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ABSTRACT

A model was developed for tracking production floor
inventory for a Kanban manufacturing production system.
The production (Kanban) parameters used include
percent loading, percent availability, yield, lead time,
batch time, and cycle time. The model was constructed
for a discrete, non continuous simulation of a multi stage
dual-card Kanban production system. The performance
of the model was monitored by tracking WIP, orders
completed, average time in the system, and the
production throughput in the JIT/Kanban production
environment.

The results and the evaluation technique will prove
useful in tracking production floor inventory and
selection of the right Kanban technique to implement in a
given manufacturing process. It will also provide
valuable information for anticipating production
capabilities of a Kanban system before actual
implementation using the simulation technique presented
in this paper.

1 INTRODUCTION

Inventory is defined as "The raw materials, semi-finished
parts and assemblies, and finished goods that are in a
production system at any point in time." Inventory may
incur cost in several ways. The variation in cost factors
will depend on layout as well as operation. Targeting and
monitoring production floor inventory as a cost control
measure is an effective tool in production and inventory
control. By tracking the production floor inventory. one
can manage inventory more efficiently and make
decisions based on the actual production performance at
cach level.

This paper shows a technique using simulation of a JIT
(Just-In-Time) system in a realistic but simplificd
production sctting. In particular, this study investigates a
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Kanban inventory control system which is the type of
system most often used as the production scheduling
technique for a JIT system.

2 KANBAN PRODUCTION SYSTEM

Consider the Dual-Card Kanban production system
shown in Figure 1. It is assumed that both process A and
C are dedicated processes and process B makes
withdrawals from both A and C. Schonberger (1983). It
1s also assumed that the production processes replace only
what has been withdrawn, and the operation sheet at the
beginning of the day specifies demand and cycle time.
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Figure 1: Kanban Production Flow

If the production rate drops at the subsequent process
(B). the number of containers withdrawn from the pre-
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ceding process will decrease accordingly. This causes
delay at both processes A and C. On the other hand, if
the production rate increases at the subsequent process,
the number of Kanbans must be increased to mcet the
additional demand or process B will starve. Thercfore, if
the production rate at process B is less than the required
demand, the actual number of withdrawals will be
calculated based on thc production rate rather than
demand rate.

3 SIMULATION MODEL

The flow of entities from one process to another on the
production floor is simulated and the model has been
tested to capacity. A flow chart of the model is shown in
Figure 2. The entities in the system represent containers.
There are two queues associated with the Kanbans at each
station. A queue holding the production Kanban cards is
associated with the input containers, and a queue holding
the withdrawal Kanban cards is associated with the
output containers.

INPUT MATERIAL

CONTAINERS

NP
IS PKCA AVAILABLE
AT PROCESS - A
NS

ATTACH PKCA
TO CONTAINER

Ny
[ GROUP PARTS INTO

WAIT UNTIL PKCA
BECOMES AVAILABLE

H

|

s
PROCESS CONTAINER
AT PROCESS - A (TPA)

~
WAIT UNTIL WKCA
l IS WKCA AVAILABLE > BECOMES AVAILABLE _]
RS
DETACH PKCA
& SEND BACK

N9
__4 ATTACH WKCA
TO CONTAINER
N
SEND CONTAINER
TO PROCESS - B (TW/2)

NP
N IS PKCB AVAILABLE
AT PROCESS - B

L

WAIT UNTIL PKCB
BECOMES AVAILABLE

i

], Yes
ATTACH PKCB
frwiz) L TO CONTAINER
N2

PROCESS CONTAINER
AT PROCESS - B (TPB)

N
DETACH WKCA
& SEND BACK
IS wWKCB AVAILABLE
(DEMAND REOUIRED)
YES

SEND FINISHED
PRODUCT ouT

DETACH PKCB
& SEND BACK

T

WAIT UNTIL WKCB
BECOMES AVAILABLE

I

Figure 2: Flow Diagram of the Production Model

The demand is issued into the system in the form of
withdrawal Kanban cards at the last stage of the
production system. The maximum capacity of this
demand input queue is set at 400 orders. This number
forms a limit on the system when the system is operating
in an inefficient manner.

The introduction of demand generates a withdrawal
Kanban at process B (WKBB). The withdrawal Kanban
is matched with the material and generates a production
Kanban at process A (PKBA). The production Kanban is
then attached to an empty container and produced at
process A. The process time at A is marked as TPA. At
the end of this production statistics are collected and a
withdrawal Kanban card for process A is generated.

The demand is introduced into the system in the form
of orders created at specified time intervals. For the sake
of consistency whenever Poisson distribution was used in
the simulation program, the random number stream was
seeded. The same seed value were used for the different
number of Kanban cards simulated to ensure repeatability
and comparability of the results.

