Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

X-WINDOWS SIMULATION OF STEAM POWER PLANTS BASED ON PHYSICS PRINCIPLES

Jose M. Giron-Sierra
Juan A. Gomez-Pulido
Bonifacio Andres-Toro

Departamento de Informatica y Automatica
Facultad dc Fisicas
Universidad Complutense de Madrid
28040 Madrid, SPAIN

ABSTRACT

We have developed a simulation of the ther-
modynamic cycle of Rankine, frequently used by steam
power plants. We adhered to the Object Oriented new
archetype of programming, using C++. The simulation is
based on a model we built from physics principles, with
differential cquations to consider time evolution of the
variables. The modeling has been done by assigning a
different object o each of the main subsystems (boiler,
turbine, condenser, etc.). The simulation is coordinated by
another object: the scheduler. We have two versions, for
demonstrations on PCs, or SUN with X- Windows. The
simulation is prepared for conceptual teaching, ready for
technical refinements and the embedding of artificial in-
telligence.

1 INTRODUCTION

When using Object Oriented Programming (OOP), it
is easy to develop a first prototype with basic functional-
lity, useful for testing, changing, elc., in order to lay good
foundations. Also, it is easy to further enrich the behavior
of the objects, again test and change, etc., advancing
gradually, by sure steps, to the final target. In this way, the
OOP promotes an incremental procedure for developing
software, with several inherent benefits (modularity, code
re-use, clarity and safety). But the important decisions are
needed just at the beginning: you have to think carefully
about the definition of objects for the problem at hand:
taxonomy, hierarchy, interactions.

Some time ago, our Department attacked the develop-
ment of a training simulator for a specific steam power
plant. Classic style: in FORTRAN, trying to reproduce the
conditions of a control room, including a mimic panel
with indicators, switches, etc. It took some years of

1201

extensive efforts. Now the power plant has been radically
modified, for ecological reasons, and our training
simulator needs a complete code re-writing and changes
in the human interface. But we dont want to make again
an ephemeral product. So we started to develop the foun-
dations of power plants simulators, using OOP to ensure
code re-use each time a plant is modified, or a new ap-
plication is envisaged.

Coming to the roots, we selected the thermodynamic
Rankine cycle as the reference, considering that almost
every steam power plant is based on this cycle.

After four engineering years, we got a first prototype,
written in C++.

At his present stage, our prototype is uscful for con-
ceptual training or engineering studies. As the worksta-
tions offer impressive graphic capabilities, with enough
processing power, we decided to extend the prototype,
embracing X-Windows for graphics and human interface.
Compared to a mimic panel, the screens offer striking
flexibility to visualize, in a motivating way, the static and
dynamic data of interest for understanding purposes.

In the following, we shall describe the main aspects of
our simulation.

2 STATIC CHARACTERISTICS OF THE
RANKINE CYCLE

After revising a variety of reference texts (engineering
thermodynamics; design, control, managing, modeling
and simulation of power plants; etc.), we felt the need of
developing a static simulation of the Rankine cycle, to get
acquainted with the essential phenomena. The result is a
program useful for conceptual study and efficiency

1202

BOILER

BOSNHK
AN\

.......

Giron-Sierra, Gomez-Pulido, and Andres-Toro

2N

ANNUNNNNINNNN NN N NNNNNNNY
S20200202020.0202020.¢ N

TURBINE
LOW PRESSUI

REXXRRRXXX

Figure 1: Screen Showing the Rankine Cycle

analysis, available for personal use on MS-DOS machines
with VGA.

It is well known that water poses difficulties to the
modeling of its thermodynamical behavior, as reflected
by technical charts and curves. We decided to incorporate
and handle the extensive empirical tables provided by the
literature (Grigull et al. 1990). We established a region of
interest, and arranged adequate measures to intervene
when simulations go to non-realistic zones.

Our program pays attention, with texts and pictures, to
some tutorial aspects. For example, one of the screens
(Figure 1) shows the reheated Rankine cycle, another
(Figure 2) illustrates the basic industrial structure of com-
ponents to achieve the cycle, etc. For analysis purposes,
the program interacts with the user, computing the charac-
teristics of whatever realistic cycle the user specifies, and

visualizing this cycle with the comresponding calculated
efficicncy data.

