Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

AUTOMATIC MODEL INITIALIZATION FOR REAL-TIME DECISION SUPPORT

Lotfi K. Gaafar
Javeed Shaik

Department of Industrial Engineering
Clemson University
Clemson, SC 29634-0920

ABSTRACT

The research presented in this paper reports on a shop-
floor simulation interface (SFSI) which utilizes an
integrated bar code-based data acquisition system to
improve the real-time performance of an existing
simulation-based decision support system and expand
its capabilities to shop-floor monitoring and prediction.
SFSI utilizes the data acquisition system to detect any
shop-floor problem, and to update and initialize
simulation models to the current shop-floor status.
SESI can process the simulation model, determine its
initial conditions' requirements, retrieve the required
information from the data acquisition system, and
update the simulation model. This allows the
simulation to start with exact current system conditions
eliminating the need for time consuming warm-up
periods, thus improving the system's accuracy and real-
time performance.

1 INTRODUCTION

Discrete event simulation has been used extensively
to address the manufacturing system design problem. It
provides a flexible tool capable of dealing with all the
detail design decisions that must be made before
systems can become operational (Paul and Flanagan
1991). This is achieved by experimenting with a model
of the system to analyze its behavior under different
scenarios. In most cases, the simulation model is
discarded after the modeled system is implemented.
Considering the resources required to develop and
validate a simulation model, and the fact that the same
model, with minor changes, could continue to represent
the modeled system, a case can be made for continuing
to use the same simulation model throughout the
operational life of the modeled system. Using
simulation for operational decisions becomes more
appealing when we consider the complexity of the
manufacturing environment and the need for

875

quantitative analysis to evaluate the impact of
alternative decisions (Schmidt 1984). However, for a
simulation system to support operational decisions, it
must provide an easy way of modifying the simulation
model to- match the continuously changing system
conditions, and must present results to the decision
maker in a timely fashion.

This paper outlines a system structure that addresses
both issues. In this approach, the simulation system is
interfaced to a shop-floor data acquisition system
(DAS) to detect shop-floor problems by continuously
monitoring the collected data. When a problem is
detected, a simulation model of the shop-floor is
updated and initialized, using the same data, to match
the current shop-floor conditions. Simulation is then
executed to predict the effect of the detected problem
on the overall production plan.  Alternatively, a
problem could be specified manually by a user through
a user interface, in which case the model is updated
using the user specifications and initialized using actual
shop-floor data from the DAS.

As manufacturing systems are usually non-
terminating, one of the problems that slows down the
simulation response is the need to eliminate the initial
bias introduced by starting the system in an empty/idle
state (Pegden et al. 1990). However, in the outlined
system, this problem is eliminated since simulation
execution starts with the current shop-floor conditions.
Eliminating the initial bias speeds up the model
execution, thus providing critical support for real-time
simulation.

Current applications of real-time simulation are
focused mainly on shop-floor control. Mannivannan
and Banks (1991) developed a generalized framework
for controlling a manufacturing cell. This framework
utilizes a temporal knowledge-base to synchronize
events and their times of occurrences in both an actual
manufacturing cell and its simulation model. A
dynamic knowledge-base, implemented using frame
structures, 1s used for storing the results of the



876 Gaafar and Shaik

simulation. An event/time synchronization module
ensures that the events and event times used in
simulating alternative control scenarios are in
agreement with the corresponding values in the
manufacturing cell. The system is built using SIMAN
(Pegden et al. 1990) on a Sun workstation with the
dynamic knowledge-base implemented in common
Lisp.

Another application of the integration of simulation
software to a shop-floor control system is discussed in
Johnson et al. (1992). In their work, the simulation
model of the manufacturing system is interfaced to the
shop-floor control system allowing the control logic to
be tested for flaws, before it is implemented on the
shop-floor, to eliminate false starts. This type of
integration has also been broadly discussed by other
authors including Erickson et al. (1990), Harmonosky
and Barrick (1988), and Harmonosky (1990), with
emphasis on the benefits of a real-time decision support
system and the implementation problems of such a
system.

