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ABSTRACT

This tutorial is an introduction to Simulation Graphs
for simulation modeling. The Simulation Graph
methodology is a paradigm that directly models the
future event list underlying the Discrete Event ap-
proach to simulation modeling. Simulation Graphs
have a minimalist design (a single type of node, two
types of edges with up to three options), making them
the ideal tool for rapid construction and representa-
tion of simulation models.

1 INTRODUCTION

Simulation Graphs (originally called Event Graphs)
were introduced by Schruben (1983) as a means
of graphically representing discrete event simulation
models. Originally called “Event Graphs,” they were
renamed in Schruben and Yiicesan (1993). The Simu-
lation Graph approach is a minimalist one, consisting
of only two basic constructs with a handful of options.
Nevertheless, Simulation Graph models are extremely
powerful and can be used to represent any discrete
event model. This tutorial is an informal introduction
to Simulation Graphs for representing discrete event
simulation models; for a rigorous presentation of Sim-
ulation Graphs, see Schruben and Yiicesan (1993).

2 BASIC ELEMENTS OF DISCRETE
EVENT MODELS

We assume the reader is familiar with the basic con-
cepts of discrete event simulation (see any introduc-
tory text such as Law and Kelton 1991), so we will
only briefly review the components.

A discrete event simulation model consists of two
fundamental elements: a set of state variables, or
states, and a set of events. The model simulates the
system being studied by producing state trajectories,
that is, time plots of the values of the system’s state
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variables. Measures of performance are determined
as statistics of these state trajectories. Discrete event
models have state trajectories that are piecewise con-
stant. Events are the points in time at which at least
one state variable changes value.

A discrete event model should have enough state
variables to completely describe the important as-
pects of the system at any point in time. For example,
in a model of a single server queue one possible state
variable is the number of customers in the queue, Q.
However, Q is not sufficient to completely describe
the system at all points in time. If @ = 0 then there
could be either 0 or 1 customers in the system. There-
fore, we would need to add (at least) one additional
state variable, such as the number of busy servers B.

As mentioned above, events are defined whenever
at least one state variable changes value. For exam-
ple, the arrival of a customer to a queueing system
could be an event in a model of the system, since the
number in the queue increases by 1 whenever a cus-
tomer arrives (i.e. Q@ «— @Q+1, or @++ in C terminol-
ogy). Similarly, when a customer finishes service and
leaves the system, a server will become (possibly tem-
porarily) idle. Thus the departure of a customer can
also be an event since the value of B is decreased by
1. It is important to note that an event is an instanta-
neous occurrence in the discrete event model. No sim-
ulated time passes when an event occurs; simulated
time passes only between the occurrence of events.

For example, suppose we wanted to generate a Pois-
son process with a given rate A\, which could be used
to model the arrival of customers to a facility. To
construct a discrete event model we define the state
variable to be the total number of customers gener-
ated so far (N). The arrival of a customer causes
this state variable to be incremented by 1 (N++), so
we would define “the arrival of a customer” to be an
event, which we will denote Arrival. The occurrence
of this event corresponds with the state transition
N++. In general, the state transition for an event
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can be any mapping from the state space into itself.

The timing of the occurrence of events is controlled
by the Future Event List (or simply the Event List),
which is nothing more than a “to-do” list of scheduled
events. Whenever an event is scheduled to occur,
an event notice is created and stored on the future
events list. Every event notice contains two pieces
of information: (1) What event is being scheduled;
and (2) The (simulated) time at which the event is to
occur. The future event list keeps the event notices in
order by ranking them based on the lowest scheduled
time.

The future events list is managed by a “Timemas-
ter” who controls the flow of time in the simulated
world of the model. The Timemaster examines the
event list to see if there are any scheduled events.
An empty list means there is nothing to do, so
the Timemaster terminates (i.e. the simulation run
ends). If the event list is not empty, the Timemas-
ter moves the simulated clock to the time of the first
event notice and executes the event — that is, the
state transitions associated with that event are in-
voked. Figure 1 shows the Timemaster’s logic.

