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ABSTRACT

This paper describes a parallel simulation software
tool, LAPSE-nx-lib, that executes on a network of
workstations. Using this tool, message-passing codes
written for an NV processor Intel Paragon can be ex-
ecuted on M workstations (N > M). The timing
estimate produced by the simulator is a prediction
of how long the code would have run had it been
executed on the N processor Paragon. LAPSE-
nx-Iib combines nx-lib, a publicly available library
that provides the functionality of Intel Paragon nx
message-passing calls on networks of workstations,
with LAPSE, a parallelized timing simulator that we
originally developed to run on the Paragon. We re-
port on our early experiences with this tool on a net-
work of Sun Sparc-10 workstations.

1 INTRODUCTION

nx-lib (Stellner ¢t al. 1994) is a software library de-
veloped by researchers at the University of Munich
allowing the development and execution of codes de-
veloped for the Intel Paragon multicomputer, using
an ordinary network of workstations. Codes run un-
der nx-lib have the functionality of Paragon codes.
However, owing to temporal sensitivities, it is possi-
ble for the execution path of a code to be different
on the workstations than it would be on the actual
Paragon. Furthermore, calls to system clocks reflect
the workstation’s own sense of time, not the time on
the Paragon being simulated. Thus nx-lib cannot
be used to provide accurate timing estimates of how
long the code would have taken had it been run on
the Paragon.

We have ported the distributed memory LAPSE
(Large Application Parallel Simulation Environment,
Dickens etf. al 1994) to the nx-lib environment, cre-
ating a tool we call here LAPSE-nx-lib. The com-
bined system augments nx-lib’s functionality with
more accurate temporal behavior and information.
This paper briefly describes LAPSE (which has been
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reported upon in more detail elsewhere (Dickens ef al.
1994) ), and our early experience with LAPSE-nx-
lib on a small network of Sun Sparc-10’s. We primar-
ily examine performance issues related to distribution
of application and simulation processes, paying spe-
clai attention to slowdowns and speedups. The per-
formance obtained so far is very promising.

2 OVERVIEW

A parallel program for a distributed memory ma-
chine consists of M application processes, distributed
among N < M processors. Most parallel programs
are constructed so that N = M, an equivalence we
presently assume. Application processes communi-
cate through message-passing using explicit calls to
system library routines. From the application’s view-
point, the program executes application code between
calls to these library routines. The length of time
spent “inside” one of these subroutines depends on
the communication network and its behavior—things
that are unobserved by the application. On the other
hand, the network views the program as “bursts” of
execution by application processes, punctuated by re-
quests for network services. The details of the exe-
cution bursts are irrelevant to the network, only the
specifics of the request matter, e.g., time of request,
length of message, message destination. In LAPSE
the application code is instrumented to measure the
length of the execution bursts, and redirect message-
passing library calls to LAPSE routines. The LAPSE
routines remap certain application coordinates (like
identity of target processor on a send) to internal
LAPSE coordinates, and then cause the requested ap-
plication request to occur. Next the LAPSE routine
notifies a simulator process of the application activ-
ity. The sei of simulator processes coordinate with
each other to simulate the network traffic induced by
the application requests.

The application process must provide the LAPSE
simulator with estimates of the time it requires to
execute between calls to message library routines.
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LAPSE estimates execution time by modifying the
application assembly code to count the number of in-
structions executed. (The counter is updated only at
basic block boundaries, a technique also used 1n Pro-
teus (Brewer ef al. 1991), Tango (Davis ¢t al. 1991)
and WWT (Reinhardt et al. 1993.)) The overhead
to implement the instruction counting varies from 5
to 12 instructions per basic block, depending on the
source code language. From the instruction counts
we estimate time passage by taking into considera-
tion the measured effects of cache miss ratios, differ-
ent numbers of cycles for different instruction types,
and so on.

To obtain accurate timing of the application, the
operating system overhead for sending and receiving
messages needs to be properly accounted for. LAPSE
currently estimates such operating system overheads.
For example, the overhead (in instructions) to exe-
cute a message send can be modeled as A+ B x L
where A is a startup cost, L is the message length
and B is the cost per byte. Estimates of A and B
can be obtained by measurements of the operating
system. Experiments on the Intel Paragon on a vari-
ety of application codes have shown LAPSE predict
performance accurately, usually within about 5%.

