Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

PARALLEL AND DISTRIBUTED SIMULATION

Richard M. Fujimoto

College of Computing
Greorgia Institute of Technology
Atlanta, Georgia 30332-0280, U.S.A.

ABSTRACT

Research and development efforts in the parallel and
distributed simulation field over the last 15 years
has progressed, largely independently, in two sepa-
rate camps: the largely academic high performance
Parallel And Distributed (discrete event) Simula-
tion (PADS) community, and the DoD-centered Dis-
tributed Interactive Simulation (DIS) community.
This tutorial gives an overview and comparison of
work 1n these two areas, emphasizing issues related to
distributed execution where these fields have the most
overlap. Differences in the fundamental assumptions
routinely used within each community are contrasted,
followed by overviews of work in each community.

1 INTRODUCTION

The enormous amounts of computation required
by simulations of large, complex systems such as
telecommunication networks and VLSI circuits cou-
pled with the widespread availability of multipro-
cessor computer systems has motivated an exten-
sive amount of research in the execution of discrete
event simulation programs on multiprocessors and
distributed computing platforms. Research in the
parallel and distributed simulation community has
been focused on primarily one goal: develop technolo-
gies and tools to enable large simulation programs to
be developed and executed in as little time as possi-
ble to improve the productivity of users of these tools.
Here, we collectively refer to this body of work by the
PADS acronym, named after the annual Workshop
on Parallel and Distributed Simulation where many
of these results appear.

Simultaneously, the needs of the military establish-
ment to have more effective and economical means
to train personnel has driven a large body of work
in developing virtual environments where geographi-
cally distributed hardware and personnel can intcract

118

with each other as if they were in actual combat sit-
uations. Work in the Distributed Interactive Simula-
tion (DIS) community is now expanding to encompass
other uses in the military, e.g., testing and evalua-
tion (T& E) of new weapons systems, as well as com-
mercial applications, e.g., entertainment, training air
traffic controllers, and emergency planning to prepare
for earthquakes or other disasters. Training remains
a central application of DIS environments today. In
contrast to PADS research, the principal goal of DIS
work has historically been to realize realistic virtual
environments utilized by geographically distributed
personnel.

Both PADS and DIS model the system under inves-
tigation as a collection of entities that interact with
each other and their simulated environment in some
fashion. In PADS, the entities are almost always com-
puter representations (data structures and code) of
queues, tanks, vehicles, etc. DIS simulations inte-
grate virtual entities (human in the loop training sim-
ulators of, for example, tanks or aircraft), live entities
(operational manned vehicles and weapons systems),
and constructive simulations (typically, wargaming
simulations that model combat elements at a more ag-
gregated level, e.g., battalions as opposed to individ-
ual soldiers) to produce a virtual battlefield. DIS is a
simulation infrastructure intended to support inter-
operability among separately developed simulators,
systems, and human participants.

Historically, research in the PADS and DIS com-
munities has proceeded largely independently of each
other, and entirely different approaches have been
adopted by each. This is understandable given the
different perspectives and goals of the two commu-
nities. However, as both PADS and DIS research
evolves and expands to new domains, there is increas-
ingly greater overlap between these two areas. For
instance, synchronization and management of sim-
ulated time have become a growing concern in the
DIS community. These issues are central to much of

Parallel and Distributed Simulation 119

Table 1: Contrasting PADS and DIS Research

PADS

DIS

Speed Requirement | as-fast-as-possible

Performance Metric
Simulation Model

speedup
single model

Typical Applications | VLSI circuits, telecomm,
wargaming, transportation air traffic control, emergency planning

Distribution single site
Communication arbitrary latency; reliable
Network multiprocessor or LAN

real-time
military training, entertainment,

realism, scalability

federation of models

geographically distributed

100-300 milliseconds latency; unreliable
LAN and WAN

the work that has been done in the PADS commu-
nity over the last twenty vears. Similarly, there is an
increasing emphasis on including constructive (war
gaming) simulations in DIS; this is a domain where
PADS algorithms have been used in the past, e.g.,
see Wieland, Hawley, Feinberg, DiLorento, Blume,
Reiher, Beckman, Hontalas, Bellenot, and Jefferson
(1989). Similarly, usage of PADS algorithms in real-
time environments has received increased attention in
recent years, e.g., see Ghosh, Panesar, Fujimoto, and
Schwan (1994).

