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ABSTRACT

We show how to find mixing probabilities, or weights,
for composite probability mass functions (pmfs) for
k-variate discrete random variables with specified
marginal pmfs and a specified, feasible population
correlation structure. We characterize a joint pmf
that is a composition, or mixture, of 25=1 extreme-
correlation joint pmfs and the joint pmf under inde-
pendence. Our composition method is also valid for
multivariate continuous random variables. We con-
sider the cases where all of the marginal distributions
are discrete uniform, negative exponential, or contin-
uous uniform.

1 INTRODUCTION

We consider the problem of generating samples of a
k-variate discrete random variable via composition
when the marginal probability mass functions (pmfs)
and a feasible population correlation structure are
specified. We are interested in this problem mainly
because we want to be able to generate coefficients for
synthetic optimization problems in which the depen-
dence between each pair of coefficient types is con-
trolled.

Many computational evaluations of solution pro-
cedures are conducted exclusively on synthetic opti-
mization problems whose coefficients are generated
independently. Results from other computational
studies indicate that the statistical properties of the
coefficients in synthetic optimization problems, e.g.,
the marginal distribution families and the popula-
tion correlation structure, can affect the performance
of solution methods (Loulou and Michaelides, 1979;
Martello and Toth 1979, 1988; Balas and Martin,
1980; Balas and Zemel, 1980; Potts and Van Wassen-
hove, 1988; John, 1989; Moore, 1989; Reilly, 1991;
Pollock, 1992; Rushmeier and Nemhauser, 1993;
Moore and Reilly, 1993).
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Our primary goal is to show how synthetic opti-
mization problems with a prescribed population cor-
relation structure among the coefficient types can be
generated via composition. But, our work is not rel-
evant to only one application. Our composition ap-
proach can be used for continuous random variables
also, making this approach useful for many simulation
applications. For example, the generation of values of
multivariate continuous random variables can be cru-
cial to realistic simulation models of manufacturing
systems.

In this paper, we extend recent work on bivariate
composite pmfs to the multivariate case. We pay par-
ticular attention to the case where all of the marginal
pmfs are uniform because the discrete uniform distri-
bution is very often used to represent the marginal
distributions of coefficient values in synthetic opti-
mization problems. We point out that our composi-
tion approach is valid for multivariate continuous ran-
dom variables. We also consider the cases where all
of the marginal distributions are negative exponential
or continuous uniform because these cases may be im-
portant for simulations of tandem queueing systems
and manufacturing systems.

2 BACKGROUND

In this section, we review the concepts of conventional
mixtures, extreme mixtures, and parametric mixtures
for bivariate discrete random variables (Y;,Y,). We
also discuss methods for generating values of a mul-
tivariate random variable Y = (Y;,Ya, ..., Yi).

In §2.1 - 2.3, we assume that Y;, i = 1,2, is a finite
discrete random variable distributed over the support
Si = {¥i1,¥i2,- -, Yin,} according to the pmf f;(y)-
We denote the maximum and minimum possible val-
ues of the Pearson product-moment correlation, p =
Corr(Y1,Y2), as p* and p~, respectively. Also, we de-
note the minimum- and maximum-correlation pmfs
for (Y1,Y2) as g1(y1,92) and g2(y1,y2). We let p® be
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a specified value of p.

2.1 Conventional Mixtures for (Y1,Y3)

We can generate values of (Y1,Y2) with population
correlation p° such that p= < p% < p* by mixing
values of (Y;,Y2) generated under independence and
values of (Y1, Y2) generated with extreme correlation.
The pmf for (Y1,Y2) upon which such a generation
method is based is

(1 - -:-:;) fi(y)f2(y2) + (ﬁ—i) n(y,y2), (1)

if p° < 0, and

(1 - %) fi(v) f2(y2) + (ﬁ—i) g2(v1,v2),  (2)

if p° > 0. We refer to pmfs (1) and (2) as conventional
mixtures.

Devroye (1986) defines a family of distributions
for a bivariate random variable to be comprehen-
sive if the family includes f1(yi)f2(y2), 91(y1,92),
and g2(y1,y2). So conventional mixtures constitute
a comprehensive family for (Y7, Y2).