Figure 1 illustrates the convention that all state
changes are made before events are scheduled. This
is arbitrary, since we could just as easily reverse the
order; the models constructed would be slightly dif-
ferent however. Similarly, the event notice could be
removed from the event list first rather than last. The
events scheduled by the Timemaster are specified by
the occurring event itself and may be conditional on
certain values of the current state. We will discuss
scheduling events further in the following section.

Continuing with the Poisson process example, it
is known that the times between arrivals are iid ex-
ponential random variables with mean 1/X. We can
invoke the arrival of a customer by having the pre-
vious customer generate an interarrival time from an
exponential distribution, then placing an Arrival event
notice on the event list with scheduled time equal to
the current simulated time plus the interarrival time.
This example illustrates the fact that an event may
schedule itself. A self-scheduling ability event should
not be confused with recurrence of procedure calls in
conventional programming.

3 BASIC ELEMENTS OF SIMULATION
GRAPHS

Simulation Graphs are a way of representing the Fu-
ture Event List logic for a discrete-event model. Each
Simulation Graph consists of nodes and edges. Each
node corresponds to an event, or state transition,
and each edge corresponds to the scheduling of other
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events. FEach edge can optionally have an associ-
ated Boolean condition and/or a time delay. Fig-
ure 2 shows the fundamental construct for Simulation
Graphs and is interpreted as follows: the occurrence
of Event A causes Event B to be scheduled after a
time delay of ¢, providing condition (i) is true (after
the state transitions for Event A have been made).
By convention, the time delay ¢ is indicated toward
the tail of the scheduling edge and the edge condi-
tion is shown just above the wavy line through the
middle of the edge. If there is no time delay, then
t is omitted. Similarly, if Event B is always sched-
uled following the occurrence of Event B, then the
edge condition is omitted, and the edge is called an
unconditional edge.

Thus, the basic Simulation Graph paradigm con-
tains only two structures (the event node and schedul-
ing edge) with two options on the edges (time delay
and edge condition). The simplicity of the Simula-
tion Graph paradigm is evident from the fact that
we can represent any discrete event model using only
these constructs (Schruben 1992, 1995; Schruben and
Yiicesan 1993). A major advantage of the minimalist
approach of Simulation Graphs is that the modeler
can spend more time on model formulation and less
on learning the constructs of the paradigm.

There is a price to the simplicity of Simulation
Graphs, however. Since Simulation Graphs repre-
sent the Future Event List, rather than the physical
movement of, say, customers through a queueing sys-
tem, Simulation Graphs require a higher degree of
abstraction on the part of the user than other graph-
ical systems. The author’s experience using Simu-
lation Graphs in an introductory simulation course
indicates that this higher abstraction is easy to mas-
ter and provides rich payoffs for understanding and
creating discrete event simulations. Indeed, the use
of Simulation Graphs tends to accelerate the under-
standing of the Discrete Event paradigm.

4 EXAMPLES

4.1 The Poisson Process

Our first example is probably the simplest non-trivial
Simulation Graph possible, the Poisson process. The
Poisson process is an important building block for
larger Discrete Event models. A Simulation Graph
for the Poisson process is constructed by first defin-
ing a state variable N to be the cumulative number of
arrivals. Next, the event Arrival is defined to be the
event which increments N by one (i.e. an arrival).
The event Arrival then schedules another Arrival after
a delay of t4 time units, where t4 is an Exponen-
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Figure 3: Simulation Graph for Poisson Process

tial random variable with mean 1/A. The Simulation
Graph for a Poisson Process is shown in Figure 3. We
have indicated the state transition beneath the event
node Arrival as “N++" — we will use the C notation
of incrementing a variable throughout this tutorial.
Note that by changing the interarrival time distribu-
tion we can generate any renewal process. Moreover,
by suitably augmenting the source of the interarrival
times effectively any arrival process may be generated
in this manner. Observe that the Simulation Graph
does not explicitly model the stream of random in-
terarrival times, but assumes that they are available.