2 CONTRASTING PADS AND DIS

Table 1 summarizes some key technical differences be-
tween PADS and DIS research to date. One of the
most important features distinguishing these commu-
nities is that DIS has been focussed primarily on real-
time environments, while PADS work has focused on
non-real-time “as fast as possible” simulations. This
is because DIS has evolved from virtual training en-
vironments, while PADS has evolved from analytic
simulation tools for engineering design.

In PADS, performance is paramount, and speedup
relative to a sequential execution is used as the pri-
mary metric. By contrast, realism of the virtual en-
vironment is of principal importance in DIS, with
scalability as a second, important goal. Intuitively,
a distributed simulation is said to be scalable if it
can be expanded to include more simulated entities
executing on proportionately larger hardware config-
urations, and the simulator is still able to meet its
stated objectives (e.g., value as a training mecha-
nism), which in turn translates to real-time perfor-
mance. While scalability is also important in PADS
research, the issue has become a more pressing con-
cern in DIS because of the military’s desire to expand
DIS demonstration exercises to include more simu-
lated entities and sites.

A second distinction between PADS and DIS sim-

ulations concerns the models themselves. To date,
PADS work has been largely concerned with execu-
tion of a single large simulation model. The compo-
nents of the model are usually developed in a single
simulation environment using one language, and are
developed from the start as a single integrated sys-
tem. Research has focused on simulation languages
and tools to rapidly develop large simulation models.
There is no question of interoperability among the
different components of the simulation because they
are designed to do so from the start. The question
of “retrofitting” an existing model to execute on a
parallel platform has received only a modest amount
of attention, e.g., see Tsai and Fujimoto (1993) and
Nicol and Heidelberger (1995). By contrast, achiev-
ing interoperability among existing and new simula-
tion models is central to much of the work in the DIS
community, and is one of the most difficult technical
problems being attacked. The aggregate level simula-
tion protocol (ALSP) project is a second project that
bridges this gap by combining separately developed
constructive simulators using a PADS synchroniza-
tion protocol (Wilson and Weatherly 1994).

To date, most PADS research utilizes tightly cou-
pled multiprocessors (using shared memory or mes-
sage passing for communications) or LAN (local area
network)-based distributed computing environments,
while DIS exercises usually utilize LAN and WAN
(wide area network) interconnects. Different as-
sumptions are made by these communities concern-
ing the network. PADS research generally assumes
reliable communications, but arbitrary communica-
tions lalency. This originates from the analytic na-
ture of typical PADS applications. By contrast,
most DIS work assumes unreliable communications
but bounded maximum latencies for message delivery.
Unreliable communications are used because message
acknowledgment protocols that are used to ensure
reliable delivery may compromise real-time perfor-
mance. Message losses can often be tolerated because

120 Fujimoto

many of the messages that are transmitted are sim-
ply periodic updates of state information, e.g., the
position of vehicles, so subsequent messages allow the
simulator to gracefully recover. Moreover, glitches in
DIS simulations can often be tolerated, so long as
they do not happen too frequently and do not have
lasting effects. Maximum latencies also stem from the
real-time nature of early DIS applications. Because
of human limitations to perceive nearly simultaneous
events, latencies up to 100 or 300 milliseconds are
acceptable (DIS Steering Committee 1994); Correct
modeling of more tightly coupled systems, e.g., com-
ponents of a weapons system (say a simulated missile
and its guidance system) require lower latencies (Che-
ung and Loper 1994).

The remainder of this paper is organized as follows.
We first review the fundamental algorithms that have
been developed in the PADS community for synchro-
nizing as-fast-as-possible simulations. We then re-
view the underlying design principles in DIS systems,
and discuss and relate DIS techniques to research in
the PADS community.

3 PADS RESEARCH

Much of the work in PADS is concerned with syn-
chronization. The synchronization algorithm ensures
that causally related events are processed in times-
tamp order. Toward this end, conservative and op-
timistic synchronization mechanisms have been de-
vised. These mechanisms usually assume the sim-
ulation consists of a collection of logical processes
(LPs) that communicate by exchanging timestamped
messages or events. The goal of the synchronization
mechanism is to ensure that each LP processes events
in timestamp order; this requirement is referred to as
the local causality constraint.