Conventional mixtures are easy to use. There is a
unique pmf (1) or (2) for every feasible value of p.
As a result, when a conventional mixture is used to
represent the distribution of (Y1,Y2) with p® =0, 1
and Y, are independent. Conventional mixtures are
useful for bivariate continuous random variables too.

2.2 Extreme Mixtures for (Y1,Y2)

Reilly (1994) describes how samples of (Y1,Y2) can
be generated by mixing values of (Y1,Y2) generated
based on g;(y1,y2) and values of (Y1,Y2) generated
based on g3(y1,y2). Let p~ < p® < pt. In this case,
the composite pmf for (Y7,Y2) is

+_ 0 o_ -
(H:) 91(y1,92) + (ﬁ;—_i—_) 92(y1,92)- (3)

We refer to pmfs (3), which were first suggested by
Fréchet (1951), as extreme mixtures.

Like conventional mixtures, extreme mixtures are
quite easy to use. There is a unique extreme mixture
for every feasible value of p. However, it is impossi-
ble to use an extreme mixture to generate values of
(Y1, Y2) with Y; and Y2 independent, so extreme mix-
tures do not form a comprehensive family for (¥1,Y2).
Extreme mixtures are also useful for bivariate contin-
uous random variables.

2.3 Parametric Mixtures for (Yq,Y2)

Let @ be the smallest joint probability associated with
any (y1,y2) € S1 x Sp, and assume that f;(y:) > 0,
Vy; € Si, i = 1,2. Peterson and Reilly (1993) show
that a piecewise linear curve that plots the maximal
value of @ versus p can be constructed from the so-
lution to a parametric linear program. They go on
to show that, if max{n;,n,} > 3, this curve outlines
a parametric envelope that contains all points that
correspond to feasible combinations of p and 6.

Let ¢ = fi(yi)f2(yz-), where ¥ =
argmin;{f1(y1;)} and j* = argmin; {f2(y2;)}. Sup-
pose that (p° 6°) is a point in the parametric enve-
lope such that ° < ¢ and (1 — 6°/6")p~ < p® <
(1 — 6°/6")p*. Peterson and Reilly show that, if
91(v1i, y2j) = 92(vris, y2j+) = 0, then p = p° and
6 = 6° for the pmf

Mofi(y1)f2(y2) + Ag1(v1,y2) + A2g2(v1,v2),  (4)

where Ao = 6°/6",

A= ((1=0°76")p% = p%) [(pt = p7),

and
Ay = (p° = (1-6°/6")07) [(p* = p7).

Even if g1 (y1i,y2;+) # 0 or ga(y1is, Y25+) # 0, p = p°
for the pmf (4). We refer to pmfs (4) as parametric
mixtures.

Parametric mixtures include conventional mixtures
(1) and (2) and extreme mixtures (3). Therefore,
parametric mixtures form a comprehensive family for
(Y1,Y2). For all values of p except p* and p~, there is
an infinite number of parametric mixtures. Yet, there
is only one parametric mixture for every point (p,6)
such that § < 6’ and (1-60/6")p~ < p < (1-6/6")p*.

2.4 Multivariate Variate Generation

One way to generate values of a multivariate random
variable Y = (Y7,Ys,...,Y:) with a specified popula-
tion correlation structure is to generate a value for Y
based on its marginal pmf or probability density func-
tion (pdf), fi(y1), then generate a value for Y, based
on the conditional pmf or pdf fy);(y2|y;) associated
with p13 = Corr(Y},Y2) = p,, and so on. Although
certainly effective, this approach can be time consum-
ing and tedious. Furthermore, a fully specified joint
pmf or pdf is required to begin.

A method for generating values of multivariate nor-
mal random variables with a specified population cor-
relation structure is well known. Johnson, Wang, and
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Ramberg (1984) and Devroye (1986) describe meth-
ods for generating values from several multivariate
distributions.

Iman and Conover (1982) present a method for gen-
erating values of a multivariate random variable with
a specified Spearman rank correlation structure.