4.2 A Simple Queueing Model

We will now construct an Simulation Graph model
for the multiple-server queue. This system is the ba-
sis for more complex models and illustrates all the
features of Simulation Graphs introduced so far. The
system consists of MazB identical servers and a sin-
gle waiting line. Arriving customers receive service on
a “first come first served” (FCFS) basis; a customer
in the queue receives service from the next available
server when one becomes available. Note that for
MazB > 1 this is not the same as “first-in first-
out” due to variations in service times; however, each
customer commences service before every subsequent
customer. Performance measures for this system are
the expected number in the queue and expected av-
erage utilization of the servers. Other measures, such
as the mean delay in the queue, could also be de-
fined. For many queueing systems, measures such
as mean delay in queue and mean sojourn time can
be indirectly estimated using Little’s formula. Direct
estimation of these two measures would require the
use of transient entities in the model. Although it is
possible to construct Simulation Graph models with
transient entities, we shall not do so in this tutorial.
The interested reader is referred to Schruben (1995)
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for a nice discussion of transient versus resident entity
models.

To formulate a model for the queueing system we
first identify the state variables. Defining the state
variables for a model is driven by two concerns: (1)
The need to represent the logic of the system being
modeled; and (2) The need to compute appropriate
performance measures. To estimate the two perfor-
mance measures above, we must define two state vari-
ables: The number in the queue (Q) and the number
of busy servers (B). It turns out that these two vari-
ables are also sufficient to represent the system at any
point in time. Of course, other state descriptions are
possible. For example, we could define a single state
L as the number of customers in the system, but it
would be more difficult to estimate our two perfor-
mance measures.

Next we define the events in the model. A list
of possible events could start with every situation in
which a state variable changes value. A useful per-
spective, reminiscent of the process-orientation, is to
consider what each customer encounters as they pass
through the system: First a customer arrives to the
system; after a possible delay in the queue, the cus-
tomer starts service; finally, the customer finishes ser-
vice and leaves the system. Since each of these in-
volves a change of a state variable we identify three
events as: Arrival, Start Service, and End Service, re-
spectively. Table 1 completes the verbal description
of the model. Recall our convention that events first

Table 1: Verbal Description of Discrete Event Model
for the Multiple Server Queue

Schedule

Arrival, after
Interarrival time

Start Service, if
server available

End Service, after
Service Time

Event State Changes

Arrival Increment Queue

Start Decrement Queue
Service Decrement #
Available Servers
End Increment #
Service Available Servers

Start Service , if
queue not empty

perform their state transitions, then they schedule
events.

The final step is to translate the verbal description
in Table 1 into an Simulation Graph. This is done
by assigning a node to every event and an edge con-
necting the occurring event with the scheduled event,
each with the appropriate condition and time delay.

4/‘> A" (B <MaxB)

<Arrival / / <>

{Q++}

Figure 4: Discrete Event Model for Multiple Server
Queue

The edge conditions are expressed as a Boolean ex-
pression in the state variables (i.e. a mapping from
the state space to {TRUE, FALSE}. The Simulation
Graph model in Table 1 is shown in Figure 4. The
Boolean edge condition for scheduling Start Service is
B < MazB, since a customer arriving to find avail-
able servers can being service immediately. In Fig-
ure 4, the state transitions for each event is shown
in curly braces beside the corresponding node (recall
that we are using the C notation for incrementing and
decrementing variables).

The Simulation Graph model in Figure 4 cannot
be operationalized in its current form any more than
the descriptive model of Table 1 can. To implement
any discrete event model there must be a means for
inputting system parameters, initializing the run (by
placing event notices on the future events list at the
start of the run), and stopping the simulation run.
While these are very important (indeed, they are es-
sential to actually running the simulation), they are
primarily aspects of implementation and can distract
the modeler from the core logic of the model. The
Simulation Graph in Figure 4, while not completely
specifying the starting and ending conditions, does
convey in a powerful visual manner the interrelation-
ships of the events. Taking the perspective of the
Timemaster (i.e. the Event List logic) gives a unique
perspective for constructing a Discrete Event model.
In contrast to other graphical approaches, the Simula-
tion Graph directly models the workings of the Event
List. In the life cycle of a simulation model it is this
core logic that must be correctly modeled before any
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meaningful runs can be made. Other aspects, such
as initial conditions and terminating conditions, are
likely to vary substantially during the whole simula-
tion process for a given model.