As stated before, the system presented in this paper
goes beyond shop-floor control to achieve the goal of
continuously monitoring the shop-floor status to
automatically detect any potential problems. Once a
problem is detected, the simulation model is
automatically updated to the current shop-floor
conditions, simulation is executed, and results are
presented to the user with a warning message if current
production plans cannot be achieved. The subsequent
sections discuss the system structure and explain its
utility using a case example.

2 SYSTEM STRUCTURE

The system presented in this paper, SFSI, is based on
RTST (real time simulation tool [Gaafar and Cochran
1989 and Cochran and Gaafar 1990]). RTST is a tool
which allows a user with no simulation experience to
interactively modify and experiment with an existing
simulation model within limits imposed by the expert
model developer to insure model validity. SFSI adds a
DAS interface to RTST to allow shop-floor events to be
automatically monitored and to provide the required
information to start simulation using real-time shop-
floor data.  Therefore, with the DAS interface,
simulation can be triggered either manually, through the
user interface in RTST, or automatically, as a result of
continuously analyzing the data collected by the DAS.
The overall system structure and functional logic of
SFSI are shown in Figure 1. The following discussion

explains each module in the system and the overall
logic of SFSI.

The Data Acquisition System (DAS) continuously
collects data related to the man, machine, and material
components of the manufacturing cell. Specifically, the
data collected consist of time/attendance, machine
status, part location, queue levels, transporter status,
and supervisory information. The DAS is bar code-
based with manual input capabilities (Gaafar 1989).
Data collected from the DAS is stored in the Dynamic
Database. As a result, this database stores the current
shop-floor data that include queue levels, machine and
transporter status, and transporter location. This data is
continuously compared to pre-defined performance
levels (stored in the Static Database) to detect any
alarming event (defined as a system parameter
exceeding one of the pre-defined performance levels).
In case of an alarm, the Dynamic Database provides the
current shop-floor conditions to the Model Initializer
which updates and initializes the simulation model.

The Static Database includes information regarding
the pre-defined shop-floor performance levels and other
production parameters. Pre-defined performance levels
include the expected queue levels on each machine and
different resource utilization levels. Production
parameters include production mix, the inter-arrival
times of different parts, the processing times of the
parts on individual machines, and the current
production schedule. The static database can be
updated manually using the menu-driven user interface
in RTST.

The Simulation Model Database stores SIMAN
simulation models of different parts of the shop-floor.
SIMAN requires two files, the model file and the
experiment file, to complete a single simulation model.
The model file typically describes the static and the
dynamic characteristics of the model, while the
experimental file defines the experimental conditions
under which the model is to be executed (Sturrock and
Pegden 1990).

The major contribution of this work comes from the
ability of SFSI to automatically initialize any
simulation model, written in SIMAN, to reflect the
current shop-floor conditions. The Model Initializer
performs this function by updating different fields in the
experimental file of the simulation model. Presently
SESI has the capability to initialize queue levels,
machine status, transporter locations, and transporter
status, and incorporate any anticipated machine
breakdowns. Fields in the experimental file are
initialized using information obtained from the
Dynamic Database.



Automatic Model Initialization for Real-Time Decision Support 877
Machine Cell
Data Acquisi’rion]
System
User Continuously collects J
* shop-floor data

<l RTST )

User interface and automatic
simulation execution

Dynamic

Simulation Database
Mode
Database
Y
Process data and compare
> to performance parameters
Static every delta t
Shop-floor Controller Database
Processing logic Any
performance
levels
Y exceeded?
( Model Inifializer )

Initializes the shop floor simulation model [
to current shop floor conditions )

v

Initialized Model

Figure 1: SFSI System Structure and Functional Logic

Work is being carried out to expand the capabilities of
the Model Initializer to incorporate additional data
including job priorities, job routing sequences, and part
arrival rates.

Model initialization is triggered in one of two cases:

1. the shop-floor data on queue levels, machine

status, or resource utilization exceed the pre-
defined limits set in the static database, or

2. amanual change is introduced by the user to

experiment with different production scenarios.

The Shop-floor Controller contains the routing
sequence of all parts and the overall processing logic.
By interfacing the Model Initializer to the Shop-floor
Controller, control decisions (such as a change in job
priorities to accommodate a hot job or stopping a
machine for a scheduled maintenance) can be
automatically detected and incorporated into the

simulation model.  This interface has not been
implemented yet, but is planned for the next phase in
this research. The following section will illustrate some
of the features of SFSI through an example that has
been shortened for space considerations.