LAPSE traps all references to message library rou-
tines by recompiling the application code with a file of
macros that redirect message library calls to LAPSE
routines. These LAPSE interface routines are linked
into the same memory address space as the applica-
tion process. The LAPSE routine identifies the call as
an evenl. Parameters of the event are collected, e.g.,
event type (read, write, probe), number of instruc-
tions executed since the last event by this process,
characterization of the the message event (e.g., mes-
sage 1d, starting memory location, length, recipient
processor(s), recipient process id). The requested ac-
tivity is actually initiated (e.g, a message is sent to
be received by a different LAPSE interface routine),
and then a message is sent to an application simulator
process (the one assigned to this application process)
describing the event.

A key contribution of the LAPSE system is an ef-
ficient parallelization of the Paragon communication
network simulation. Details of the synchronization
scheme are provided elsewhere (Dickens et al. 1994).
Here it suffices to comment that the synchroniza-
tion protocol is conservative (e.g., processes never roll
back or save state), and that the protocol takes ad-
vantage of long periods where the application execu-
tion path is insensitive to timing—LAPSE’s success
on the Paragon is tied directly to this excellent looka-
head it can exploit.

Several other projects use direct execution simula-
tion of multiprocessor systems. Among these we find
two pertinent characteristics, (1) the type of network
being simulated, and (ii) whether the simulation 1s

itself parallelized. Table | uses these attributes to
categorize relevant existing work. and LAPSE.

LAPSE and HASE (Howell =t al. 1994) simulate
a message passing network with a parallelized simu-
iator. WWT (Reinhardt er al.) simulates a shared
memory environment with a parallelized simulator.
MaxPar (Chen et al. 1990), Maya (Agrawal el al
1994), Proteus (Brewer et al. 1991) and Tango (Davis
ef al. 1991) simulate a shared memory network with a
serial simulator. RPPT (Covington et al. 1991) and
Simon (Fujimoto 1983) simulate a message passing
network with a serial simulator.

Table 1: Direct Execution Simulation Tools

Tool communication (simulator)
LAPSE message-passing (parallel)
HASE message-passing (parallel)
MaxPar shared memory (serial)
Maya shared memory (serial network)
Proteus shared memory (serial)
RPPT message-passing (serial)
Simon message-passing (serial)
Tango shared memory (serial)
WWT shared memory (parallel)

Among most current simulators other than our
own, simulation of cache-coherency protocols are an
important concern. However, the Intel Paragon does
not support shared virtual memory. Coherency pro-
tocols complicate the simulation problem consider-
ably, but are a facet LAPSE need not deal with. How-
ever, existing work has identified context-switching
overhead as a key performance consideration, and it
1s one that directly affects us. As much as an order of
magnitude improvement has been observed when a
direct-execution simulator uses its own light-weight
threads constructs to accelerate context-switching
(for small grain sizes). One of the self-imposed con-
straints of LAPSE is that it simulate general codes
written by others. Some tricks for placing multi-
ple virtual processes in the same address space are
not available to us, at least not without substan-
tial compiler-oriented work. For instance, HASE uses
a graphical user interface from which code is gener-
ated. All variables “global” to a virtual process can
be declared as local variables to a super-process, and
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placed on the run-time stack. For LAPSE to do the
same would require a complete reparsing and analy-
sis of multiple file applications, a task from which we
shrink.

The Wisconsin Wind Tunnel (WWT) 1s to our
knowledge the only working multiprocessor simula-
tor that uses a multiprocessor (the CM-5) tc exe-
cute the simulation (HASE was not operational in
parallel at the time Howell et al. (1994) was pub-
lished). It is worthwhile to note the differences be-
tween LAPSE and the WWT. First, the WWT simu-
lates cache-coherency protocols for applications run-
ning on shared memory machines whereas LAPSE
simulates message-passing applications. Second, be-
cause of the tight coupling of shared memory ap-
plications, the WWT needs to keep its processes in
close synchrony, and does so with fairly frequent bar-
rier operations. (This method of synchronization 1s
a special case of the YAWNS protocol discussed in
Nicol et al.  (1989) and Nicol (1993).) Because of
the looser coupling of message-passing codes, better
lookahead possibilities are available to LAPSE. This
lookahead comes from the observation that, in many
applications, long portions of the execution path are
independent of timing behavior. In such a case, the
application code can be executed well in advance of
actually simulating the timing. Where the execution
path is not independent of timing, lookahead can still
be obtained provided there is a lower bound on the
operating system overhead required to send or receive
a message.