3.1 Production Parameters

This section contains the definition of the parameteres
used in the simulation and the range of values
investigated for each parameter.

3.1.1 Percent Loading

Percent loading is the ratio of the demand rate to the
actual production capacity of the system. The system that
is loaded 100% is said to be fully capacitized. The
production processes at this study were rated at 24
minutes per part. This is equivalent to 120 minutes per
container, operating at 100% capacity. The percent
loading on the system was reduced by decreasing the
demand rate. The demand rates used in this study were
120, 126, 132, 138, and 144 minutes per container.

3.1.2 Percent Availability

Machine availability is measured by how much the
machines are utilized. This is characterized by machine
breakdowns and production stoppage for any reason.
Percent availability is a function of demand and
production up time. Machine up time is referred to the
productive period of the machine. As demand increases,
utilization also increases. The same relationship also
holds for the production up time. This study did not
include the effect of breakdowns on the system's
performance.
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3.1.3 Yicld

The philosophy of JIT/Kanban calls for zero defects in
the production process. However, the fact remains that
defects and defective products will always exist. Yield is
defined as in equations (1) ans (2).

Yield = 1 - (# of defects / 100) (1
Yield = Probability of success (2)

No previous attempts has been made to look at the effects
on the JIT/Kanban model as a result of producing
defective products. The effect of producing defectives on
the performance of the model is left for future studies.

3.1.4 Lcad Time

Lead time or throughput time is defined as the total time
required to produce a product from ordering raw ma-
terials to the completion of the final product. However,
the time from when the order is placed until it is filled is
considered the inventory lead time. Therefore,
manufacturing lead time is the sum of setup time, process
time, Kanban time, conveyance time, and the waiting
time. Again, assuming that the setup time is minimized
and the time to issue the Kanbans are negligible. the
effect of variable lead time on the system's performance is
investigated. Inventory lead times are also detcrmined as
a function of manufacturing lead times.

3.1.5 Batch Time

Batch time is defined as the total time required to produce
the entire batch or container of products. Lot-sizes are
directly proportional to batch times, as the lot-size
increascs, the batch time also increases. Howcver, by
reducing the setup time, smaller lot-sizes may become
feasible.  This increases the number of sctups per
production period, but reduces the batch time.

Given a batch or container of size (C), and a proccss
time per unit of TP minutes, then the batch time is
calculated as shown in equation (3).

TB=C~TP (3)

The batch cycle time (TCB) is the sum of setup time and
the process time for each part in the batch or container.

TBC =TS +(Cx1P) (4

This dissertation examincd the cffects of the variable
batch time on the performance of the Kanban system.

3.1.6 Cycle Time

Production cycle time is the duration of time required to
process a single part for a given process or machine.
This duration also includes a portion of the production
setup time. Therefore, cycle time for a given operation is
the sum of setup time and process time for one unit of
production.

TC = T%+ TP (5)

This study examines cycle time only through
investigating batch time.

4 DISCUSSION OF RESULTS

The results of the study are presented and evaluated in
this section. The approach taken to evaluate the
simulation results of the production model and their
significance is described. The main objective is to show
the behavior of the inventory, in a given JIT/Kanban
production system. when exposed to variation in demand
and throughput. The efficiency and throughput of the
system 1s measured and compared for various demand
rates using a range of values for process times,
withdrawal times, and number of Kanbans. The
performance parameters measured during the study are
discussed and the data is plotted.

This study examines the effect on the dependent
variable as a function of two independent variables is
shown using the three dimensional graphs. Three
different types of graphs are presented in this paper. The
three independent variables include number of Kanbans
(N). time to process a container at the using machine
(TPB). and the time between order arrivals (TBC). From
the listed objectives for this entire study, only the results
for order completion time and the average time in the
system, average withdrawal time. and the number of
containers completed are presented in this paper.

4.1 Order Completion Time

Order completion time is the average system time
required to fill an order. This is an important parameter
which reflects the time required to satisfy a demand for
the various system configurations. It could be used to
measurc production rates and the ability to meet delivery
schedules.

Figure 3 shows the order completion time plotted as a
function of number of Kanbans and withdrawal times.
This is the data for a Poisson run using TBC of 120, and
TPB of 30. As shown by Figure 3. for the number of
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Kanbans equal to 1, the completion time incrcases in an
exponential fashion as a result of an increcasc in
withdrawal time. The increase in the average times (0
complete an order becomes less significant as the number
of Kanbans are increased. This is due to the fact that the
system has more capacity, and the orders are satisficd
quicker at the higher number of Kanbans.

rclationship of the number of Kanbans times TBC. For
the values of lcad time less than or equal to (N x TBC),
the demand is satisfied and the order completion times
are zero. However, for the lead time values greater than
(N x TBC). the demand is no longer satisfied, and the
avecrage time to complete the orders increase in an
exponential fashion.
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Figure 3:  Order Completion Time, RUN=P, TBC=120,
TPB=30

For the same data, from a two dimensional point of view.
the significant changes that occur by incrcasing the
number of Kanbans are easily noted in Figure 4. Figure 4
shows the growth in completion time as a function of
withdrawal time. It becomes obvious that increasing the
withdrawal time has a significant influence on delivery
time of the orders, especially at lower Kanban values.