REHEATED RANKINE CYCLE

T
2 34 4 9
i 5 2
5 S5a
;Sa 3 5
is :
; 595 |
5”505:13 £ \
I 6 5 a
v h S
1s =L§qu§d (ideal) 5’ =superheat.vapor (lou press.) reheated
1a =Liquid (real) 5"s =Uapor (ideal) Ta=T2=T3 Tsh=T4=T%’
2 =gaturated liquid 5" a =Uapor (real) Tb=T5"g=75"a=T¢
3 =gaturated vapor 6 =saturated liquid x3=1 x2=x6=0
4 =superheated vapor(high press.) Pls=P13=P2=pP3=p4
5s =superheat.vapor(lou press.)(ideal) P6=p5'’'s=p5"' 3
5a =superheat.vapor(lou press.)(real) P5s=P5a=p5’ £4=555 sli=s6

Figure 2: Screen Explainining Thermodynamics of the Cycle

X-Windows Simulation of Steam Power Plants Based on Physics Principles 1203

3 MODELING BY COMPONENTS

Because the impact of Object Oricnted technologies
on software engineering, so to become the way to sur-
mount challenges of code size, GUI integration, data
safety, team work distribution and coordination, project
management, amortization, etc., the general impression
could be that the OOP is made for other purposes than
simulation or modeling, and is difficult to adapt it for our
field. But the fact is that the origin of OOP is the language
SIMULA, and the name says it all: it is made for simula-
tion. A glance to the recent literature on modeling and
simulation, attest that OOP is handy for discrete-event
cases, but some problems arise when considering con-
tinuous time processes. Let us comment this,

From the intuitive concept of object, it comes a
natural methodology for modeling: consider as objects
each of the components of a system, then interconnect the
objects imitating the structure of the real system, and let
each object work governed by their individual behavior
and the interactions with the other objects. If you usually
think in terms of block diagrams (as usual in the automat-
ic control disciplines, and promoted now by graphical
packages such SIMULINK, MATRIXx, VISSIM, elc.),
you may see it almost trivial. But consider, for example, a
lank with water, a pipe and a valve, so the water can leave
the tank through the pipe and the valve, when you open
the valve. These are three distinct objects, but the be-
havior of the tank is different if you open the valve, or if
you close it: the behavior of an object seems to be not
self-contained, but depends on other external objects.

The discussion is now open, in the field of modeling,
about perspectives for assigning objects: could be com-
ponents, or perhaps isolated phenomena or physical inter-
actions, etc. If you decide to follow any alternative, then
another problem comes: how to coordinate (if necded) the
interactions. This is a classical topic in simulation of
continuous time systems, because the real phenomena are
concurrent (all the components work at the same time),
but the computer is of sequential nature.

In our case, we followed the idea of assigning a dif-
ferent object to each of the main components of the basic
industrial Rankine cycle. That means a philosophy of
divide-and-conquer, to guide the modeling. Once defined
a taxonomy of classes, we have to find the correct be-
havior of each class: the differential equations which
model its dynamics. Because the handling of inheritance
slow down the execution of object oriented code, we
prefer to define simple hierarchies of classes, with very
few levels.

4 OBJECTS FOR MODELING A BASIC POWER
PLANT

By direct correspondence to the diagram of the
Rankine cycle, we created the following classes:

¢ Bumer

* Valve

¢ Source of Water
¢ Boiler

¢ Superheater

¢ Turbine

¢ Condenser
e Pump
Moreover, for the different states of water, we added
the following classes:
¢ Saturated Liquid
¢ Steam
e Saturated Steam

Classes encapsulate protected or public variables and
functions. For the building of the classes we defined the
following general template:

Protected members:

State variables: dimensions and other parameters,
variables related with the thermodynamical state.

Control variables: which the user can modify on
simulation time.

Objects: that are embodied.
Inner functions: for internal calculations.
Public members:

Constructors: to instantiate objects with dimensions
and initial values.

Calc functions: to calculate some values at a given
time.

Assign functions: to assign values (calculated or
retumed) to several state variables.

Init functions: to calculate some values at the next
interval.

Retumn functions: to know the values of the
variables.

Control functions: to increase or decrease the
values of control variables.

1204 Giron-Sierra, Gomez-Pulido, and Andres-Toro

The set of the classes we defined, includes 154 state
variables, 8 control variables, 11 constructors, 79 retumn
functions, 16 control functions, etc.

The classes Saturated Liquid, Steam, and Saturated
Steam, are very simple. For the protected section, they
have only state variables (temperature, mass, entropy,
enthalpy, pressure, etc.). Their public section include a
constructor, one assign function to set pressure & volume
(except for the Steam, that includes two assign functions
for pressure & enthalphy, and pressure & entropy), and
several return functions.

From the modeling perspective, the difficult task is to
establish the equations describing what happens inside
the components -boiler, turbine, superheater, condenser-
along the closed loop. For some of the components we
found enough references in the literature (Azuma 1975;
Dieck-Assad 1990; Knowles 1990; Masada 1979; Usoro
1977), for some others (for instance, the condenser) we
had to develop our own equations. In every case, our
approach was to comply with physics principles, making
a detailed analysis of mass and energy balances.

