Proceedings of the 1994 Winter Simulation Conference ’
ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

TRANSFORMING PETRI NETS
INTO EVENT GRAPH MODELS

Lee Schruben
Cornell
U.S A

Enver Yucesan
INSEAD
FRANCE

ABSTRACT

Stochastic Petri Nets and simulation Event Graph
models both have attractive graphical representations
and simple rules that govern their dynamic behavior. A
mapping of Stochastic Petri Nets into Event Graph
models is presented and discussed. This mapping can be
used to develop simulations of Petri Nets that exploit
the efficiencies of the event-scheduling paradigm. It also
permits the application of some of the rich analytical
methodologies in the Petri Net literature to the analysis
of event-oriented simulation models. Indeed, these two
graphical representations of discrete event dynamic
systems work in a complementary manner. We first
present the structural and behavioral properties of
standard Stochastic Petri Nets and Event Graph models
and then discuss their relationship.

1. TERMINOLOGY AND NOTATION

Unfortunately, the monikers "event graph" and
"simulation graph" have been widely used to describe
different types of modeling paradigms. For example, in
[Baccelli, et. al.] event graphs are a restricted class of
Petri Nets and in [Térn] simulation graphs are an
enriched class of Petri Nets. Here we refer to the Event
Graph models described in [Askin and Standridge].
[Hoover and Perry], [Law and Kelton], [Pegden],
[Sargent], [Som and Sargent], [Schruben]. [Yucesan],
[Yucesan and Schruben], and others.

In this article, we discuss two types of networks that
are used to model discrete event dynamic systems. The
underlying structure of these networks are directed
graphs. Graphs are typically pictured using icons such
as balls as the vertices and arrows representing the
directed edges. There is a rich mathematical theory of
graphs much of which applies here; however, the intent
of this article is to be expository rather than rigorous so
pictures of graphs will be used wherever possible. The

560

mathematics behind these pictures will be presented in a
companion paper.

We will use the convention from the C
programming language. In particular, the C shorthand
X++ and X-- will be used to denote the statements
X=X+) and X=X-1 respectively. A double ampersand
(&&) and a double bar (| |) are used for Boolean AND
and OR operators. For Boolean testing, zero-valued
conditions are false, all other conditions are true.

2. STOCHASTIC PETRI NETS
2.1. Stochastic Petri Net Structure

The graph for a standard Petri Net consists of two types
of vertices, called places and transitions. Places are only
connected to transitions and transitions are only
connected to places; such a graph is called bipartite. In
the picture of this graph, place vertices are depicted
using balls and transition vertices are depicted using
bars. Since we are dealing only with graphs where the
edges have a direction, we can refer to the input and
output places for a transition vertex and the input and
output transitions for a place vertex.

The places in a Petri Net are sometimes occupied by
one or more fokens that depict the state of the system
being modeled. Pictorially a token is often a dot;
however, we will sometimes need to use a number to
represent the count of tokens in a place (a marking of oo
represents an infinite source of tokens).

In order to have the modeling power to represent
interesting discrete event dynamic systems, we will need
to enrich the standard Petri Net to include (possibly
random) transition firing times. Unless the transition is
instantaneous, a time (usually a random variable) will
be appended to each transition representing the time it
takes to fire. Such Petri Nets are called Stochastic Petri
Nets.

Transforming Petri Nets 561

2.2. Stochastic Petri Net Behavior

The rule governing the behavior of a standard Petri Net
is simple: whenever each input place for a transition
vertex is occupied by at least one token, the transition
Jfires, causing one token to be removed from each input
place and deposited in each output place of the
transition. When the transition firing is not
instantaneous, the tokens are removed from the input
places when the firing starts and placed in the output
places when the firing ends.

2.3. An Example

Our example with be a single line G/G/N queue that
will process 100 customers. The customer interarrival
times will be successive values of the random variable
ty, the service times are given by the random variable tg,
and N is the number of servers. This model in its initial
state of having the queue empty and all of the servers
idle is depicted in Figure 1. Places are labeled with
capital letters and transitions with lower-case letters.
Place labels will also be used as variables whose values
are the token counts for the corresponding places. Edges
have labels that might represent transition functions
specifying the number (and perhaps color) of tokens that
are removed or deposited when a transition fires. For
this example, edge labels are not necessary but will be
referred to later.