3.1 Conservative Synchronization

Historically, the first synchronization algorithms were
based on conservative approaches. The principal task
of any conservative protocol 1s to determine when
1t 1s “safe” to process an cvent, i.e., when have all
events containing a smaller timestamp than the one
being considered been received and processed by the
LP. The algorithms described in Chandy and Misra
(1979) assume the topology indicating which LPs
send messages to which others is fixed and known
prior to execution, and messages arrive on cach in-
coming link in timestamp order. This guarantees that
the timestamp of the last message received on a link
is a lower bound on the timestamp of any subsequent
message that will later arrive on that link.

Messages arriving on each incoming link are stored
in first-in-first-out order, which is also timestamp or-
der because of the above restriction. Each link has a
clock that is equal to the timestamp of the message
at the front of that link’s queue if the queue contains
a message, or the timestamp of the last received mes-
sage if the queue is empty. The process repeatedly
selects the link with the smallest clock and, if there
is a message in that link’s queue, processes it. If the
selected queue is empty, the process blocks. This pro-
tocol guarantees that each process will only process
events in non-decreasing timestamp order.

Although this approach avoids out-of-order event
executions, it is prone to deadlock. A cycle of empty
links with small link clock values (e.g., smaller than
any unprocessed message in the simulator) can oc-
cur, resulting in each process waiting for the next
process in the cycle. If there are relatively few un-
processed event messages compared to the number
of links in the network, or if the unprocessed events
become clustered in one portion of the network, dead-
lock may occur very frequently.

Null messages may be used to avoid deadlock. A
null message with timestamp T,y sent from LP4 to
LPg is a promise by LP,4 that it will not later send
a message to L Pp carrying a timestamp smaller than
Thuu. Null messages do not correspond to any ac-
tivity in the simulated system. Processes send null
messages on each outgoing link after processing each
event. A null message provides the receiver with ad-
ditional information that may be used to determine
that other events are safe to process.

How does a process determine the timestamps of
the null messages it sends? The clock value of each
incoming link provides a lower bound on the times-
tamp of the next event that will be removed from
that link’s buffer. When coupled with knowledge of
the simulation performed by the process, this bound
can be used to determine a lower bound on the times-
tamp of the next outgoing message on each output
link. For example, if a queue server has a minimum
service time of T', then the timestamp of any future
departure event must be at least T units of simu-
lated time larger than any arrival event that will be
received in the future. Whenever a process finishes
processing an event, it sends a null message on each
of its output links indicating the best lower bound
it can compute; the receiver of the null message can
then compute new bounds on its outgoing links, send
this information on to its neighbors, and so on. It can
be shown that this algorithm avoids deadlock under
some mild constraints (Chandy and Misra 1979).

This algorithm may generate many null messages,
however. Another approach allows the computation

Parallel and Distributed Simulation 121

to deadlock, but then detects and breaks it (Chandy
and Misra 1981). The deadlock can be broken by
observing that the message(s) containing the small-
est timestamp is (are) always safe to process. Alter-
natively, one may use a distributed computation to
compute lower bound information (not unlike the dis-
tributed computation using null messages described
above) to enlarge the set of safe messages.
Numerous variations on these approaches have
been developed, as well as others. Some protocols use
a synchronous execution where the computation cy-
cles between (i) determining which events are “safe”
to process, and (i1) processing those events. To de-
termine which events are safe, the distance between
LPs is sometimes used. This “distance” is the mini-
mum amount of simulation time that must elapse for
an event in one LP to directly or indirectly affect an-
other LP, and can be used by an LP to determine
bounds on the timestamp of future events it might
receive from other LPs. Space does not permit full
elaboration of all of the techniques that have been
proposed, however, these techniques are reviewed in
Fujimoto (1990) and Fujimoto and Nicol (1992).