3 EXTREME-CORRELATION PMFs

Let Y = (V1,Y2,...,Y:) be a multivariate dis-
crete random variable. We assume that each Yj,
i =1,2,...,k, is distributed over the support S; =
{yi1,¥i2, - - -, Yin, } according to the pmf f;(y;).

According to Whitt (1976), the maximum and min-
imum possible values of p;; = Corr(Y;, Y;) are

L KE- E(Y,-)E(Yj?
T (Var(Yy)Var(Y;))?

and
_ Kj — E(RE(Y))

Pis (Var(Y;)Var(Yj))%’

respectively, where

1
Kt =/ Fr(u) Py (w) du,
4]

ij

1
K :/0 F Y (w)F7 (1= u) du,

and F7'(u) and F}_l(u) are the inverse cumulative
distribution function (cdfs) for Y; and Yj. Peterson
and Reilly (1993) show that K,-*j’ and K; can be de-
termined by solving one factored transportation prob-
lem with the Northwest Corner Rule and one with the
Southwest Corner Rule.

We define the extreme-correlation pmfs for Y to
be the joint pmfs for Y for which p;; = pf or
pij = p;;, Vi < j. Each extreme-correlation pmf
is associated with a possible assignment of extreme
values for the p;, j = 2,3,...,k. Hence, there
are 2~1 extreme-correlation pmfs for Y. Let ge(y),

=1,2,...,2¥71 be the extreme-correlation pmfs.
Table 1 shows the p;; values associated with the eight
extreme-correlation pmfs when k£ = 4.

4 MULTIVARIATE COMPOSITION

Define for each extreme-correlation pmf, g,(y), ¢ =
1,2,...,2k 1,

=1 if pij = pi;
T L0 i piy = pyg

Table 1: Possible p;; combinations when & = 4.

P1j
£| p12 P13 pia
1| pl2 P13 Pia
2| p2 P13 Pit:
3| p: s P
41 p, Pl P
5|0 pla Pis
6 Pi"z P13 P1+4
7|10t P Pl
8 PTz PTs Pi"4

Table 2: Values of 6,4]» when k = 4.

1,j ij
6112 13 1423 24 34
1o o o] 1 1 1
210 o 1|1 o0 o0
310 1 olo 1 o
410 1 1|l0 0 1
501 0o oo o0 1
6l 1 0 1]0 1 0
711 1 o1 0 o0
811 1 1|1 1 1

to indicate whether p;; = p; or pi; = p;;. First, we
assign values to&fj,j =2,3,...k £=1,2... 21
that are consistent with the p;; values found in a table
like Table 1. Then, to find the remaining 5fjs, we use
the following simple rule:

6 =116 — 8551

In other words, if ¢, = 6{1., then 6fj = 1; otherwise,

éf; = 0. Table 2 shows the 6;; values when k = 4.
Let go(y) = Hf=l fi(yi). The pmf

2k—l

9¥) =Y dege(y), (5)
=0

ok=1 .
where 3, o A¢=1land A\, >0,¢=0,1,...,2F" is
a composite pmf for Y. In fact, pmfs (5) could be said
to constitute a comprehensive family of multivariate
distributions for Y.
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Let pf; be the desired value of pyj, Vi < j. A valid
pmf (5) for Y with the desired population correlation
structure exists if there is a solution to

2k—l

O M [hh + (1= 8f)eg] = ol Vi<d, (6)
=1

2k—1
dod=1, (7)
£=0

Ae>0, £=0,1,...,2°L (8)

In most cases, there is an infinite number of solutions
to (6)-(8). Hence, we could use an appropriate crite-
rion as an objective function, along with (6)-(8), to
select a composite pmf (5) with desired characteris-
tics. An interesting question is what criterion should
be used to select a pmf for a given application.

Let F,-'l(u) be the inverse cdf for Y;,i = 1,2,... k.
The procedure KVAR allows us to generate values of
Y easily based on the joint pmfs (5).

Procedure KVAR

1. Generate uy,us,...,urs1 ~ U(0,1).

2. Ifu; < Ao, thenfori=1,2,... k,
¥i — F7'(uis1) and go to Step 6.

Otherwise, set £ =1, A = Ao + ;.
3. If u; > A, go to Step 4. Otherwise, go to Step 5.
4. L — L+ 1, A — A+ ). Go to Step 3.
5. Generate y with uy based on g¢(y).