The equations of each component, are encapsulated in
the related class, and, after initialization, handled through
the calc functions. The Boiler includes, in the protected
section, objects (instances of the Liquid and Steam clas-
ses) with information about the water contained in liquid
state and in vapor state. Selecting the corresponding
states, the other components of the closed loop also in-
clude the adequate objects about water. These objects are
the instrument to use the tables with thermodynamics data
(we took advantage from the previous work, about static
characteristics, re- using the code about tables).

Pisb disb
Tisb hisb

There are no difficulties to build the Valve, Pump,
Bumer, and Source of Water classes, taking into account
the essential behaviors. Only the Pump requires more
detailed attention.

5 SIMULATION OF DIFFERENT CONFIGURA-
TIONS

Once created the classes needed to model the basic
plant, we can instantiate objects corresponding to ex-
amples of components. For example, a boiler, a turbine,
etc., having the specific dimensions of interest (when you
instantiate, you set the characteristics of an object). With
these objects (we shall use the term comp-objects, to
recall they refer to components of a plant), we are in the
position to exert several dynamic simulations, to study
transients (in Khadem et al. 1990 we found some interest-
ing orientations about compact simulators).

Because the modular nature of the comp-objects, it is
possible to combine them in several ways, according to
different configurations of power plants.

We created the class Scheduler, and instantiated an
object SCH1. The class is designed for running various
simulations, handling models, and taking care of the
human and machine interfaces (menus, files). The SCH1
is an example of the flexibility provided by the class
Scheduler. In SCH1 we included three different plant
configurations, so it is possible to simulate any of them.
Adding new configurations is a matter of inserting small,
simple, picces of code (function calls).

When running a simulation, the Scheduler send mes-
sages 10 the comp-objects, one after one, following the
water flow along the system modeled (for example,
clockwise in the case of the closed loop of Figure 3). In

Wix

sup Wss Wret ke

gy i hvsti

Pvst Wyst
hvst Tvst
vvst svst

Figure 3: Objects Combined for a Basic Plant Model

Figure 4: Planta Running a Simulation on X-Windows

X-Windows Simulation of Steam Power Plants Based on Physics Principles 1205
E (1L DE VAIOH LN UNA PLAN 1A INDUS IN ‘ ;;;;;; __.LI._S'"‘“:':___“‘)“O"E '/_: "
| Sistenat avnl MENU DE PARAMF TROS :’:::g:::::(::g:' :1
tesperatura de salida
= I we == e] [| o
Mosy ED 1-3000 0 MENY OF ol 15 whorte. ton 1n
[~oseo L] oxas it L
3 Uistama) M rtes ver :
- L) e CI] e e v el
] c-aonse s s,
ED nc-0.500 E snuls Gec). ‘Mas”adelante
=1 | | Gl oo B
O] s 2
h | EE
| —— |
Wvel Quidera (m) R mirene Presion (WPe) - Tenperstes (C) -rtes T Entaipie (RJAg)
| \‘/\ |
o™ - ' o ot " - . s -
Pves Tvss hves
----- Voturen sxpecifics (m3Ag) § iiae Enopia (W/(kg K)) 1.0 Fugo & Cuer (ki) it Causel (W0)
| %\/ —_C
. o i . i - . - - . " ey
— vy ——ves — — WV

response to the messages, the comp-objects change their
values and send information to the Scheduler. The comp-
objects with differential equations, integrate these equa-
tions to obtain the new values and change them. In this
way, the Scheduler provides a solution for the problem we
discussed before, of making work together the comp-ob-
jects.

6 VERSIONS. X-WINDOWS

The integrated environments offered by Borland lan-
guages (Borland 1990) are really beneficial for a rapid
development of tested code. So we used Borland C++ to
build a first version of an application we call Planta. This
application include the water thermodynamics tables, the
comp-objects, and SCH1. The human interface is solved
using BGI graphics.

Having approved the initial basis, we developed a
second version, more complete, for a SUN Sparcstation
and GNU G++ (public domain C++). We had a gratifying
experience of excellent portability from the MS-DOS
machine and Borland code, to the new platform.

The world of workstations offer X-Windows as the
important standard for a friendly human interface, on the
basis of a protocol for communication between different
terminals and computers. With X-Windows you have a
flexible GUI with windows and mouse, being supported
by distinct computing structures: one workstation alone,
X-terminals and host computers, local networks: the fact

is that X-Windows id designed for hardware-independent
distributed computing. There is now abundant literature
about X-Windows, for users, system administrators,
programmers (we employed Barkakati 1991), etc.

Because the evident advantages of X-Windows, we
determined to use it for our application. SCHI is the
object which includes the functions to handle X-Windows
as the means for mouse & windows, and for graphics.