3.2 Optimistic Synchronization

In contrast to conservative approaches that avoid vi-
olations of the local causality constraint, optimistic
methods allow violations to occur, but are able to de-
tect and recover from them. Optimistic approaches
offer two important advantages over conservative
techniques. First, they can exploit greater degrees of
parallelism. If two events might affect each other, but
the computations are such that they actually don’t,
optimistic mechanisms can process the events concur-
rently, while conservative methods must sequentialize
execution. Second, conservative mechanism generally
rely on application specific information (e.g., distance
between objects) in order to determine which events
are safe to process. While optimistic mechanisms
can execute more efficiently if they exploit such in-
formation, they are less reliant on such information
for correct execution. This allows the synchroniza-
tion mechanism to be more transparent to the appli-
cation program than conservative approaches, sim-
plifying software development. On the other hand,
optimistic methods may require more overhead com-
putations than conservative approaches, leading to
certain performance degradations.

The Time Warp mechanism (Jefferson 1985) is the
most well known optimistic method. When an LP
receives an event with timestamp smaller than one or
more events it has already processed, it rolls back and
reprocesses those events in timestamp order. Rolling

back an cvent involves restoring the state of the LP
to that which existed prior to processing the event
(checkpoints are taken for this purpose), and “un-
sending” messages sent by the rolled back events. An
elegant mechanism called anti-messages is provided
to “unsend” messages.

An anti-message is a duplicate copy of a previ-
ously sent message. Whenever an anti-message and
its matching (positive) message are both stored in
the same queue, the two are deleted (annihilated).
To “unsend” a message, a process need only send the
corresponding anti-message. If the matching positive
message has already been processed, the receiver pro-
cess 1s rolled back, possibly producing additional anti-
messages. Using this recursive procedure all effects of
the erroneous message will eventually be erased.

Two problems remain to be solved before the above
approach can be viewed as a viable synchronization
mechanism. First, certain computations, e.g., [/O
operations, cannot be rolled back. Second, the com-
putation will continually consume more and more
memory resources because a history (e.g., check-
points) must be retained, even if no rollbacks occur;
some mechanism is required to reclaim the memory
used for this history information. Both problems are
solved by global virtual time (GVT). GVT is a lower
bound on the timestamp of any future rollback. GVT
is computed by observing that rollbacks are caused
by messages arriving “in the past.” Therefore, the
smallest timestamp among unprocessed and partially
processed messages gives a value for GVT. Once GVT
has been computed, I/O operations occurring at sim-
ulated times older than GVT can be committed, and
storage older than GVT (except one state vector for
each LP) can be reclaimed.

Other optimistic algorithms have been proposed
(Fujimoto 1990; Fujimoto and Nicol 1992). Most at-
tempt to limit the amount of optimism. Typical tech-
niques include using a sliding window of simulated
time (Sokol, Briscoe, and Wieland 1988), or delaying
message sends until it is guaranteed that the send will
not be later rolled back, thereby eliminating the need
for anti-messages, e.g., see Reynolds (1988).

3.3 Other Work

PADS research includes a substantial amount of work
in other areas besides synchronization. Typical areas
include massively parallel (so-called time-parallel) al-
gorithms for specific simulation problems (e.g., sim-
ulation of communication networks), performance
analysis, memory and workload management, simu-
lation languages, hardware support, and applications
(Fujimoto and Nicol 1992).

122 Fujimoto

4 DIS RESEARCH

While the foundations for PADS research lies in early
research concerning synchronization, the precursor
to DIS was the SIMNET (SIMulator NETworking)
project (1983-89) that demonstrated the viability of
Interconnecting several autonomous simulators in a
distributed environment for training cxercises (Ka-
narick 1991). SIMNET was used as the basis for the
initial DIS protocols and standards, and many of the
fundamental principles defined in SIMNET remain
in DIS today. SIMNET realized over 250 networked
simulators at 11 sites in 1990.

From a model execution standpoint, a DIS exercise
can be viewed as a collection of autonomous simula-
tors (e.g., tank simulators), each generating its own
virtual environment representation of the battlefield
from its own perspective. Each simulator sends mes-
sages, called protocol data units (PDUs), whenever
its state changes in a way that might affect another
simulator. Typical PDUs include movement to a new
location, firing at another simulated entity, etc.

In order to achieve interoperability among sepa-
rately developed simulators, a set of evolving stan-
dards have been developed (IEEE 1278 1993). The
standards specify the format and contents of PDUs
exchanged between simulators as well as when PDUs
should be sent.