Looking at Figure 3, the demand is satisficd at all the
points where the complction time is zero. Howecver, the
order complction time increascs exponentially for all
other locations. In fact, there exist a relationship between
order complction time and the independent variables
involved. The points at which the demand is no longer
satisficd and the order completion times start (o increasc,
fall on a straight line represented by the Equation (6).

TBC+711=Nx1BC (6)

The left side of above cquation represents the production
lcad timc and the right sidc rcpresents the lincar

Figure 4: A Two Dimensional View of Order
completion Times

This relationship between the production lead time,
demand, and the number of Kanbans could be utilized to
determine the allowable withdrawal times between two
processes or transit times between any two locations. For
cxample, using the production parameters specified for
Figure 3 to be TBC = 120 and TPB = 30 and solving for
the withdrawal time:

TW =N xTBC -TPB ™

The following results are obtained:

N=1 TW =90
N=2 TW =210
N=3 TW =330
N=4 TW =450

The above values of TW are the withdrawal times at
which the incrcase in the order completion times have
occurred in Figure 3. This relationship can also be
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utilized to calculate the number of Kanbans rcquired to
satisfy the demand. For example, for a demand rate of
one container every 120 minutes, a process time of 30
minutes, and a withdrawal time of 420 minutcs, the
number of Kanbans required to fill the orders and satisfy
the demand without any delay can be calculated using the
following equation.

N =TPB+ TL%BC (8)

Equation(8) is somewhat different than the equations
used by Monden (1983, 1986) to calculate the number of
Kanbnas. It allows the process time and withdrawal time
to be independent of production lead time. This change
in the Equation(8) is required, since thc number of
Kanbans needed is not only a function of demand but also
a function of withdrawal time and process time.

Figurc 5 shows the number of Kanbans rcquircd as a
function of the process withdrawal time. By increasing
the number of Kanbans one can increase the capacity of
the system dramatically. Comparing Figures 6 and 7, the
average time to complete the orders reduced significantly
by increasing the number of Kanbans to 2. However, an
increase in WIP is experienced whenever the number of
Kanbans are increased.
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Figure 5: Number of Kanbans Required to Satisfy
Demand

4.2 The Average Time of Parts in System

The average time of parts in the system provide us with
the actual time that parts spend in the system. The
results show the effects of increasing the lead time and

Figure 6: Order Completion Times, RUN=P, TBC=120,
N=1

Order
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Figurc 7: Order Completion Times, RUN=P, TBC=144,
TPB=30
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the number of Kanbans on the performance of the system.
This value is important due to the direct relationship to
the production WIP. The results obtained providc a tool
to optimize the time parts spend in the system. Figure 8
shows the average time of parts in the system as a
function of the two independent variables TW and TPB.

except the number of Kanbans in the system. As the
number of Kanbans are increased from 2 to 3
respectively, the point of inflection shifted further down
the axis to higher values of withdrawal time. This is due
to the fact that increasing the number of Kanbans resulted
in an increase in the system capacity.
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Figure 8. Average Time of Parts in System, RUN=P,
TBC=132, N=2

The saddle shape curve consists of two different
portions. The first portion at the lower values of
withdrawal time shows the initial decrease in the time the
containers spend in the system as TW increases. Thc
second portion of the curve with increasing time values is
formed as a result of an increase in the production lead
times past the point of optimum capacity. The increasc in
cither process time or withdrawal time forces an increasc
in the time spend in the system.

At small values of lead time the model is satisfving thc
demand. The point of inflection is where the lead time
values are equal to the factor (N x TBC). After the lead
time increascs above this factor for each run. the orders
will accumulate in the WKBB queuc. This is consistent
with our previous findings about the behavior of the
system in this region. The pcnalty for too many parts in
the system at the carly portion of this curvc is much
smaller than the penalty for too few parts.

Figure 9 shows the average time of parts in the system
for N=3. as a function of processing time. Comparing the
two Figurcs 8 and 9, all the parameters are kept the samce

Figure 9. Average Time of Parts in the System, RUN=P,
TBC=132, N=3

Figure 10 shows the effects of increasing the number of
Kanbans on the time the containers spend in system. The
machine process time is kept constant and equal to 30
minutes for process B. It is obvious that the increase in
the time values as a result of changing N, is more
significant than the increase as a result of changing the
withdrawal time. At lower values of withdrawal time, the
increase in the number of Kanbans will produce a sharp
and linear increase in the time spent in the system.
However, at higher values of withdrawal time, the
increase in time spent in the system is gradual.

