

Figure 1 shows a taxonomy which categorizes the
VV&T techniques into six distinct credibility assessment
perspectives: informal, static, dynamic, symbolic,
constraint, and formal. The level of mathematical
formality of each category increases from very informal
on the far left to very formal on the far right. Likewise,
the complexity also increases as the category becomes
more formal (Whitner and Balci 1989).

It should be noted that some of the categories
presented in Figure 1 possess similar characteristics and
in fact have techniques which overlap from one category
to another. However, a distinct difference between each
classification exists.

The techniques are described in (Balci 1994).

Informal VV&T techniques are among the most
commonly used ones. They are called informal because
the tools and approaches used rely heavily on human
reasoning and subjectivity without stringent mathemat-
ical formalism. The “informal” label does not imply any
lack of structure or formal guidelines for the use of the
techniques.

Static VV&T techniques are concerned with accu-
racy assessment on the basis of characteristics of the
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static model source code. Static techniques do not
require machine execution of the model, but mental
execution may be used. The techniques are very popular
and widely used, with many automated tools available to
assist the VV&T. The simulation language compiler is
itself a static VV&T tool.

Static VV&T techniques can obtain a variety of
information about the structure of the model, coding
techniques and practices employed, data and control flow
within the model. syntactical accuracy, and intcrnal as
well as global consistency and completeness of imple-
mentation (Whitner and Balci 1989).

Dynamic VV&T techniques require model execu-
tion and are intended for evaluating thc model based on
its execution behavior. Most dynamic VV&T techniques
require model instrumentation.

The insertion of additional code (probes) into the
executable model for the purpose of collecting informa-
tion about model behavior during execution is called
model instrumentation. Probe locations are determined
manually or automatically based on static analysis of
model structure. Automated instrumentation is accom-
plished by a preprocessor which analyzes the model stat-
ic structure (usually via graph-based analysis) and inserts
probes at appropriate places.

Dynamic VV&T techniques are usually applied
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using the following three steps. In Step 1, the
programmed or experimental model is instrumented. In
Step 2, the instrumented model is executed, and in Step
3, the model output is analyzed and dynamic model
behavior is evaluated.

Much research has been conducted in applying
statistical techniques for dynamic VV&T. Balci (1994)
presents the statistical techniques proposed for model
validation and lists related references.

The statistical techniques generally require that the
system being modeled is completely observable, i.e., all
data required for model validation can be collected from
the system. Model validation is conducted by using the
statistical techniques to compare the model output data
with the corresponding system output data when the
model is run with the “same” input data that derive the
real system. Due to the multiple response problem
(Shannon 1975), the comparison of model and system
outputs must be carried out by using a multivariate
statistical technique to incorporate the correlations
among the output variables.

A validation procedure based on the use of simul-
taneous confidence intervals is presented in (Balci
1994). Whenever possible, a multivariate statistical tech-
nique should be used to conduct model validation.

Symbolic VV&T techniques, like dynamic VV&T

Validation, Verification, and Testing Techniques

Informal Static Dynamic Symbolic Constraint Formal
Audit Consistency Checking ~ Black-Box Testing  Cause-Effect Graphing ~ Assertion Checking Induction
Desk Checking Data Flow Analysis Bottom-Up Testing Partition Analysis Boundary Analysis Inference

Lamda Calculus
Logical Deduction
Predicate Calculus

Predicate Transformation
Proof of Correctness

Debugging Inductive Assertions
Execution Monitoring
Execution Profiling
Execution Tracing
Field Testing
Graphical Comparisons
Predictive Validation
Regression Testing
Sensitivity Analysis
Statistical Techniques
Stress Testing
Submodel Testing
Symbolic Debugging
Top-Down Testing
Visualization
White-Box Testing

Path Analysis
Symbolic Execution

Face Validation
Inspections
Reviews
Turing Test
Walkthroughs

Graph-Based Analysis
Semantic Analysis
Structural Analysis

Syntax Analysis

Figure 1: A Taxonomy of Validation, Verification, and Testing Techniques
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techniques, are used to evaluate the dynamic behavior of
the model during execution. In symbolic analysis,
symbolic inputs are provided to a simulation model as
input and expressions are produced as output which are
drived from the transformation of the symbolic data
along model execution paths.

Constraint VV&T techniques are employed to assess
model correctness using assertion checking, boundary
analysis, and inductive assertions.

Formal VV&T techniques are based on formal math-
ematical proof of correctness. If attainable, formal proof
of correctness is the most effective means of model
VV&T. Unfortunately, “if attainable” is the overriding
point with regard to formal VV&T techniques. Current
state-of-the-art formal proof of correctness techniques
are simply not capable of being applied to even a reason-
ably complex simulation model. However, formal tech-
niques serve as the foundation for other VV&T tech-
niques.

4 CONCLUDING REMARKS AND RESEARCH
DIRECTIONS

Assessing the acceptability and credibility of complex
simulation study results poses significant technical chal-
lenges to researchers, practitioners, and managers.
Nevertheless, we are confident that the challenge can be
met by understanding and properly applying the prin-
ciples of simulation model VV&T presented in this
paper. Computer-aided assistance, visualization, knowl-
edge-based approach, and an effective management style
can contribute to meeting the challenge.

Automated support is essential to reduce the time
and cost of testing since tests are repeatedly used during
development and maintenance. Visualization or anima-
tion greatly facilitates model VV&T; however, seeing is
not believing in visual simulation (Paul 1989). The use
of a knowledge base may help improve the quality of
testing and provides a means for automation. Manage-
ment aspects of model VV&T are as important as its
technical aspects. An effective SQA program within an
organization can make a big difference for the success of
simulation VV&T.

The life cycle application of VV&T is extremely
important for successful completion of complex and
large-scale simulation studies. This point must be clearly
understood by the sponsor of the simulation study and
the organization conducting the simulation study. The
sponsor must furnish funds under the contractual agree-
ment and require the contractor to apply VV&T through-
out the entire life cycle.

Assessing credibility throughout the life cycle of a
simulation study is an onerous task. Applying the VV&T
techniques throughout the life cycle is time consuming

and costly. In practice, under time pressure to complete a
simulation study, the VV&T and documentation are
sacrificed first. Computer-aided assistance for the
VV&T is required to alleviate these problems. More
research is needed to bring automation to the application
of the VV&T techniques.

Integration of VV&T with model development is
crucial. This integration is best achieved within a
computer-aided simulation software engineering envi-
ronment (Balci et al. 1995, Balci 1986; Balci and Nance
1987). More research is needed for this integration.

How much to test or when to stop testing depends
on the study objectives. The testing should continue until
we achieve sufficient confidence in credibility and
acceptability of simulation results. The sufficiency of the
confidence is dictated by the study objectives.

Establishing a simulation quality assurance (SQA)
program within the organization conducting the simula-
tion study is extremely important for successful cred-
ibility assessment. The SQA management structure goes
beyond VV&T and is also responsible for assessing
other model quality characteristics such as maintain-
ability, reusability, and usability (human-computer inter-
face). The management of the SQA program and the
management of the simulation project must be inde-
pendent of each other and neither should be able to over-
rule the other (Schach 1993).

Subjectivity is and will always be part of the cred-
ibility assessment for a reasonably complex simulation
study. The reason for subjectivity is two-fold: modeling
is an art and credibility assessment is situation depen-
dent. A unifying approach based on the use of indicators
measuring qualitative as well as quantitative aspects of a
simulation study should be developed.
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