DIS is based on several underlying design principles
(DIS Steering Committee 1994):

e Autonomy of Simulation Nodes. Auton-
omy facilitates ease of development, integration
of legacy simulators, and simulators joining or
leaving the exercise while it is in progress. Each
simulator advances simulation time according to
a local real-time clock. Simulators are not re-
quired to determine which other simulators must
receive PDUs; rather, PDUs are broadcast to all
simulators and the receiver must determine those
that are relevant to its own virtual environment.

¢ Transmission of “Ground Truth” Informa-
tion. Each node sends absolute truth about the
state of the entities it represents. Degradations
of this information (e.g., due to environment or
sensor limitations) are performed by the receiver.

e Transmission of State Change Information
Only. To economize on communications, simu-
lation nodes only transmit changes in behavior.
If a vehicle continues to “do the same thing”
(e.g., travel in a straight line with constant ve-
locity), the rate at which state updates are trans-
mitted is reduced. Simulators do transmit “keep

alive” messages, e.g., every five seconds, so new
simulators entering the exercise can include them
in their virtual environment.

¢ “Dead Reckoning” Algorithms. All simula-
tors use common algorithms to extrapolate the
current state (position) of other entities between
state updates. More will be said about this later.

¢ Simulation Time Constraints. Because hu-
mans cannot distinguish differences in time less
than 100 milliseconds, a communication latency
of up to this amount is required. Lower latencies
are needed for other, non-training, simulators,
e.g., testing of weapons systems.

We note that these design principles are seldom used
in PADS research, but are pervasive in DIS work.

4.1 Dead-Reckoning

DIS simulations use a technique called dead-reckoning
to reduce interprocessor communication to distribute
position information. This reduction is realized by
observing that rather than sending new position coor-
dinates of moving entities at some predetermined fre-
quency, processors can estimate the location of other
entities through a local computation. In principal,
one could duplicate a remote simulator in the local
processor so that any dynamically changing state in-
formation is readily available. This local computa-
tion, when applied to computing position information

of moving entities, if referred to as the dead-reckoning
model (DRM).

In practice, the DRM is only an approximation of
the true simulator. An approximation is used because
(1) the DRM does not receive inputs received by the
actual simulator, e.g., a pilot using a a flight simu-
lator decides to travel in a new direction, and (2) to
economize on the amount of computation required to
execute the DRM. In practice, the DRM is realized as
a simplified, lower fidelity version is true model. To
limit the amount of error between the true and DRM,
the true simulator maintain its own copy of the DRM
to determine when the divergence between them has
become “too large,” i.e., the difference between the
true position and the dead-reckoned position exceeds
some threshold. When this occurs, the true simulator
transmits new, updated information (the true posi-
tion) to “reset” the DRM. To avoid “jumps” in the
display when the DRM is reset, simulators may real-

1ze the transition to the new position as a sequence
of steps (Fishwick 1994).

Parallel and Distributed Simulation 123

4.2 Communications in DIS

Work in DIS is now attempting to scale exercises to
include more entities and sites (locations). Current
goals call for exercises including 50,000 entities at 30
sites by 1997, and 100,000 entities at 50 sites by 2000.
Significant changes to DIS are required to enable sim-
ulations of this size, particularly with respect to the
amount of communications that are required.

Even with dead-reckoning, the DIS protocol de-
scribed above does not scale to such large simula-
tions. An obvious problem is the reliance on broad-
casts. There are two problems here: (1) realizing the
communication bandwidth required to perform the
broadcasts, estimated to be 375 Mbits per second per
platform for a simulation with 100,000 players (Mace-
donia, Zyda, Pratt, Brutzman, and Barham 1995),
1s too costly, and (2) the computation load required
to process incoming PDUs is excessive and wasteful,
particularly as the size of the exercise increases be-
cause a smaller percentage of the incoming PDUs will
be relevant to each simulator.