3 CASE EXAMPLE

In this example, we will consider a manufacturing
cell consisting of two manufacturing stations. Station
number 1 runs two identical machines in parallel and
station number 2 runs one machine. Two products are
manufactured in this cell. Each product has its own
production sequence. The cell layout and part visitation
sequences are shown in Figure 2. Parts are routed
between stations via a fork lift truck.



878 Gaafar and Shaik

<=

{
B

Station 1 = ~ .

=
Station 2
our Legend
Part 1 R
Part 2 —

Figure 2: The Cell Layout and Part Visitation Sequences

In the following discussion, we will assume that a
user wants to investigate the overall system
performance after scheduling an hour of maintenance
on Lathel two hours into the shift. The SIMAN
simulation model for the system above consists of a
model file and an experimental file. The experimental
file is shown in Figure 3. Because of space limitations,
and since the proposed changes will only affect the
experimental file, the model file is not shown.

Starting from the main menu in RTST (not shown),
the user may select one of five options: generate a new
model, modify a model, execute simulation, display
output, or quit. In our example, the user chooses the
option to modify a model. This brings up the
modification menu (also not shown) which allows the
user to select a model from a list of available models
and select a modification option. In our example, the
user will choose the option to modify resources. This
will bring up the resource modification menu (Figure 4)
which is used to modify the parameters of any resource.

As shown in Figure 4, the resource modification
menu allows the user to choose any resource and
specify a scheduled break or alter its capacity. In our
example, the user specifies the start time and the
duration of the scheduled maintenance (120 and 60
respectively). The supervisor then quits this menu and
selects the option to execute simulation from the main
menu.

The changes made by the shop-floor supervisor are
conveyed to the Model Initializer module of SFSI. The
Model Initializer runs the appropriate subroutines to
incorporate the changes into the experiment file. In this
example the SIMAN element 'SCHEDULES' is added
to the experimental file to model the scheduled

maintenance. At the same time, the Model Initializer
scans the Dynamic Database for the current shop-floor
conditions. The Dynamic Database shows two jobs, of
type 2, in Lathe2's queue (L2Q). The Model Initializer
incorporates this information into the experiment file
using the SIMAN element 'ARRIVALS' which is used
to pre-load queues.

BEGIN;

1 PROJECT, Robot Cell, Clemson Univ, 1/1/1993;

2 ATTRIBUTES: 1,time_in:2,0p_time;

3 VARIABLES: 1,inventory1,100:
2,inventory?2,250;

4 QUEUES: 1,INQ:2,L1Q:
3,L2Q:4 MQ:5,0UTQ;

5 RESOURCES: 1,Lathel,1:2,Lathe2,1:
3,Mill1,1;

6 STATIONS: 1,IN:2,Lathe:3,Mill:4,0UT;

7 TRANSPORTERS:  Truck,,1,60-0.0-0.0-1.0, 1-
Active - ZONE(1);

8 SEQUENCES: 1, IN&1,0ptime=20&2,0p_time=25&
1,0p_time=15&O0OUT:
2, IN&2,0p_time=30&1,0p_time=25&
OUT;

9 DISTANCES: 1, 1-4, 120, 200, 140/ 50, 125/ 125;

10 TALLIES: 1,Time in IN1 Queue:
2,Time in IN2 Queue;

11 DSTATS: nq(1),Number in OUT1 Queue:
ng(2),Number in OUT2 Queue;

12 REPLICATE, ,.7200;

END;

Figure 3: The Experimental File for the System in
Figure 2

The 'ARRIVALS' element requires other parameters
including the station number where the part is currently
residing, the routing sequence followed by the part, and



Automatic Model Initialization for Real-Time Decision Support 879

the current index within the part sequence. SFSI
updates these parameters to 1, 2, and 3 respectively.
The entity attributes, time_in (time when the entity
entered the system) and op_time (time required to
process the entity on Lathe2) , are also updated as part
of the 'ARRIVALS' element. Figure 5 displays a small
portion of the experimental file where the above
mentioned changes have been incorporated. These
changes have been underlined in Figure 5 for clarity.

