Proceedings of the 1994 Winter Simulation Conference '
ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

CSIM17: A SIMULATION MODEL-BUILDING TOOLKIT

Herb Schwetman

Mesquite Software, Inc.
8920 Business Park Drive
Austin, TX 78759, USA

ABSTRACT

CSIM is a simulation model-building toolkit that is
used by C/C++ programmers to implement process-
oriented, discrete-event simulation models. These
models mimic the operation of complex systems, to
give modelers insight into the dynamic behavior of
these systems. Because CSIM models are C/C++ pro-
grams, there are virtually no limits on the level of de-
tail, degree of complexity and size of the simulation
models. Furthermore, CSIM uses special implementa-
tion techniques so that these models execute efficiently
on a wide variety of systems platforms, including many
UNIX workstations, PC’s with Windows and Macin-
toshes.

This tutorial will introduce CSIM and then present
some of the features that make CSIM a useful tool for
building efficient simulation models of complex sys-
tems. Two examples will help illustrate these features.
Integration of CSIM into other software products will
also be discussed.

1 INTRODUCTION

CSIM is a library of routines (a toolkit) used by C or

C++ programmers to write process-oriented simulation

models. Because CSIM uses a “programming” ap-

proach to constructing simulation models, several
benefits accrue:

e Programmers do not have to learn a new language;
they begin immediately to build models using famil-
iar techniques, and they have all of the software de-
velopment tools of their programming environment
available to them because they are using a standard
programming language.

¢ There are almost no limitations on the style of model,
model complexity and level of model detail; the
models are programs and can make use of all of the
power and flexibility of the underlying language.

e CSIM models can be executed on a wide variety of
system platforms. CSIM users can develop their

464

models on a PC or Macintosh and then execute them

on a RISC workstation that could offer greater

processing power. In addition, CSIM models can be
easily sent to other users who have access to different
platforms.

e CSIM models are compact and efficient. Because
CSIM models are compiled C or C++ programs, they
tend to be small and efficient. Furthermore, the
CSIM toolkit has been written using dynamic mem-
ory allocation and specialized algorithms, to achieve
both efficient memory utilization and good perform-
ance.

These factors mean that realistic models of complex
systems can be implemented, debugged and deployed
to help users investigate design trade-offs and achieve
near-optimal operating configurations for these sys-
tems.

CSIM was developed in 1985 and over 300 copies
have been sold to over 160 organizations world-wide.
CSIM has been used to model many kinds of systems:
including
e Computer systems and networks of computer sys-

tems,

* Software systems, including applications executing
on multiprocessor systems,

¢ Communications systems,

* Air traffic control systems,

* An intelligent highway system,

* A satellite control system.

2 CSIM OVERVIEW

A CSIM model consists of resources and processes
(entities) which compete for use of the resources.
CSIM has the following kinds of resources:

o facilities,

* storages,

¢ mailboxes, and

® events.

CSIM17

In addition there are statements that deal with creat-
ing processes and with managing process interactions;
these include the following:

e create - make a procedure into a process

¢ hold - allow simulated time to pass

¢ wait - cause a process to wait for an event to “occur”

e set - cause an event to be placed in the “occurred”
state,

to name a few.

Finally, there are structures to help programmers

construct useful models; these include:

e process_classes,

e tables and histograms,

e gtables and ghistograms, and :

e random number functions and streams of random
numbers.

In the C++ version, all of the resources and structures
are classes, and all of the statements that deal with such
a class are methods of that class. As an example, the
following is a synopsis of the facility class:

// facility class declaration
class facility {
public:
facility(char* name);
long reserve()
void release()

// constructor
// reserve method
// release method

long qlength() // cur. queue len.
long status() // BUSY or FREE
float util() // return utilization
I8

Thus, to construct a facility, the modeler writes:
facility cpu(“‘cpu”);

and to “use” this cpu (facility) for 10.0 units of simu-
lated time:
cpu.reserve();
hold(10.0);
cpu.release();

CSIM processes can use events to synchronize their

activities. In the following segment, one process
(“proca”) waits for the other process (“procb”):

event go(*‘go”);

.\;;)id proca() void procb()

{
create(“‘proca”); create(“‘procb”);
go.wait(); hold(1.0);
go.set();

} o}

465

It can be noted in this example that a CSIM process
is just a C (or C++) procedure which executes a create
statement. It is important to point out that when a cre-
ate statement is executed, the newly created process is
made “ready-to-execute” and the older process (the one
that called the new process) continues execution.