3 LAPSE-NX-LIB

nx-lib is designed to accept most Paragon codes, and
run them on a variety of workstations. Consequently
the effort required to port LAPSE to the networked
workstation environment should, in principle, be min-
imal. The most consuming requirement would seem
to be the instrumentation of a different instruction
set to provide instruction counts. However, in the
specific case of the Sparc architecture, both the Wis-
conson Wind Tunnel ( Reinhardt et al. 1993) and
Proteus (Brewer ¢t al. 1991) already do this, and we
are able to adopt their solutions (but have not yet
done so. The performance reported here is of unin-
strumented code, execution times are estimated using
clocks).

The Intel Paragon supports multitasking on each
processor node, indeed this feature makes LAPSE
possible. Like LAPSE, nx-lib creates a unique Unix
process for every Paragon process that 1s loaded,
and multitasks them on workstations. In addition
to the application processes, LAPSE creates simu-
lation processes that communicate with each other,
and with application processes thaf are actually run-
ning the application code. To nx-lib, a code run-

ning on LAPSE is no different from any other multi-
tasked Paragon code. Messages on the Paragon are
uniquely distinguished by message iype, processor 1d.
and process id. Message type parameters are defined
by the programmer to distinguish between messages
with different meanings, the processor and process
id information specifies the destination. nx-lib sup-
ports this model by creating a TCP socker for every
uniquely referenced Paragon process. All messaging
activity related to process (processor id. process id)
1s mapped to the corresponding socket.

We did have to modify LAPSE in two respects,
one minor, and one less so. The first release of nx-
lib was prone to errors occurring in codes that use
dynamic memory allocation. Subsequent releases in-
clude file headers to be added by hand to source code,
in order to prohibit interrupts in the middle of ap-
plication calls to dynamic memory routines. The
more significant issue arises because of a difference
in philosophy between nx and nx-lib. Despite the
Paragon’s ability to multitask, the designers of nx
have a single-process-per-processor view of the com-
putation. Blocking calls to nx, e.g. a synchronous
receive, cause busy-waiting in nx rather than a con-
text switch. This was unacceptable to LAPSE; it
transforms all blocking calls into non-blocking calls
with explicit context switches. Effectively this means
that LAPSE decides when contexts must be switched,
with the exception of quanta expiration. By contrast
nx-lib has a multitasked view of the computation,
and switches context on blocking calls. Because of
this nx-1ib does not support the explicit nx call to
release the thread. We therefore modified LAPSE to
undo its control of context switching. This was ac-
complished simply, using macros.

The most significant consideration one has using
LAPSE-nx-lib is process distribution. Given M ac-
tual processors and an N processor code, LAPSE al-
lows one to either map one simulator process and
M/N application processes to each actual proces-
sor, or to partition M into sets of size 4 and S
(M = A+ 5), placing one simulator process on each
of S processors, and multitasking M/A application
processes on each of the other processors. Initial ex-
perimentation has suggested that the separated op-
tion 1s desirable when LAPSE uses a detailed net-
work simulator (which has more simulation and syn-
chronization activity) and to otherwise use the former
partitioning. A key point is that the Paragon has a
high-speed, high bandwidth network, and that net-
work contention is rarely an issue running LAPSE.
This is not true for LAPSE-nx-lib, since most work-
station networks share a single communication line
which effectively serializes communication. One of
the points we need to address with LAPSE-nx-lib is
that of distribution. Intuition suggests that commu-
nication overhead will play a larger role in distribut-
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ing LAPSE-nx-lib processes than it did in distribut-
ing LAPSE processes.

4 EXPERIMENTS

The experiments reported here are of a code, SOR
(Successive Qver-Relaxation, Press et al. 1988) used
to solve linear systems of equations arising from tHe
discretization of partial differential equations. The
code assigns a (¢ x (7 subgrid of points to every pro-
cessor. Each iteration, each processor communicates
the values of points on its boundary to the processors
sharing that boundary. Each processor then receives
boundary values from its neighbors, and engages in
a computation phase where it updates each of its as-
signed points with a weighted average of its previous
value and the values of points adjacent in the mesh.
Each processor monitors the changes in point values,
retaining the magnitude of the largest such. The pro-
cessors then check for convergence, by cooperatively
identifying the largest point difference in the entire
mesh. If that change is less than the pre-specified tol-
erance value the computation terminates. If not, the
boundary values are again exchanged and the process
continues.