Several techniques have been developed to address
this problem (Van Hook, Calvin, Newton, and Fusco
1994):

e Relevance Filtering. Rather than using
broadcasts, messages are only sent to a subset of
the simulation entities (Van Hook, Calvin, New-
ton, and Fusco 1994; Macedonia, Zyda, Pratt,
Brutzman, and Barham 1995). For example, the
battlefield can be divided into a grid, and enti-
ties need only send state update PDUs to entities
in grid sectors in or “near” that generating the
PDU. Relevance filters can be used for other in-
formation as well, e.g., radio communications.

e Distributed Representation. Information
concerning remote entities can be stored locally.
Caching is appropriate for information that sel-
dom changes. Like dead-reckoning, remote com-
putations can be replicated locally to generate
dynamically changing data.

e Compression. Redundant information can be
eliminated from the PDU. The Protocol Indepen-
dent Compression Algorithm (PICA) uses a ref-
erence state PDU that is known to the commu-
nicating entities, and only transmits differences
from the reference state (DiCaprio, Chiang, and
Van Hook 1994). PICA has been report to yield
four—fold compression of entity state PDUs (Van
Hook, Calvin, Newton, and Fusco 1994).

e Bundling. Several PDUs may be bundled into
larger messages to reduce overheads.

e Overload Management. These mechanisms
reduce the communications load during periods
of high utilization. For example, dead-reckoning
thresholds may be adjusted to generate less traf-
fic when the network is loaded.

¢ Fidelity Management. Different degrees of
detail can be sent to different entities. For in-
stance, less frequent state updates can be sent
to distant receivers than those in close proximity.
This i1s particularly useful for wide area receivers
such as aircraft that can view large areas.

Relevance filtering and multicast communications
go hand-in-hand, though it should be noted that rel-
evance filtering still has merit even if multicast is not
available. Multicast is more challenging in DIS than
other applications (e.g., teleconferencing or video-
on-demand) because of the need for a large number
of multicast groups, and the dynamic nature of the
groups. It is estimated that from 1,000 to 10,000
active multicast groups will be needed, with entities
joining or leaving groups at a rate of hundreds per
second. Changes to multicast groups should occur
with low latency, e.g., one millisecond.

It is instructive to compare the approach used in
DIS to distribute state information with the related
problem of providing shared state variables between
logical processes in PADS simulations. In PADS, a
fundamental problem is that at any instant in real
time, different logical processes will usually be at
different points in simulated time, so care must be
taken to ensure each LP receives the value corre-
sponding to its current simulated time. Techniques
using transactions-like protocols have been developed
(Ghosh and Fujimoto 1991; Mehl and Hammes 1993).
This problem is side-stepped in DIS because all sim-
ulators are nominally at the same current real-time
of the simulation exercise. In practice, this is not
the case because there will be variations in real time
clocks at different simulator nodes, as discussed next.

4.3 Synchronization and Time Management

In DIS, synchronization usually refers to the prob-
lem of ensuring that the real-time clocks distributed
throughout the network advance in synchrony with
cach other (Cheung and Loper 1994). Time man-
agement refers to the method used to advance sim-
ulated time in each simulator. The synchronization
and time management mechanisms are responsible for
ensuring temporal correlation is achieved, 1.e., tempo-
ral aspects of the simulation exercise correspond to
real-world behavior. While PADS simulation proto-
cols guarantee that all logical processes observe the

124 Fujimoto

same, timestamped ordered sequence of events, DIS
makes no such guarantees. This is a well-known prob-
lem in DIS today. Correlation problems can occur
because:

¢ Messages may be lost. DIS can tolerate some lost
PDUs because many are simply updates of state
information, and the simulator can simply wait
for the next update to resynchronize itself with
other simulators. Loss of other events, however,
e.g., detonation of ordinances, could lead to more
serious problems.

e No mechanism is provided to ensure that events
are processed in timestamp order. PDUs may ar-
rive out of order because of communication delay
variations or differing (real-time) clocks in dif-
ferent simulators. Different simulators may per-
celve the same set of events in different orders,
possibly resulting in different observed outcomes
in different parts of the network. This is clearly
undesirable.