In the following subsection we will discuss initial-
ization of Simulation Graph models, and we will cover
one way the run can be terminated in Section 5.2 be-
low.

4.3 Initialization

Simulation Graphs as described so far model the dy-
namics of the Future Event List provided that there
are event notices already on the list to be executed.
Initialization of a simulation run consists. of three
tasks: (1) All parameters (such as number of servers,
mean interarrival times, etc.) must be set; (2) The
initial values for each state variable must be set; and
(3) The initial event notices must be placed on the
Future Event List. The first two are obvious, but the
third may not be so clear. Recall that the Timemas-
ter follows the Event List logic as long as the Event
List is not empty. If the Timemaster is invoked with
an empty event list, then nothing happens.

It may not be obvious which events must be sched-
uled initially, especially for a complex model. The
Simulation Graph paradigm allows a the modeler to
easily determine which events must be scheduled ini-
tially: Ewvery event that has only incoming or self-
scheduling edges must be scheduled at the beginning
of the run. Any event meeting the above criteria
that is not initially scheduled will never occur dur-
ing that simulation run. Depending on the model,
other events may also need to be scheduled initially
as well.

A useful convention for initialization is to specify
one event that is always placed on the Event List
at time 0. This initial event (which we will denote
Run, following Schruben’s (1995) terminology) per-
forms the initializations as its state transition func-
tion and has outgoing edges to all initial events.

Figure 5 shows how this could be implemented in
the queueing model of Figure 4. The event Run is
added to the model and by convention is put on the
Event List at time 0. The parameter (MazB) for
Run, the number of servers, by convention means that
it is determined upon initialization of the simulation
run.

5 ENHANCEMENTS

The Simulation Graph paradigm described above is
a simple and elegant way to represent discrete event
logic. Without any further enhancements it has suf-
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Figure 5: Discrete Event Model for Multiple Server
Queue with Initial Event Run

ficient flexibility and power to represent any discrete
event model. We will discuss two enhancements of
the basic Simulation Graph paradigm: passing at-
tributes to scheduled events on scheduling edges and
event canceling edges. Strictly speaking these en-
hancements do not increase the power of Simulation
Graphs, only their readability and ease of construc-
tion.

5.1 Passing Attributes on Edges

The first enhancement provides the event node with
the capability to pass attributes on an event schedul-
ing edge to the scheduled event. Figure 6 illustrates
the basic construction and is interpreted as follows:
When event A occurs then, after A’s state transitions
have been made, if condition (i) is true event B is
scheduled to occur after a delay of t time units with
parameter j set equal to k. The passed parameter k
could be a parameter list, as with a procedure call
with arguments.

This simple enhancement allows complex models to
be built up from simpler components in a relatively
straightforward manner. To illustrate we will extend
the queueing model of the previous section to a series
of queues. This could be used to model a produc-
tion facility or transfer line consisting of N machine
groups, each group having a single waiting line. Jobs
enter at machine group 1 and upon leaving go to ma-
chine group 2, etc. (see Figure 7). For simplicity,
we will assume the queues (buffers) all have infinite
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Figure 6: Passing Attributes on Edges: Whenever
Event A occurs, if condition (i) is true after A’s state
transition, Event B is scheduled to occur t time units
later with parameter j set equal to k
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Figure 7: Transfer Line with N = 3 Machine Groups

capacity.

Modeling this system is made much simpler by the
observation that each machine group operates like the
multiple-server queueing system with two exceptions:
the departure from a machine group schedules the
arrival of a job to the next machine group, and the
only arrival of jobs from outside the facility are to
machine group 1. The state space must also be ex-
panded to identify the number of jobs in queue as
well as the number of busy machines at each work-
center. It is convenient to simply make @Q and B
arrays, with Q(j) the number in queue and B(j) the
number of busy machines at machine group j. Simi-
larly, the parameters of the system are now an array,
with MazB(j) the number of machines in machine
group j.