3 FIRST EXAMPLE - A TELEPHONE
HOTLINE

The following example illustrates some of the features
of the CSIM toolkit. A company is setting up a cus-
tomer service “hotline”. They want to be certain that
they will lose only a small percentage of the incoming
calls. Some initial study has produced the following
data:

4 calls/minute
5 minutes

Incoming call rate
Average call service time

The company is considering a telephone switch that
operates as follows:
- an incoming call gets a busy signal if there are no
lines available,
- if a line is available, then a call “rings” until a switch
port is available,
- when a switch port is available, a recorded message
is played and the call waits for an available operator,
- when the operator completes the call, it is terminated
and tabulated as a “successful” call
At any point in this process before a call reaches an
available operator, the caller can become discouraged
and “hang up”. As an initial guess, it is assumed that a
caller will not tolerate a total delay of more than 75
seconds. The goal is to have at least 90 % of the in-
coming calls successfully completed.
A CSIM model of such a system can be described as
follows:
e resources:
- lines
- switch_ports
- operators
e processes
- gen - call generator
- call - models activities of a call
The process named “gen” is as follows;

466 Schwetman

/* call generator */
void gen()

float inter_arrival;
create("gen");
inter_arrival = 1.0/call_rate;
while(clock <=run_time) {
num_act++;
call(); /* initiate next call */
hold(expntl(inter_arrival));
}
}

This CSIM process generates incoming calls at expo-
nentially distributed intervals to model the specified
call rate.

The “call” process is first described as a simple
CSIM process as follows:

/* call process */

call()

{
int port_status, oper_status;
float port_wait, operator_wait;

create(“call”);

num_calls++;

if(avail(line) > 0) {
allocate(1, line); /* line available */
.../* call processing */
deallocate(1, line);
}

else {
busy_signals++; /* line not available */
}

}

The set of incoming lines is modeled using a CSIM
storage. The number of elements in the storage is the
number of available lines. The allocate statement takes
a line from the storage for use by this call; the deallo-
cate statement returns a line to the storage when a call
terminates.

The next step in the development of this model is to
characterize calls contending for switch ports and for
operators. If calls could not “hang up”, then the follow-
ing segment could be used:

/* call has line; now contends for port and oper. */
/* this segment does NOT model call “hang up” */

if(avail(line) > 0) {
allocate(1, line);
allocate(1, switch_port);

hold(RECORDING_TM);
reserve(operator);
hold(expntl(SERV_TIME));
release(operator);
successful_call++;
deallocate(1, switch_port);
deallocate(1, line);
}
else {
busy_signals++;

}

In this example, the lines and switch_ports are mod-
eled as storages and the collection of operators as a
multi-server facility.

In order to model callers becoming discouraged and
“hanging up”, a max_wait interval is defined. Then, an
incoming call can either hang up while waiting for a
switch port (the phone is still ringing) or while waiting
for an operator (“your call will be handled in order;
please stay on the line”). CSIM provides the
timed_allocate and timed_reserve statements to model
the case where a requester gives up if the request can-
not be satisfied within a specified time limit. The
above code segment is rewritten to use these state-
ments:

/* call has line; now contends for port and oper. */
/* this segment models “hang up” */

if(avail(line) > 0) {
allocate(1, line);
total_wait = 75.0;
port_wait = uniform(0.0, total wait);
port_status = timed_allocate(1, port,
port_wait);
if(port_status != TIMED_OUT) {
operator_wait = total _wait - port_wait;
oper_status = timed_reserve(operator,
operator_wait);
if(oper_status != TIMED_OUT) {
hold(expntl(SERV_TIME));
release(operator);
successful_calls++;
}
else {
operator_balks++;
}
deallocate(1, port);

else {
port_balks++;

}

deallocate(1, line);

CSIM17

}
else {
busy signals++;
}

The timed_allocate statement tests the specified stor-
age; if there is a sufficient amount of available storage,
the specified amount is removed and the process con-
tinues. If the amount of available storage is not suffi-
cient to satisfy this request, then this process is sus-
pended (deactivated) and placed on a queue of proc-
esses waiting for this storage to become available.
Thus far, this procedure is identical to the normal allo-
cate statement. However, with the timed allocate
statement, an additional parameter specifies the “time
limit” for this request. If this time limit expires before
the request for storage is granted, then the process is re-
sumed (reactivated) with a status flag that indicates that
the request “timed out”. If the request is granted, a dif-
ferent status is returned. The timed reserve operates in
the same manner; the difference is that a facility is
specified instead of a storage. These two statements,
timed_allocate and timed_reserve allow the actions of
discouraged callers to be modeled in a straightforward
manner.