B
p
A
t
a

Figure 1: A Stochastic Petri Net for a G/G/N Queue

R

Place A initially contains the 100 customer arrivals;
place B blocks customers from arriving more than one
at a time; place Q is the queue where arriving customers
wait for service; place S is where idle servers wait for
work, and place E counts the number of customers that
exit the system. This initial state is reflected by the
values of state variables being A=100, B=1, Q=0. S=N,
and E=0. Transition 'a' models successive customers
entering the system and transition ‘b’ models customers
being serviced.

Notice each place in the Petri Net in Figure 1 has
exactly one input and output arc. [Baccelli, et. al.] refer
to this special subclass of Petri Nets as an "event graph",

this should not to be confused with the Event Graph
models discussed in the next section.

Typical of Petri Net models, this model uses a
resident-entity paradigm, where counts of waiting
customers and idle servers are dynamically maintained.
See [Schruben, 1994] for a discussion of the relative
advantages and disadvantages of resident-entity and
transient-entity (also know as process) modeling.

3. EVENT GRAPH MODELS
3.1. Event Graph Structure

Event Graph models can be used to build models of any
discrete event system using just a single graphical object
[Yucesan]. Event Graphs are fundamentally different
from state diagrams and automata. In state diagrams,
vertices are used to represent the values of the system
state. In an Event Graph model, vertices represent
changes in the system state. Event Graphs are similar to
sets of differential equations used to specify the dynamic
behavior of continuous state models by describing how
states change. A conventional state diagram for our
G/G/N queue requires an infinite graph, the event graph
for this system is not only finite but can actually be
reduced to a single vertex for a Markov system
[Schruben].

State changes are associated with the occurrence of a
system event (such as the arrival of a customer to a
queueing system) and are pictured as event vertices.
The edge between two event vertices represents the
conditions under which one event might cause the
occurrence of the other event as well as the time interval
between the two events. Associated with each edge may
be a set of conditions that must be true in order for one
event to schedule another. Also associated with each
edge may be a delay time equal to the interval until the
scheduled event occurs. The graphical representation of
the basic modeling object is as follows;

(1)
A f— B

Figure 2: The Basic Edge for an Event Graph
This edge is interpreted as follows:

if condition (i) is true at the instant event A occurs, then
event B will be scheduled to occur t minutes later.

If the condition is not true, nothing will happen, and
the edge can be ignored until the next time event A

562 Schruben and Yiicesan

occurs. You can think of an edge as nonexistent or
broken unless its edge condition is true. If the condition
for an edge is always true, the condition is left off the
graph. We will call edges with conditions that are
always true unconditional edges. Zero time delays for
edges are not shown on the graph. Note that we use the
suggestive symbol (//) for an edge condition like [Askin
and Standridge] rather than the tilde in [Schruben].

3.2. Event Graph Behavior

An Event Graph is executed by a main control program
that operates on a master appointment list of scheduled
events. This list is called the future events list and
contains all of the events that are scheduled to occur in
the future.

The main control program is the same used in most
discrete event simulation codes. The control program

1. advances time to the next event,
2. executes the state change for the event, and

3. schedules events where exiting edges are true.

Once this event has finished executing, the event is
removed from the future events list. The control
program then returns to step 1 and will again advance
time to the next scheduled event and execute the
corresponding event procedure. The simulation operates
in this way, successively calling and executing the next
scheduled event procedure until some condition for
stopping the simulation run is met or there are no more
scheduled events.

3.3. An Example

To model our G/G/N queue we will use the simulation
Event Graph in Figure 3. Using the same notation as in
the Petri Net of Figure 1, S is the number of idle servers
and Q is the number of customers waiting for service.
The "RUN" vertex simply initializes the model with the
initial system state of N idle servers and a calling
population of A customers.

Figure 3: An Event Graph of a G/G/N Queue

Event vertices carry descriptive labels and state changes
associated with each event are enclosed in braces below
the respective vertices. When the meaning is clear, we
will sometimes label the vertices with their state change.
An Event Graph model can be read by simply
describing each edge in the graph. There is a single
edge in the graph for each of the following sentences.