Sevcral manners of programming are possible with
X-Windows, because it includes a variety of function
libraries you can use. These libraries are built following a
hierarchy: at the low level Xlib provides basic functions,
that are employed by the next levels up (Xt intrinsics, X
Widget Set, among other toolkits and complements), to
offer some structural units you can exploit for artistic

menus and nice operating metaphors. Usually, the more
beautiful, the more slow.

We were told that OOP could produce slow applica-
tions. Actually, our previous experience with
SMALLTALK was that inheritance mechanisms take pre-
cious time, so is better to define simple hierarchies. As we
wanted to evaluate how fast our simulations can run (cal-
culations, data processing), we decided to employ Xlib
to have the less delay for screen graphics.

Respect with the human interface, the main duty of
SCH1 is handling events through the event-driven X
programming model. Xlib furnish its context manager
utility routines for this purpose.

1206 Giron-Sierra, Gomez-Pulido, and Andres-Toro

To compare the impact of hardware on the speed, we
run the same simulation experiment with the MS-DOS
and with the X-Windows versions of Planta. Here are the
results:

MS-DOS Planta,
on 80386, 25 Mz, no copro.: 45 minutes, 3 seconds
on 80386, 33 Mz, with copro: 9 minutes
on 80486, 33 Mz : 4 minutes 15 seconds
X-Windows Planta,

on Sun Sparc 1+ : 37 seconds

The big screen of the Sun Workstation permits to
show a profuse set of windows, with curves visualizing
the dynamical behavior of the thermodynamical mag-
nitudes of interest, while running the simulation of a plant
(see Figure 4). We have speed enough to increase the
contents of the objects, and the structural difficulty of the
examples.

CONCLUSION

We wanted to know if OOP could be used for Steam
Power Plants simulations: the advantages are clear, but
there are some preventions about speed and connectivity
of comp-objects. With the development of Planta, we got
evidence that it is possible to obtain Object Oriented
combined models and fast simulations for our case.

The application Planta is written in C++, use X-Win-
dows, and is portable to any Workstation. The listing of
Planta takes 250 K of text. Planta is interactive: during
the simulations, the user can change some parameters (for
example, closing a valve, or increasing heat, etc.) and see
the effects on the process evolution. With Planta we have

a basis for the simulation of different examples of Steam
Power Plants.

In this moment we have two versions of Planta, for
MS-DOS and for Sun Sparcstation, ready for demonstra-
tion. We are writing extensive documentation about the

models (deriving the equations), and the Plania users
manual.

Next steps of our research will be the embedding of
artificial intelligence, by making each object a mini-ex-
pert with a specific set of rules, and the development of a
graphic editor to build examples of plants.

REFERENCES

Azuma, A. 1975. Modeling and Simulation of a Steam
Power Station. M.LT. Thesis.

Barkakati, N. 1991. X-Windows System Programming.
SAMS Mac Millan.

Borland Intl. 1990. Turbo C++ Users and Programmers
Guide.

Dieck-Assad, G. 1990. Development of a State Space
Boiler Model for Process Optimization. Simula-
tion, October 1990.

Grigull, U. et al. 1990. Steam Tables in SI-Units.
Springer Verlag.

Khadem, M. et al. 1986. A Compact, Interactive and
Color-Graphics Based Simulator for Power Plant
Analysis. 6th. Power Plant Dynamics, Control &
Testing Symposium.

Knowles, J.B. 1990. Simulation and Control of Electri-
cal Power Stations. John Wiley.

Masada, G. 1979. Modeling and Control of Power
Plant Boiler-Turbine- Generator Systems. M.LT.
Thesis.

Usoro, P.B. 1977. Modeling and Simulation of a Drum
Boiler-Turbine Power Plant Under Emergency
State Control. M.L.T. Thesis.

AUTHOR BIOGRAPHIES

JOSE M. GIRON-SIERRA is a Professor in the Depart-
ment of Computer Science and Automatic Control at the
University Complutense of Madrid, Spain, where he
received the Ph.D. degree in 1978. His research interests
are the simulation of chemical, energy, and manufactur-
ing industrial processes, with emphasis on the integration
of modem technologies. He is a member of the board
organizing the Spanish Simulation Society.

JUAN A. GOMEZ-PULIDO is an Assistant Professor in
the Department of Computer Science and Automatic Con-
trol at the University Complutense of Madrid, Spain,
where he received the Ph.D. degree in 1993. His research
interests are the simulation of energy industrial processes,
integrating modern technologies.

BONIFACIO ANDRES-TORO is an Associate Profes-
sor in the Department of Computer Science and Automat-
ic Control at the University Complutense of Madrid,
Spain. His research interests are the simulation of chemi-

cal industrial processes, integrating artificial intelligence
technologies.