As outlined in Figure 1, the initialized file is
transferred to RTST which executes the simulation for
the specified time interval (7200 time units) and
displays the results. The RTST output report (Figure 6)
shows that the system is unbalanced because of the over
utilization of Lathel. The utilization of Lathel is 100%
which exceeds the pre-defined utilization limits (90%)
in the Static Database, designed to account for
emergencies. The report also shows that the production
schedule will not be completed. RTST has the
capability to generate graphical output on any of the
different statistics under consideration. The user can
visualize the extent of over-utilization by selecting the
appropriate graph from the graphics display menu
(Cochran and Gaafar 1990).

RTST(V 2.0)

RESOURCE MODIFICATION MENU

EXISTING RESOURCES:

NUMBER : 1 NAME : Lathel CAPACITY : 1

( USE F7 TO TOGGLE BETWEEN RESOURCES )

SCHEDULED MAINTENANCE |

RESOURCE NUMBER : 1

START TIME: 120 DURATION : 60

F1 = HELP

Figure 4. The Resource Modification Menu

The output clearly indicates to the user that
scheduling Lathel two hours from the start of the shift
for preventive maintenance is not a feasible option.
Following the same steps, the user can now analyze
other options of scheduling maintenance on Lathel
(such as shortening the maintenance time, or rerouting
parts).

In this example, SFSI has helped the user to 'look-
ahead' and analyze the possible results of a decision on

the cell productivity while automatically incorporating
information not supplied by the user. In this respect,
SFSI works effectively as a decision support system for
the shop-floor personnel to analyze routine shop-floor
problems in real-time. While this example showed an
SFSI session based on a user triggered event, the system
will follow similar logic if an event was automatically
detected when a performance level is exceeded. For
example, if the Dynamic Database shows 6 parts in the
L2Q while the limit in the Static Database is only 5,
simulation will automatically be executed after SFSI
updates the model to the current shop-floor status.

BEGIN;
1 PROJECT, Robot Cell, Clemson Univ,1/1/1993;
| |
| |
5 RESOURCES: 1,Lathel,SCHED(1): 2,Lathe2,1:
3,Mill1,1;
6 ARRIVALS: 1,que 0 3:
2,queue(2),1,54,25,1,2,3;
7 SCHEDULES: 1,1*120,0*60,1;
| |
| |
END;

Figure 5: Part of the Experimental File After
Changes

4 SYSTEM IMPLEMENTATION

As mentioned earlier, SFSI is developed using RTST
as a platform. The data extraction and model
initialization capabilities were added to the RTST
program by incorporating additional routines (using the
C programming language) in two separate modules.

Current implementation efforts are focused on the
automatic interfaces between the DAS and the Dynamic
Database, and between the Model Initializer and the
Shop-Floor Controller, which are not yet fully
developed.

SFSI is implemented on a personal computer (PC)
platform which was chosen because of the PC
availability at the shop-floor level and its great
integration potential. Even though SFSI will run on any
PC configuration, an 80386 microprocessor with clock
speed of 20 MHz or more, and a math co-processor are
highly recommended. The SFSI session described in
the previous section required approximately 6 minutes
on the PC/386 platform.



880 Gaafar and Shaik

3k 3k 3k 3k 3¢ ok ok e ok ok 3k 3k ok ok 3 ok ok ok ok ok ok 3k ok ok ok

RTST OUTPUT REPORT

30 o 3 o k¢ 3k e e ok 3k ok ok ok ok ok A ok ok oK ok ok ok ok ok

WARNINGS!
PERFORMANCE LIMITS ARE EXCEEDED.
RESOURCE # 1 (Lathel) IS OVER
UTILIZED (100%)

PRODUCTION SCHEDULE FOR PART #1 IS
NOT SATISFIED (90 %)

THE FOLLOWING GRAPHS ARE AVAILABLE :

TYPE No.
Queues 1-5
Resources Utilization:

Lathel 6
Lathe2 7
Milll 8
Transporters:

Truck 9

Enter a graph number ( 0 to quit ) :
END RTST REPORT

Figure 6: Output Report from RTST

6 CONCLUSION

SFSI is a system that extends the useful life of a
simulation model by supporting model reusability.

This is achieved by automatically updating the
simulation model based on changes on the shop-floor,
using data obtained from a DAS.