At the start of the simulation RUN, the first customer
will ENTER the system. Successive customers ENTER
the system every ty minutes. If an ENTERing customer
finds an idle server (S>0), they START service
immediately. Customers who START service can LEAVE
after a service delay of tg minutes. Whenever a
customer LEAVESs and the queue is not empty (Q>0),
the server will START with the next customer.

This graph represents a completely defined simulation
model once we specify a rule for breaking time ties for
simultaneously scheduled events.

It is worth noting that while there is no universally
accepted definition of an "event", the customary notion
of a system event will typically correspond to a subgraph
of event vertices connected by edges with zero delay (a
particular vertex may belong to more than one such
system event). As mentioned earlier, if the arrival and
service times for the above queueing system are
exponentially distributed, the event graph can be
collapsed into a single vertex representing the departure
of a customer (i.e., representing the embedded Markov
chain at customer departure times).

4. EXTENSIONS

There are numerous extensions of the standard
Stochastic Petri Net model defined here as well as to our
definition of a Event Graph model. It is interesting to
note that the enrichments of Stochastic Petri Nets have
been motivated primarily by a need to increase their
modeling power [Baccelli, et. al.]. On the other hand,
the enrichments of Event Graph models have been
motivated by a desire for better analytical tools for these
models [Sargent and Som].

Extensions to Stochastic Petri Nets include inhibitor
arcs, randomized markings, and colored tokens. An
inhibitor arc will prevent a transition from firing if the
input place is marked with a token. Randomized
markings will move tokens in output places according to
some probability law.

In Colored Petri Nets, tokens of different "colors"
represent different classes of objects (e.g.: different
types of parts being produced in a factory or different
types of messages in a communication system). The
colors of tokens that may occupy each place is specified.

Transforming Petri Nets 563

Also specified are the numbers and colors of tokens in
each input place required for a transition to fire. There
are transition input (output) functions that determine
the numbers and colors of tokens removed from
(deposited in) input (output) places when a transition
fires. There are many other enrichments of Petri Nets,
some that are specifically designed for discrete event
simulation [Torn, 1990].

Extensions of standard Event Graph models include
passing parameter values between events and the
introduction of an event cancelling edge. Neither of
these extensions are believed to actually increase the
modeling power of Event Graph models but certainly
make it casier to represent certain types of systems
[Yucesan]. Parameterized vertices and edge attributes
are particularly significant in that they permit a basic
event graph to be used to represent different instances of
similar subsystems. These graphs can be linked into a
model of a larger system. For example: an Event Graph
of a single generic machine cell can be parameterized to
represent different types of cells that simulate a large
factory.

5. MAPPING STOCHASTIC PETRI NETS INTO
EVENT GRAPHS

In the mapping of a Stochastic Petri Net into an Event
Graph model, edges become vertices and vertices
become edges. For simplicity, the mapping presented
here is specific to the subclass of Stochastic Petri Nets
where each place has a single entering and exiting edge
(also called an "event graph" Stochastic Petri Net in
[Baccelli, et. al.]).

5.1 The Mapping

Specifically, all incoming edges to a Stochastic Petri
Net transition vertex become a single "start transition”
vertex for the Event Graph model. Similarly, all
outgoing edges from a transition of a Stochastic Petri
Net become a single "end transition" vertex in a Event
Graph model. All Stochastic Petri Net transition vertices
and place vertices become edges in the Event Graph
model. A transition vertex will become an unconditional
edge with an edge delay equal to the transition firing
time. A place vertex will be come a zero-delay edge
conditioned by the token counts of all places preceding
the next transition. Finally, a single "Run" vertex is
appended to the event graph that specifies the initial
state of the system.

5.2 Some Observations

As there are two types of vertices in a Stochastic Petri
Net, there will be two types of edges in the

corresponding Event Graph model. Transition vertices
of the Stochastic Petri Net correspond to unconditional
edges (usually with a delay) in the Event Graph model,
and place vertices in the Stochastic Petri Net become
(usually conditional) zero-delay edges in the Event
Graph model. The Event Graph model is "edge
bipartite” in that no two conditional or delayed edges
are separated by only a single vertex.