(a) v1 — F ' (u2).
(b) For y;, 1 =2,3,...,k,
vi — Fl(ug) if 6%, =1, or

v — FY (1= up) if 68 = 0.
6. Return y.

5 SPECIAL CASES

In this section, we consider the special cases where Y
is either a bivariate or a trivariate random variable.

5.1 Special Case 1: k=2

Suppose we wish to find a pmf (5) with p = p°

such that )g is minimized, i.e., the frequency of inde-
pendent sampling is minimized. We can show that
do = 0, A&y = (pt = p")/(p* — p7), and A2 =
(p° = p7)/(p* — p7). In other words, the desired
pmf is an extreme mixture (3) and a special case of a
parametric mixture (4) where § = 0.

Suppose instead that we wish to find a pmf (5) for
which p = p° such that Ay is maximized. Then, we
can show that Ag = 1 — p%/pt, A} = 0, and A; =
p°/pt if p° > 0and Ao = 1—p%/p=, My = p°/p™,
and Ay = 0 if p° < 0. Hence, the desired pmf is a
conventional mixture (1) or (2).

5.2 Special Case 2: k=3

Suppose that we seek a pmf (5) with a specified popu-
lation correlation structure such that Ao = 0, or there
is no independent sampling. Let p;; = (p;'_; + pi;)/2,
Vi < j. Then the unique solution to (6)-(8) is

2 3 2(265,=1)(pd; = Pij)
1+37, Zj=i+1 ——pmn s

PPy

4 )
£ =1,2,3,4. The factor 26fj — 1 assures that each
term in the numerator has the appropriate sign. It
can be shown that (5) is a valid pmf for Y with the
desired population correlation structure because A, >
0,0=1,2,3,4, Y5, A¢ = 1, and p;; = pfy, Vi < j.

Suppose that Y; ~ U{1,2,...,n;},7=1,2,3. That
is, suppose that Y; is uniformly distributed over the
integers from 1 to n;. In this case, p?'j = —p;; and
pij = 0, Vi < j. Therefore, the mixing probabilities
A, £=1,2,3,4, become

/\[2

2 3 (267,-1)p
\ T+ )i =i —)EPJ_—J‘
£ =
4

There is less setup required to use the pmfs (5) when
all of the marginal distributions are discrete uniform.

Example 1. Let Y = (Y1,Y,Y3), where Y; ~
U{1,2,...,n},i=1,2,3, and Ry be the desired pop-
ulation correlation matrix, where

1 -04 03
R[ = -04 1 0
0.3 0 1

In this case, p?'j =1,Vi<j.

Suppose that Ag = 0. Then, Ay = 0.275, Ay =
0.425, A3 = 0.075, and Ay = 0.225. O

The mixtures (5) for which Ag = 0 have a short-
coming. For some values y € S; x S2 x S3, g(y) = 0.
Consequently, there are some values of Y that can
never be generated. By including go(y) in our com-
posite pmf with a nonzero mixing probability, we
can generate all of the possible values of Y, i.e., all
y € S; X Sy x S3.

Consider the following mixing probabilities: o,
where y9 > 0, and for £ =1,2,3,4,

2 3 2(26%,-1)(p%, - (1=70)i;
L= y0+ 2 i1 Ljmin : £+_ip£ 10)0)
1) [¥]

4 bl

Ye =
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Y,
Y; 0 1 2 3
1 | 0.1657 0 0.0233 0.0110
2 1 0.0132 0.1607 0.0261 0
3 0 0.2000 0 0
4 | 0.0028 0.0713 0.1259 0
5 | 0.0343 0 0.1127 0.0530

Figure 1: Example pmf g(y) with o = 0.

where
A
Yo S 7‘ - mtin {4—(:[—[5}

and

2 3 /3 + -
264 — 1)(pf + o7
d[ — l—j : Z ( 1) )(le pz]).

¥ =
i=1 j=i41 p’J —p']
A valid pmif for Y is
h(y) =Y veaely). (9)
£=0

If v0 = v*, then at least one of the other mixing
probabilities, v, £ = 1,2, 3, 4, will be zero.