In DIS, each PDU contains a timestamp with the
current time of the simulator (obtained from the sim-
ulator’s real-time clock) generating the PDU. This is
in contrast to PADS simulations that typically gener-
ate events into the simulated future, i.e., with (simu-
lated time) timestamp greater than the current time
of the entity scheduling the event. Thus, events in
DIS always arrive “late.” Receivers can compensate
by determining the communication delay in transmit-
ting the message. Relative timestamp schemes do this
based on past message transmission times, and ab-
solute timestamp schemes assume synchronized real-
time clocks in the sender and receiver to determine
the latency by simply computing the difference be-
tween the send and receive times (Golner and Pollak
1994).

Much of the work in the DIS community to address
the temporal correlation problem has been concerned
with maintaining real-time clocks that are synchro-
nized to a standard clock called Coordinated Univer-
sal Time (UTC). Several approaches have been used
for this task (Cheung and Loper 1994). Methods
include broadcasting UTC on radio services, use of
a U.S. National Institute of Standards and Technol-
ogy (NIST) dial-up time service, use of a global po-
sitioning system (GPS) used by radio navigation sys-
tems (Kress, Phipps, and Carver 1994), and network
protocols such as Network Time Protocol (NTP) to
distribute clock information over the network (Mills
1992). The relationship between clock synchroniza-
tion and temporal correlations is discussed in Katz
(1994).

In addition to timing and synchronization errors,
other correlation problems may arise due to differ-
ence in the virtual environments perceived by differ-
ent simulator nodes. A tank that believes it is hiding
behind a tree may actually be visible to other simu-
lators because of differences in spatial computations.
This can lead to “unfair” scenarios that reduce the
realism of the exercise.

4.4 Other Work

Work in DIS encompasses a variety of other top-
ics that are related to interoperability and produc-
ing realistic synthetic environments, as opposed to
distributed execution. Computer generated forces
use artificial intelligence techniques to generate auto-
mated or semi-automated models for forces, enabling
the number of simulation participants to be much
larger than the number of personnel participating in
the exercise. Aggregation and de-aggregation algo-
rithms enable interoperability between virtual sim-
ulators representing individual, de-aggregated enti-
ties (e.g., individual tanks) and constructive simu-
lators with aggregated entities (a column of tanks)
by aggregating and de-aggregating entities as needed.
Work in walidation, verification, and accreditation
(VV&A) is concerned with defining appropriate per-
formance metrics and measurement mechanisms to
ascertain the extent that simulation exercises meet
their goals. Physical environment representation is
concerned with providing entities with common views
of the battlefield in an environment changing because
of man-made (e.g., introduction of craters when shells
explode) and natural (e.g., roads washed out by thun-
derstorms) causes.

5 CONCLUSION

A substantial amount of effort has developed in two
separate communities with the common goal of ex-
ecuting simulation programs on networked comput-
ing platforms. With expansion of DIS-related work
into non-military applications, e.g., air traffic control,
emergency planning, and entertainment, the impact
of this work can be expected to increase in the years
ahead. Although each community routinely uses dif-
ferent assumptions, goals, and even different vocab-
ularies, we believe much can be gained by.each in
examining techniques used by the other. For exam-
ple, synchronization methods developed by the PADS
community may help to address temporal correlation
problems now encountered in DIS. Similarly, tech-
niques used to reduce communication in DIS might
be applicable to some PADS simulation problems.

Parallel and Distributed Simulation 125

REFERENCES

Chandy, K. M. and J. Misra. 1979. Distributed sim-
ulation: A case study in design and verification
of distributed programs. /[EEE Transactions on
Software Engineering SE-5(5), 440-452.

Chandy, K. M. and J. Misra. 1981. Asynchronous dis-
tributed simulation via a sequence of parallel com-
putations. Communications of the ACM 2/(4),
198-205.

Cheung, S. and M. Loper. 1994. Synchronizing sim-
ulations in distributed interactive simulations. In
1994 Winter Stmulation Conference Proceedings,
pp- 1316-1323.

DiCaprio, P. N., C. J. Chiang, and D. J. Van Hook.
1994. PICA performance in a lossy communica-
tions environment. In [1th Workshop on Stan-
dards for the Interoperability of Distributed Sim-
ulations, Volume 2, pp. 363-366.

DIS Steering Committee. 1994. The DIS vision, a
map to the future of distributed simulation. Tech-
nical Report IST-SP-94-01, Institute for Simula-
tion and Training, Orlando, Florida.