The mapping that we present here often produces
vertices corresponding to elements that are needed for
the Petri Net paradigm but superfluous for the Event
Graph model. We can reduce such Event Graph models
by removing unnecessary events using some of the rules
in [Yucesan and Schruben] and the procedure in
[Sargent and Som].

5.3. Our G/G/N Example

We start with the Stochastic Petri Net in Figure 1. By
making all edges entering and exiting each transition
into vertices and all Stochastic Petri Net vertices into
edges, we have the Event Graph model in Figure 4. The
token counts for places B and E are never tested as false
on any edge, so the are omitted from the graph in Figure
4. Here we label each vertex with their corresponding
edges in the Stochastic Petri Net of Figure 1.

(A) Q)
° ° . ° G

Qe+, is--. et
A-| Q-1

Figure 4: Mapping of our Stochastic Petri Net into an Event
Graph Model

Eliminating the null event at the far right of Figure 4
and adding the RUN initialization vertex completes the
transformation from Figure 1 into Figure 3.

5.4. An Example using Inhibitor Arcs

An example of a Stochastic Petri Net with an inhibitor
arc is a model of the failure and repair process of three
machines shown in Figure 5. Here failure and repair
times are subscripted with f and r respectively.

The inhibitor arc has a small circle near its head. The
current marking of this net with tokens indicates that
two machines are working (place D) and one machine is
under repair (place C). The marking shown is for a
machine just about to fail. The timed transition at the
far left models the generation of machine failures. Here
it is necessary to assume that a failure may "queue" in

564 Schruben and Yiicesan

place B if all machines are broken when the failure
occurs. This is fine if the times between failures have an
exponential distribution. Figure 5 shows many of the
basic graphical objects in a Stochastic Petri Net: timed
and instantaneous transitions, multiple tokens, and an
inhibitor arc.

Figure 5: Stochastic Petri Net Machine Failure Model

The Event Graph model resulting from the
transformation specified in section 5.1 appears in
Figure 6. Again, the variables A, B, C, and D in the
Event Graph of Figure 6 are the token counts of the four
places in the Petri Net model in Figure 5. The model is
initialized (with 3 working machines). Note that A will
be equal to -1 if a machine failure has to "queue" for a
working machine. Recall that we are using standard C
notation for the state changes and edge conditions (the
edge condition (A) means that place A is marked, (!B)
means that B is not marked). The inhibitor arc
corresponding to place B in the Petri Net behaves like
any other event scheduling arc except a "not" (!) logical
operator is attached to its token count in the Event
Graph.

{A&&IB) (8&&D)

(A&&IB)

Figure 6: Event Graph of the Petri Net in Figure 5

The Event Graph in Figure 6 can be reduced to the
simple event graph in Figure 7 by eliminating edges
that can never be true and null vertices. A reduced
Event Graph for any number of machines, N, is shown
in Figure 7.

{N++}

{N=3} {N--}
Figure 7. Event Graph Model for Machine Failures

For the Event Graph model in Figure 7, the machine
failure times are not assumed to be exponential.
Obvious advantages of the Event Graph representation
in Figure 7 over the Petri Net in Figure 5 are its
generality and simplicity.

5.5 Event Tokens

To show the state of the future events list for an event
graph, we can mark each vertex with event tokens that
indicate how many instances of each event are
scheduled to occur in the future. The total count of the
tokens gives the number of events that are currently
scheduled to occur in the future.

The marking rule for event tokens is simple: after an
event vertex is executed (it "times out"), a token is
removed from that vertex and tokens are deposited in all
successor vertices connected by edges with true
conditions. To completely specify the state of the future
event calendar, the event tokens could also carry labels
with the times that the corresponding events are
scheduled.

In Figure 7 there are 3 machines, two are working
(waiting for their next scheduled failures) and one is
broken (waiting for its next scheduled repair). The RUN
initiation vertex has already been executed and removed
from the list of scheduled events.