The key parameters governing this computation are

7> (which determines the computation assigned to

each processor) and N, the total number of proces-
sors. As (i grows, the number of messages passed
each iteration does not change, but the length of the
messages grows proportionally with G. The compu-
tation/communication grows as G?/G = G. As G
grows the workload of the LAPSE network simulators
does not change (since it handles only descriptions
of messages, not the messages themselves), but the
workload of the application processes does. In fact,
increasing G serves to improve relative performance,
since the computation phase whose work increases in
(i is perfectly parallelizable.

At the time of this writing, the workstation net-
work available to us 1s not yet executing large
LAPSE-nx-lib codes reliably (this appears to be a
problem between the network configuration and nx-
lib, not LAPSE). The performance we report is lim-
ited to five Sparc-10 workstations, and four SOR pro-
cesses. Nevertheless some interesting and important
observations are revealed despite the small size of the
problem.

Figure 1 plots the performance of the native SOR
code running on nx-lib alone on four workstations,
as a function of the problem size. We present a nor-
malized performance metric, the number of seconds
expended on each grid point per iteration. Means and
standard deviations for 10 runs on 50 x 50, 200 x 200,
and 500 x 500 meshs are plotted. The value for the
smallesi mesh is nearly 10 times that of the larger
grids. The underlying reason is a relatively fixed
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Figure 1: Performance of SOR code on native nx-lib
configuration

amount of interprocessor communication overhead is
incurred independent of the problem size. The high
cost per point is suffered because there are relatively
few points over which to amortize this cost. The
200 x 200 mesh has 16 times more workload and al-
most completely amortizes that cost, as shown with
comparison with the 200 x 200 mesh performance
shows.

Figures 2,3, and 4 plot the performance of a four
process SOR code under LAPSE-nx-lib, on meshes
of size 50 x 50, 200 x 200, and 500 x 500, respectively.
Each data point reflects the sample mean and stan-
dard deviation from ten runs. Two curves are shown,
one associated with placing one simulator process on
each workstation jointly with multitasked applica-
tion processes, and another associated with allocating
one extra workstation that holds a single simulator.
The horizontal axis plots the number of workstations
dedicated to the application processes (the separated
placement curve uses one more processor than given
on this axis).

One interesting feature of the joint placement data
1s that the improvement in performance from one pro-
cessor to two is more than a factor of two. This fea-
ture, observed on all graphs, can be attributed to
the higher non-scaling overhead costs (e.g., increased
paging, more context switching) suffered on one pro-
cessor. The large difference between the separated
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Figure 2: Performance of SOR code on 50 x 50 mesh

and joint placement methods in the case of one pro-
cessor is due in part to the increased parallelism (two
processors as opposed to one), and in part to reduced
context switching (due to moving the simulator off
on its own workstation). The next point of interest is
the scale of each graph. The normalized costs of the
200 x 200 mesh are an order of magnitude less than
those of the 50 x 50 grid; the normalized costs of the
500 « 500 mesh are an order of magnitude less than
those of the 200 x 200 mesh. As we have already
seen that the per-point nx — lib costs are virtually
the same on the large two grids, we can attribute the
decreasing normalized cost to the increasing amorti-
zation of LAPSE overheads.

It is also interesting to note the relative lack of dif-
ference between the joint placement and separated
placement strategies in the two and four application
processor cases. We cannot from this data infer any-
thing about placement strategies for larger numbers
of workstations, but at least on this data it appears
that the simulator workload is not the bottleneck,
else its serialization would manifest itself as a rela-
tive degradation of performance.

LAPSE overheads can be assessed by considering
slowdown, or the degree to which running a code un-
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Figure 3: Performance of SOR code on 200 x 200
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LAPSE-nx-lib Slowdowns
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Figure 5: LAPSE-nx-lib slowdowns

der LAPSE-nx-lib runs more slowly than running
that same code under nx-lib alone. Figure 5 plots
these as a function of grid size. Asthe problem size in-
creases, 1ncreasingly more of the computation is spent
in the application processes, and not LAPSE-nx-
lib. Furthermore the slowdowns are quite good in
the context of direct-execution simulators. LAPSE
slowdowns on the Paragon are better; the higher slow-
downs here are due to the higher cost of communica-
tion.

5 CONCLUSIONS

LAPSE is a parallelized direct-execution simulator of
Intel Paragon codes. We have ported LAPSE to run
under nx-lib, a software package that provides nx -
brary functionality on networks of workstations. The
combination, LAPSE-nx-lib, provides more tempo-
rally accurate execution behavior and timing infor-
mation. This paper describes the combined system,
and provides preliminary reports on its performance.
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