A byproduct of the DAS interface is the ability to
start simulation using current system conditions which
eliminates the need for long warm-up periods and
supports real-time execution.  SFSI continuously
monitors the shop-floor status to automatically detect
any potential problems. When a problem is detected,
the simulation model is automatically updated to the
current shop-floor conditions, simulation is executed,
and results are presented to the user with a warning
message if current plans cannot be achieved.

The database interfaces in SFSI are still under
development, while the Model Initializer is fully
functional. While 6 minutes could be considered a
reasonable response time for the presented case
example (which involved 15 replications), it only

represents one scenario or decision alternative. The
user might have to consider many other alternatives, in
which case a faster response will be required.
Considering that more powerful PC platforms (e.g., a
PC/486 with a clock speed of 66 MHz) are available at
reasonable prices, the system response can be greatly
improved at limited expenses. Future research will
focus on the database interfaces and adding an
automatic model selection capability to SFSI. In this
case, SFSI would be able to automatically select the
appropriate simulation model from the Simulation
Model Database based on the triggering event.

REFERENCES

Cochran, J. and Gaafar, L. 1990. "An integrated Shop-
Floor Simulation-Based Decision Support Tool for
Shop-Floor Environments." Proceedings of the 1990
Computer Simulation Western Multiconference, pp.
81-86, San Diego, CA.

Erickson, C., Vandenberge, A., and Miles, T. 1989.
"Simulation, Animation, and Shop-Floor Control."
Proceedings of the 1990 Winter Simulation
Conference, pp. 649-653, San Diego, CA.

Gaafar, L. 1989. An integrated Shop-Floor Simulation-
Based Decision Support Tool, Unpublished Masters
Thesis, Arizona State University, Tempe.

Gaafar, L. and Cochran, J. 1989. "Developing a Real-
Time Simulation Tool for Shop-Floor Decision
Making." Proceedings of the Summer Computer
Simulation Conference, pp. 79-85, Austin, TX.

Harmonosky, C. 1990. "Implementation Issues using
Simulation for Real-Time Scheduling." Proceedings
of the 1990 Winter Simulation Conference, pp. 595-
598, San Diego, CA.

Harmonosky, C. and Barrick, D. 1988. "Simulation in
CIM Environment : Structure for Analysis and Real-
Time Scheduling." Proceedings of the 1988 Winter
Simulation Conference, pp. 704-711.

Johnson, E., Thompson, L., and Fontaine, R. 1992. "An
Integrated Simulation and Shop-Floor Control
System.” Manufacturing Review, Vol. S, No. 3, pp.
158-165.

Mannivannan, S. and Banks, J. 1991. "Real-Time
Control of a Manufacturing Cell Using Knowledge-



Automatic Model Initialization for Real-Time Decision Support 881

Based Simulation." Proceedings of the 1991 Winter
Simulation Conference, pp. 251-260, Phoenix, AZ.

Paul, R. and Flanagan, M. 1991. "On-line Simulation
for Real-Time Scheduling of Manufacturing
Systems." Industrial Engineering, Vol. 23, No. 12,
pp. 37-40.

Pegden, C., Shannon, R., and Sadowski, R. 1990.
Introduction to Simulation Using SIMAN, McGraw-
Hill, Inc., Princeton Road, Hightstown, New Jersey
08520.

Schmidt, J. 1984. "Introduction to Simulation”
Proceedings of the 1984 Winter Simulation
Conference, pp. 65-73.

Sturrock, D. and Pegden, D. 1990. "Introduction to
SIMAN." Proceedings of the 1990 Winter Simulation

Conference, pp. 109-114, San Diego, CA.

AUTHOR BIOGRAPHIES

LOTFI K. GAAFAR is an Assistant Professor of
Industrial Engineering at Clemson University. He
received the MSIE and Ph.D. degrees form Arizona
State  University. His current interests are in
manufacturing modeling and simulation. He is a senior
member of SCS, IIE, and SME.

JAVEED SHAIK is a graduate student in the
Department of Industrial Engineering at Clemson
University. He is researching computer simulation in
real-time control. He received the BS degree in
Production and Industrial Engineering from R. V.
College of Engineering, India. He is a student member
of IIE and ASQC.