Figure 8 shows the Simulation Graph model for
the transfer line. We have omitted the initial Run
event for clarity. The similarity of this model to the
queueing model in Figure 4 is self-evident. The self-
scheduling edge for the Arrival(j) event adds the con-
dition that j = 1 to generate the arrival of jobs from
outside the shop. The other Arrival(j) events are
scheduled from the previous machine group. How-
ever, an End Service(j) event with j = N resultsin a
job leaving the system. Therefore, there is the condi-
tion j < N. All other edges in the model are the same
as the corresponding ones in Figure 4, with param-
eter j representing the current machine group being
passed. The state transitions for the events are sim-
ilarly indexed by the corresponding machine group
number.

The transfer line model could have been modeled
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Figure 8: Simulation Graph for Transfer Line Model

Figure 9: A Canceling Edge

using just the basic constructs in Section 3 (with-
out passing attributes) by simply stringing together
copies of the model in Figure 4 and making the appro-
priate adjustments in edges. However, that approach
would “hard-wire” the number of machine groups N
into the model. To simulate facilities having different
numbers of machine groups a new model would have
to be constructed. In contrast, the Simulation Graph
in Figure 8 can be used to model transfer lines of any
size by simply setting the appropriate value of N and
of MazB(j) for j=1,...,N.

5.2 Canceling Edges

The second enhancement covers situations in which
the modeler wishes to have an event notice removed
from the event list. That is, a scheduled event needs
to be canceled. This is accomplished in a Simulation
Graph by the addition of canceling edges denoted by
dashed arrows; Figure 9 shows the basic construction
of a canceling edge. The interpretation of Figure 9
is: When event A occurs, then (after the appropriate
state transitions are made), if Condition (i) is true,
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Figure 10: The Run and End Run Events Initialize
and Terminate the Simulation Run

the next occurrence of event B is removed from the
Event List. If no event notice for B is on the event
list, then nothing happens.

We can use a canceling edge to terminate a sim-
ulation after a given amount of simulated time has
elapsed. Suppose we wish to run the simulation for
T minutes, then cut off the arrival of customers, but
serve all the customers who are in the system at time
T. We define an End event that is scheduled to occur
T minutes after Run (see Figure 10). The event End
causes no state changes, but simply cancels the next
Arrival. This has the effect of cutting off all incom-
ing customers at time 7. Thus, at time T the only
event notices possibly on the Event List are End Ser-
vice events. Eventually the Event List will empty and
the run will consequently end. If the modeler wants
the simulation to terminate at time 7" without serv-
ing all customers in the system, then all Start Service
and End Service event notices must also be canceled.
One way to accomplish this is to add canceling edges
from End Run to Start Service and End Service and
add a self-scheduling edge to End Run. We leave it as
an exercise for the Reader to do this.

6 IMPLEMENTATIONS

The only commercially available (to the author’s
knowledge) software that allows a user to create, run,
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and analyze Simulation Graphs is Sigma, available for
DOS and Windows (Schruben 1992, 1995). Sigma al-
lows the user to create event nodes and scheduling
edges with easy clicks of the mouse. State transi-
tions and parameters for nodes, as well as edge con-
ditions and delays, are entered using pop up menus.
There is provision for plotting state variables. A sig-
nificant capability of Sigma is its ability to translate
Simulation Graph models into portable C code, as
well as Pascal. Compiled C models in Sigma are of-
ten faster than comparable models using conventional
simulation packages. A unique feature of Sigma is
that the user can also translate an Simulation Graph
model into an English description of the discrete-
event model. Sigma’s features make it a desirable
piece of software for any user of simulation.

7 CONCLUSIONS

We have provided a brief informal introduction to
Simulation Graphs for discrete-event simulation mod-
els. Simulation Graphs are a simple, yet powerful. vi-
sual representation of the discrete-event logic of the
Event List manipulation. They are currently the only
graphical paradigm that directly models this process.
Straightforward enhancements to the basic paradigm
allow the modeler to easily leverage simple models
into more complex ones. More important, the vi-
sual power of the Simulation Graph gives the mod-
eler a unique perspective on the model and allows
the key underlying relationships to be vividly repre-
sented. The availability of Simulation Graph software
in the form of Sigma allow simulation modelers to
take advantage of the benefits offered by the Simula-
tion Graph paradigm.
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