IfY; ~U{1,2,...,n;},i=1,2,3, then d; = 1 for
£=1,2,3,4, and 7* = 4ming{)\,}.

Example 2. Recall Example 1. In this case, v* =
0.30. If yo0 = 7, then 1 = 0.20, v2 = 0.35, v3 = 0,
and y4 = 0.15. O

Suppose that k = 2. Peterson and Reilly (1993)
show that pmfs (9) give the user control over the
smallest joint probability, 6, in parametric mixtures
(4). If yo = v*, then the pmf (9) is a conventional
mixture (1) or (2). The next example illustrates
how the value of vy affects the nature of the pmf for
("1,Y2).

Example 3. Let Y1 ~ U{1,2,3,4,5} and Y5 be a
binomial random variable with 3 independent trials
and success probability 0.4. Suppose that the desired
value of p = 0.6 and A\g = 0. Then, A\, = 0.1715
and Ay = 0.8285. The pmf shown in Figure 1 is the
mixture (5), and the pmnf shown in Figure 2 is the
mixture (9) with yo = v* = 0.3431, v = 0, v =
0.6569. We sce in Figure 1 that g(y;,y2) = 0 for 7 of
20 members of S; x Sz, while all members of S; x S,
have positive probability with the pmf in Figure 2. O

Yi| o0 1 2 3

0.0198 0.0044
0.0198 0.0044
0.0198 0.0044
0.1194 0.0044
0.1092 0.0464

0.1462 0.0296
0.0254 0.1504
0.0148 0.1610
0.0148 0.0614
0.0148 0.0296

LW O DN -

Figure 2: Example pmf h(y) with vo = v*.

6 EXTENSIONS

In this section, we describe the limitations of our com-
position approach for £ > 4. We also show how to
use composition for continuous multivariate random
variables.

6.1 General case: k > 4

It would be convenient if we could use mixing proba-
bilities of the form
k-1 —k 2(26{; = 1)(p%; = 5s5)
1+ Zi:l Zj:i-f-l :

F =
P'j—Pl]

’\f - 2k—1 ) (10)

€ =1,2,...,2¥"! to construct composite pmfs for
general multivariate discrete random variables. How-
ever, there is no guarantee that mixing probabili-
ties of this form will be nonnegative. For example,
suppose that k = 4 and that Y; ~ U{1,2,...,n},
t = 1,2,3,4. Also suppose that the desired popu-
lation correlation structure is that shown for g;(y)
in Table 2. It should be that A\; = 1 and the re-
maining mixing probabilities are all 0. But, if we
assume that A\g = 0, then we find that our for-
mula yields A} = 0.875, Ay, A3, A5, A = 0.125, and
Aa, A6, A7 = —0.125.

The next example illustrates that the general for-
mula (10) for the mixing probabilities can work in
some cases.

Example 4. Let Y = (Y),Ys,Ys,Y,), where V;,
¢ =1,2,3,4, is a discrete uniform random variable.
Suppose that the desired correlation matrix is

1o @;4 pra/16
1 8 0
Ry = P23 A
P_Ta /4 P;a/ 8 1 P34/8
p1a/16 0 P34/8 1

Then, if A\; = 0, the mixing probabilities for the
extreme-correlation pmfs depicted in Table 1 are:
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A1 = 13/128; Xy, Mg = 15/128; A3 = 21/128; X5 =
9/128; A¢ = 11/128; A7 = 25/128; and g = 19/128.
We can generate values of Y with the population cor-
relation structure given by R, using a joint pmf (9)
with any 7o such that 0 < v < 9* = 9/16. The
mixing probabilities in this case are Ye = Ae — Yo/8,
£=1,2,...,8. 0

In a case where the mixing probabilities (10) com-
puted are invalid, we can resort to trying to find a
solution to (6)-(8) with an appropriate criterion to
guide our selection of a composite joint pmf. We are
also investigating procedures for adjusting the invalid
mixing probabilities so that they become nonnega-
tive.