A version of this model was written using Borland
Turbo C++ for Windows and run on a PC with a
486DX/33 processor. In one run, an eight hour day
(28,800 seconds) was simulated. In this run, over 1900
calls were processed; the real time (CPU time) required
was between three and four seconds. The results
showed the following:

Call rate 4 calls/minute
Service time 5 minutes
Max wait time 75 seconds
Recording time 15 seconds
Number of lines 27

Number of ports 24

Number of operators 23

Total calls 1923

Successful calls 1772

Percentage success 92.15 %

4 SECOND EXAMPLE - A CLIENT-SERVER
COMPUTER SYSTEM

In this second example, an order processing system has
a server (computer system) which accepts orders from
client systems. Each incoming order is processed by
updating several databases and printing invoices and
pick lists. The clients are actually computer systems
that scan order forms and submit each form as an order.
The performance goal for this client-server system is to

467

be able to “keep up” with an order stream of 2000 or-
ders per hour.

This example was written in C++. The first step was
to define two classes: an order class and an or-
der_queue class, as follows:

class order_c {
protected:
int number;
TIME start_tm;
public:
order_c(intn); { number = n; start_tm = clock;}
TIME get_elapsed time()
{return clock - start_tm;}

b

class order_queue_c {

protected:
mailbox *mb;

public:
order_queue_c() {mb = new mailbox(“mb”);}
~order_queue c() {delete mb;}
void send(order_c* o) {mb->send((long) o);
void receive(order_c** o)

{mb->receive((long*)o); }

b

The order class is used in this example as just a
“token” to pass between the client and the server. It
does contain the start time for each order, so that the re-
sponse time for each order can be tabulated.

The order_queue class includes a CSIM mailbox. A
“message” (in this example an order) is placed in a
mailbox (order_queue) by a send operation, and a mes-
sage is removed from a mailbox by a receive operation.
The order queue class uses new send and receive
methods, to handle order objects (as messages) cor-
rectly.

The “client” process just generates new orders at the
specified rate, as follows:

void client()

{

order_c *order; int order_number = 1;

create(“client”);

while(clock < SIM_TIME) {
order = new order_c(order_number++);
server_queue->send(order);
hold(expntl(inter_arrival_time));
}

done->set();

}

468 Schwetman

The “server” process receives orders and then starts a
sub-process (call “server_proc”) to handle each incom-
ing order, as follows:

void server()

{

order_c *order;

create(“‘server”);
while(clock < SIM_TIME) {
receive->server_queue(&order);
server_proc(order);
}
}

The process “server_proc” models the activities as-
sociated with processing each order. In this example,
all of these activities are “modeled” by one service in-
terval. In a more detailed model, all of the activities
that are part of order processing could be modeled by
many individual steps; these include computing (use
the CPU facility), accessing different databases, and
sending messages to other processes.

In this example, there is a restriction on the number
of “server_proc” processes that can be “active” at the
same time. The restriction on the number of simultane-
ously active “server_proc” processes is easily modeled
with a storage of “server slots”.

void server_proc(order_c *order)
{
create(“server_proc”);
server_slot->allocate(1);
hold(expntl(SERVICE_TIME);
server_slot->deallocate(1);
resp_tm->record(order->get_elapsed_time());

}

The last statement in the listing for “server_proc” rec-
ords (tabulates) the response time for each order in a
table (named resp_tm).

There is a potential problem with this model as de-
scribed above. If there are not enough server slots, then
orders are not processed “fast enough” and the queue of
unprocessed orders grows without bound. To alleviate
this problem, the “client” process was modified, to
check on the number of processes in the server_slot
queue. If the number of queued process is 500, the
model terminates, as follows:

void client()
order_c *order; int order_number = 1,

create(“client”);
while(clock < SIM_TIME &&
server_slot->qlength() < 500) {
order = new order(order_number++);
server_queue->send(order);
hold(expntl(inter_arrival_time);
}

done->set();

}

The main (“sim”) process that manages the execution
of this model is as follows:

#include “cpp.h”

// define constants
// class definitions from above

order_queue *server_queue;
storage *server_slot;

table *resp_tm;

event *done;

extern “C” void sim()

{
create(‘‘sim”);
init(); // initialize model
server(); // start server
client(); // start client
done->wait();// wait for model to finish
report(); // print CSIM report

}

void init()

{
server_queue = new order_queue_c;
server_slot = new storage(“slots”, N_SLOTS);
resp_tm = new table(‘resp tm”);
done = new event(“done”);

}

The model was executed several times in order to
determine the minimum number of slots required to
“keep up”. The parameter values were as follows:

Run time 8 hours
Mean order processing time 14 seconds
Order arrival rate 2000 orders/hour

Maximum queue length 500

CSIM17

The results produced by this model are as follows:

Number of slots Throughput Response time
6 1554.9 500.5
8 1997.7 60.4
10 2031.6 16.9
12 1997.3 14.3

In the model with six slots, the run terminated early
(at time 4160 seconds) because the maximum queue
length value was exceeded. It can be seen that with
eight or more slots the performance goal can be met.