6. DISCUSSION

A simple mapping of a class of Stochastic Petri Nets
into Event Graph models has been presented. There is
an enormous literature on Petri Nets while the
development of Simulation Event Graph models has just
begun. Event Graph models have become widely used
only in the United States, primarily for education. There
are certain advantages to Event Graph models in terms
of simplicity and efficiency in simulation and research.
It is hoped that this article encourages persons familiar

with Petri Net modeling to become acquainted with
Event Graph modeling and vice versa.

Transforming Petri Nets 565

ACKNOWLEDGMENT

I am grateful to the National Science Foundation for
sponsoring a research project of which this paper is a
part.

REFERENCES

Askin, R. G. and C. R. Standridge, (1993). Modeling
and Analysis of Manufacturing Systems, John Wiley
and Sons.

Baccelli, F.,G. Cohen,G.L. Olsder, and J.-P. Quadrant,
1992, Synchronization and Linearity: An Algebra for
Discrete Event Systems, J. Wiley and Sons,
Chichester, England.

Hoover, S. and R. Perry, (1990). Simulation: A Problem
Solving Approach, Addison-Wesley.

Law, A. and W. D. Kelton, (1991). Simulation
Modeling and Analysis (2nd.Ed.), McGraw-Hill.

Pegden, C. D., (1986). Introduction to SIMAN, 2nd ed.,
Systems Modeling Corp.

Peterson, J. L., (1977). "Petri Nets." Computing
Surveys, 9(3), 223-252.

Sargent, R. G., (1988). "Event Graph Modeling for
Simulation with an Application to Flexible
Manufacturing Systems." AManagement Science
24(10), 1231-1351.

Schruben, L. (1983). "Simulation Modeling with Event
Graph Models." Communications of the Association
of Computing Machinery 26(11), 957-963.

Schruben, L., and E. Yucesan, (1988). "Duality in
Simulation Graphs." Proc. 1989 Winter Simulation
Conference, Washington D.C.

Schruben, L. (1994), Graphical Simulation Modeling
and Analysis using SIGMA for Windows (3rd
ed.), The Scientific Press, Danvers, MA.

Som T. K. and R. G. Sargent, (1989). "A Formal
Development of Event Graph Models as an Aid to
Structured and Efficient Simulation Programs."
ORSA J. on Comput. 1, 107-125.

Toérn, A. A., (1990). "Simulation Graphs: A General
Tool for Modeling Simulation Designs." Simulation
37, 187-194.

Yucesan, E., (1989). Simulation Graphs for the Design
and Analysis of Discrete Event Simulation Models.
Ph.D. Dissertation, School of OR&IE, Cornell
University, Ithaca, NY.

Yucesan, E., (1993). "On the Modeling Power of
Simulation Graphs", Technical Report, INSEAD,
Fontainebleau, France.

Yucesan, E. and L. W. Schruben, (1992). "Structural
and Behavioral Equivalence of Simulation
Models." ACM Transactions on Modeling and
Computer Simulation 2(1).

AUTHOR BIOGRAPHIES

LEE SCHRUBEN is on the faculty of the School of
Operations Research and Industrial Engineering at
Cornell University. He received his undergraduate
degree in engineering from Cornell and a Ph.D. is from
Yale. His research interests are in statistical design and
analysis of simulation experiments and in graphical
simulation modeling methods. He is also one of the
developers of the SIGMA simulation modeling and
analysis system (the 3rd edition has recently been
published in The Scientific Press series from
boyd&frasier).

ENVER YUCESAN is on the faculty at INSEAD in
Fontaineblau, France. He received his undergraduate
degree from Purdue University and his PhD from
Cornell. His research interests include simulation
modeling paradigms and structures and the design and
analysis of simulation experiments. He has also been
involved in various application areas. Recently his wife,
Jae, and he had their first child, Elliot.

Prof. Lee Schruben
School of Operations Research
and Industrial Engineering
Room 219 Engineering Theory Center
Cornell University
Ithaca, NY 14853-3801
phone: (607) 255-9133.
Fax: (607) 255-9129
e-mail: lee@orie.cornell.edu

Prof. Enver Yucesan

INSEAD

Boulevard de Constance

77305 Fontainebleau Cedex

FRANCE

phone: (33) 160724000

Fax: 91011 (33) 1 60 72 40 49

e-mail: yucesan%FRE 1BAS51.bitnet@cunyvm.cuny.edu