6.2 Mixtures for continuous random vari-
ables

Let X = (X1,X3,...,X;) be a continuous random
variable, and let Fi(z;), 7 =1,2,...,k, be the cdf of
Xi. We assume that Var(X;) < o0, i = 1,2,...,k.
Then, if we refer to pdfs rather than pmfs, the mix-
tures (5) or (9) and the generation procedure KVAR
can be used to generate values of X.

Many opportunities to use the composite pdfs (5)
and (9) will arise in simulations of manufacturing sys-
tems. Two of the important distributions in these
simulations may be the negative exponential and the
continuous uniform.

Suppose that X;, 1 =1,2,...,k, is a negative expo-
nential random variable with arbitrary expectation.
Then, pf; = 1 and pj; = 1 —7%/6 = —0.6449, Vi < j
(Page, 1965). There 1s little setup required to use the
composite pdfs (5) and (9) because the extreme cor-
relation values are independent of the parameters of
the marginal distributions of the X;,i=1,2,... k.

Example 5. Let X; and X1 be negative exponen-
tial randorn variables with identical mean 1. Suppose
that p = 0.4. Figure 3 shows a plot of 1000 points
generated with the composite pdf (5) with Ag = 0,
A1 = 0.365, and Xy = 0.635. Figure 4 shows a
plot of 1000 points generated with the pdf (9) with
y0 = v* = 0.6, y1 = 0, y2 = 0.4. Along the lines of
our observation about Example 3, we see in Figure 4
that many more of the possible values of (X1, X2) are
generated when 7o = ¥ than when 70 = 0. O

Example 6. Let X = (X;, X2, X3) be a trivariate
random variable where each of the X;,:=1,2,3,1sa
negative exponential randorn variable. Suppose that
the desired population correlation structure is given
by

1 04 -02
Ry=1| 04 1 -0.1
-0.2 -0.1 1

7
Xs L )
\ /
\
\-- SN — — e
0 X, 7

Figure 3: Exponential Marginals, p = 0.4, 7o = 0.

Figure 4: Exponential Marginals, p = 0.4, y¢ = v".
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For a joint pdf of the form (5) with Ag = 0, we find
that A\, = 0.2128, A\, = 0.1520, A3 = 0.5167, and
A4 = 0.1185. Furthermore, v* = 0.5, and if y0 = 7",
then v, = 0.0608, v, = 0, y3 = 0.3648, v4 = 0.0744.
(]

Suppose now that X;, i« = 1,2,...,k, is a con-
tinuous uniform random variable. For all i < j,
p?'j =1 and pi; = —1. It follows that dy = 1,
£=1,2,...,25 1 Like the case where the marginal
distributions are all negative exponential, there is
very little setup required for our composition method
when the marginal distributions are all continuous
uniform, and the parameters of the marginal distri-
butions do not aflect the value of the mixing proba-
bilities A, and 7,.

Example 7. Let X = (X, X2, X3) be a trivariate
random variable where each of the X;, i = 1,2,3, is
a continuous uniform random variable. Suppose that
the desired population correlation matrix is given by

1 -0.25 0.2
Ry=1-0.25 1 04 ].
0.2 0.4 1

For a joint pdf of the form (5) with Ag = 0, we find
that A\, = 0.3625, Ay = 0.2625, A3 = 0.0375, and
Aq = 0.3375. Suppose we let v = 0.10 < 0.15 = v*,
then v; = 0.3375, v2 = 0.2375, v3 = 0.0125, 74 =
0.3125. O

7 CONCLUSIONS

Consider an optimization problem with k£ — 1 con-
straints. Suppose that A;, i = 1,2,...,k — 1, is the
random variable that represents the values of the co-
efficients in the ith constraint and that C is the ran-
dom variable that represents the values of the objec-
tive function coefficients. We can generate coefficients
with a specified population correlation structure for
synthetic optimization problems if we use our com-
position approach as the basis for generating values
of (Al,Ag,...,Ak_l,C).

Although the motivating application for us is the
generation of synthetic optimization problems, the
composite pmfs and pdfs that we present can be use-
ful in many practical simulation models of, for exam-
ple, manufacturing systermns.

More research is needed to find mixing probabilities
for composite pmfs and pdfs for general multivariate
random variables.
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