5 INTEGRATION OF CSIM MODELS IN
OTHER PROGRAMS

A major benefit of using a standard programming lan-
guage to implement simulation models is that these
models can be combined easily with other software
components. For example, a simulation model of a
system can be made part of a collection of software
components used to design and evaluate large systems.

One application of CSIM was to embed a CSIM
model in a product used to design and configure data-
bases in large multiprocessor database management
systems. The user is able to configure a database and a
set of queries that will operate against that database.
After the design is finished, a CSIM model of the sys-
tem is used to estimate the performance of the queries
operating on the database as configured on the host
system. If the performance estimates from the simula-
tion model are unacceptable, the database and/or the
underlying system can be modified and the perform-
ance estimated again.

In another application, a CSIM model was embedded
in a system that models satellite orbits and presents the
results in graphical form. The entire system was used
to train people in the operation of the satellite network.

Recently, the CSIM model of the telephone bank de-
scribed above was embedded in a Windows application,
so that the user could use a “point and click” interface
to change the input parameters and view the results in
graph form.

In each of these examples, a CSIM model was em-
bedded in a larger application. The embedding took
advantage of the fact that the model and the library are
all C or C++ programs. In addition, CSIM has many
functions and procedures that give the programmer ac-
cess to the procedure-level interface for every feature
of CSIM. As an example, while the report procedure
gives a “standard” report on the use of all of the simu-
lated resources, every item in this report can be ac-
cessed individually by a CSIM function. In addition,
while the normal style of developing a CSIM model is

469

to use the CSIM-provided main procedure, the pro-
grammer has the option of providing a different
(customized) main procedure when this is necessary.
Also, the library routines that create CSIM resources
guarantee that the CSIM runtime environment is initial-
ized before the resources are actually required.

6 SUMMARY

CSIM helps programmers construct simulation models
of systems. Because the models are written in a stan-
dard programming language (C or C++), CSIM is a
“quick start” for most programmers. One programmer
reported success in writing and executing a “first”
model within 30 minutes of installing the toolkit.

The process-oriented approach embodied in CSIM is
a natural way of expressing the behavioral aspects of
many kinds of systems. Most systems can be easily de-
scribed in terms of resources and processes competing
for use of these resources.

Since 1986, over 160 organizations have acquired the
CSIM toolkit. Many of these have used CSIM to de-
velop models of their systems. Some of them have
embedded these models in other software products.
These analysts and developers have found CSIM to be
an inexpensive and convenient tool for implementing
simulation models. The flexibility, efficiency and port-
ability of these CSIM models allow them to be de-
ployed where they are needed. CSIM has helped these
organizations meet their needs for simulation models.

CSIM17 is now available from Mesquite Software,
Inc.

ACKNOWLEDGMENTS

CSIM is copyrighted by Microelectronics and Com-
puter Technology Corporation (MCC). CSIM17 is
supported and marketed by Mesquite Software, Inc.
under a license from MCC.

REFERENCES

Edwards. G and R. Sankar. 1992, Modeling and simu-
lation of networks using CSIM. Simulation 58:2,
131-136.

Schwetman, H. 1990. Introduction to process-oriented
simulation and CSIM. In Proceedings of the 1990
Winter Simulation Conference, ed. O. Balci, R.
Sadowski, and R. Nance.

Schwetman, H. 1988. Using CSIM to model complex
systems. In Proceedings of the 1988 Winter Simula-
tion Conference, ed. M. Abrams, P. Haigh, and J.
Comfort.

470 Schwetman

Schwetman, H. 1986. CSIM: A C-based, process-
oriented simulation language. In Proceedings of the
1986 Winter Simulation Conference, ed. J. Wilson, J.
Henriksen, and S. Roberts

AUTHOR BIOGRAPHY

HERB SCHWETMAN is founder and president of
Mesquite Software, Inc. Prior to founding Mesquite
Software in 1994, he was a Senior Member of the
Technical Staff at MCC from 1984 until 1994. From
1972 until 1984, he was a member of the staff of the
Department of Computer Sciences at Purdue Univer-
sity. He received his Ph.D. in Computer Science from
The University of Texas at Austin in 1970. He has
been involved in research into system modeling and
simulation as applied to computer systems since 1968.