An increase in the process time at B from 30 to 120 has
little or no effect on the model at higher values of N. But
at small values of N. the model was affected by changing
the process time. There exists a minimum time of parts
in the system for various numbers of Kanbans and
processing time at B. One can determine the optimum
process time and number of Kanbans required to
maintain a minimum number of parts in the system,
using Equation (6). The results presented in Figure 9,
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can also be utilized to determine the optimum capacity
required to maximize the efficiency of the system.

values increase since the model is satisfying the demand
in a less and less efficient manner.

Figure 10: Average Time of Parts in the System,
RUN=P, TBC=132, TPB=30

4.3 TheAverage Withdrawal Time

This section contains the data representing the time from
when machine A starts processing a container until that
container is ready to be processed at B. The results show
the performance of the system without the order
processing time, and the time variability at machine B.
By eliminating the processing time variability of machinc
B, the values represent the average time required for parts
withdrawal from one process to another.

The results arc used to confirm that there exists a
minimum time that parts spend in the system. This
optimum valuc is a function of the production lead time.
The optimum time valuc is the lowest point of the saddlc
in Figure 11. This Figurc shows the average withdrawal
times for a Poisson run. Thc time values presented here
are a function of lead time.

T = f(TPB+TI¥) x DemandRate V)

As the lcad time increascs. the average withdrawal time
decreases. This rclationship holds truc for values of lcad
time less than the factor (N x 7BC), given in the
Equation (6). Howevcr, when the Icad timc values arc
greater than (N x T'BC). the average withdrawal time

Figure 11: Average Withdrawal Time, TYPE=2,
RUN=P, TBC=132, N=2

The process time at machine B has the same effect on
either side of the curve in Figure 11. As TPB increases,
average withdrawal times also increases. However, it is
apparent that the withdrawal times between the two
processes has two opposite effects on the model, on either
side of the limiting factor given by Equation (6). For lead
time values less than (N * TBC), as TW decreases the
system capacity decreases to a point of maximum
efficiency. But for the values of lead time greater than
(N x TBC), as TW increases, the system capacity still
decreases which decreases the overall efficiency of the
Kanban process. Also, as it is shown in Figure 11, the
penalty for running the system at higher values of TW is
much greater than the penalty encountered at lower
values of TW.

4.4 The Number of Containers Completed

The results describe the total count for the containers that
have left the system before termination of the simulation
run. The results should explain the effect on production
cfficiency as a function of number of Kanbans. They also
provide a guide line on the number of Kanbans required
to avoid exponential growth of entities in the system.
The actual number of containers completed as a function
of withdrawal time and number of Kanbans are shown in
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Figure 12. As the number of Kanbans increascs. the
capacity of the system also increases. This means that
more orders are processed through the system, which in
turn will increase the WIP.

Completed
Containers

Figure 12: Number of Containers Complcted, TYPE=1,
RUN=C, TBC=120, TPB=30

Therefore, for lower values of Kanban, the orders are not
processed as rapidly as for the larger values, due to lack
of availability of containers for withdrawal from machine
A. This leads to a faster build up of orders in WKBB
queue. This, in turn, will terminate the simulation sooncr
than desired due to the third simulation stopping rule.

Less orders were completed before the maximum queuc
length for the WKBB was reached. This occurrcd as a
direct result of an increase in the system time. In the
case, for TW=540, increasing the process time by a factor
of 4, from 30 to 120, enly rcduced the number of orders
completed by 26%. Where as the increase in TW from
120 to 540 which is a factor of 4.5, reduced the number of
orders filled by 93%.

S CONCLUSION

It is concluded that increasing the number of Kanbans,
increascs the capacity of thc system which in turn
incrcases the numbcr of containers complcted.  This
approach can bc used to reduce the overall floor
inventory. When the number of Kanbans excceds 4. all
the orders gencrated are processed through the sysiem in
this simulation. For smaller number of Kanbans. the

simulation is sometimes terminated when the capacity on
WKBB is achieved. The termination point shows an
exponential type of growth in the queue length WKBB, as
the system becomes more constrained.

This paper identifies the relationship that exists
between completion time of an order, the number of
Kanbans, and the production process time. A point
where the production system operates most effectively is
also recognizes and described. This is shown by the point
of inflection on the saddle shape curves presented in this
study. Production Kanban withdrawal time and process
time are shown to have a dominant effect on the system
throughput. The deciding factor on the optimum values
of throughput time for a given model is shown to be the

~ product of time between order arrivals and the number of

Kanbans. An equation is developed for calculate the
number of Kanbans required, as a function of process
time and withdrawal time, to meet the production
demand and minimize floor inventory as well.
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