Fishwick, P. A. 1994. Simulation Model Design & Ex-
ecution: Building Digital Worlds. McGraw-Hill.

Fujimoto, R. M. 1990. Parallel discrete event simula-
tion. Communications of the ACM 33(10), 30-53.

Fujimoto, R. M. and D. M. Nicol. 1992. State of the
art in parallel simulation. In 1992 Winter Simu-
lation Conference Proceedings, pp. 122-127.

Ghosh, K. and R. M. Fujimoto. 1991. Parallel dis-
crete event simulation using space-time memory.
In Proceedings of the 1991 International Confer-
ence on Parallel Processing, Volume 3, pp. 201~
208.

Ghosh, K., K. Panesar, R. M. Fujimoto, and
K. Schwan. 1994. PORTS: A parallel, optimistic,
real-time simulator. In 8% Workshop on Parallel
and Distributed Simulation, pp. 24-31.

Golner, M. and E. Pollak. 1994. The application of
network time protocol (NTP) to implementing dis
absolute timetamps. In 11th Workshop on Stan-
dards for the Interoperability of Distributed Sim-
ulations, Volume 2, pp. 431-440.

IEEE 1278. 1993. Standard for information technol-
ogy - protocols for distributed interactive simula-
tion applications.

Jefferson, D. R. 1985. Virtual time. ACM Trans-
actions on Programming Languages and Sys-
tems 7(3), 404-425.

Kanarick, C. 1991. A technical overview and history
of the SIMNET project. In Advances in Parallel
and Distributed Simulation, Volume 23, pp. 104-
111.

Katz, A. 1994. Synchronization of networked simula-
tors. In 11th Workshop on Standards for the Inter-
operability of Distributed Simulations, Volume 2,
pp. 81 87.

Kress, J., J. R. Phipps, and D. Carver, Jr. 1994. Syn-
chronization of large scale distributed simulations
and programs. In 10th Workshop on Standards
Jor the Interoperability of Distributed Simulations,
Volume 2, pp. 611-623.

Macedonia, M., M. Zyda, D. Pratt, D. Brutzman,
and P. Barham. 1995. Exploiting reality with mul-
ticast groups: A network architecture for large-
scale virtual environments. In 1995 IEEE Virtual
Reality Annual Symposium, pp. 11-15.

Mehl, H. and S. Hammes. 1993. Shared variables in
distributed simulation. In 7t* Workshop on Par-
allel and Distributed Simulation, Volume 23, pp.
68-75.

Mills, D. L. 1992. Network Time Protocol (version 3)
specification, implementation, and analysis.

Nicol, D. M. and P. Heidelberger. 1995. On extending
parallelism to serial simulators. In 9** Workshop
on Parallel and Distributed Simulation, pp. 60-67.

Reynolds, Jr., P. F. 1988. A spectrum of options for
parallel simulation. In 1988 Winter Simulation
Conference Proceedings, pp. 3256-332.

Sokol, L. M., D. P. Briscoe, and A. P. Wieland. 1988.
MTW: a strategy for scheduling discrete simula-
tion events for concurrent execution. In Proceed-
ings of the SCS Multiconference on Distributed
Stmulation, Volume 19, pp. 34-42.

Tsai, J. J. and R. M. Fujimoto. 1993. Automatic par-
allelization of discrete event simulation programs.
In 1993 Winter Simulation Conference Proceed-
ings, pp. 697-705.

Van Hook, D. J., J. O. Calvin, M. Newton, and
D. Fusco. 1994. An approach to DIS scalability.
In 11th Workshop on Standards for the Interoper-
ability of Distributed Simulations, Volume 2, pp.
347-356.

Wieland, F., L. Hawley, A. Feinberg, M. DiLorento,
L. Blume, P. Reiher, B. Beckman, P. Hontalas,
S. Bellenot, and D. R. Jefferson. 1989. Distributed
combat simulation and Time Warp: The model
and its performance. In Proceedings of the SCS
Multiconference on Distributed Simulation, Vol-
ume 21, pp. 14-20.

Wilson, A. L. and R. M. Weatherly. 1994. The aggre-
gate level simulation protocol: An evolving sys-
tem. In 1994 Winter Stmulation Conference Pro-
ceedings, pp. 781-787.

