Proceedings of the 1993 Winter Simulation Conference

G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

AUTOMOD

Van B. Norman

AutoSimulations
655 Medical Drive
Bountiful, Utah 84011, U.S.A.

ABSTRACT

AutoMod is an industrial simulation system that combines
CAD-like drawing tools with a spreadsheet interface and a
powerful, engineering-oriented language to model man-
agement strategies, control systems, and material flow.
Unlike most other simulation languages, AutoMod’s pow-
erful graphical interface accurately captures the physical
constraints of distance, size, and space, resulting in accu-
rate three-dimensional detail.

1 INTRODUCTION

AutoMod contains a set of movement systems that
have been developed from AutoSimulations Inc.’s (ASI)
experience in industrial automation. Therefore, the under-
lying model logic is automatically generated from the
geometry and the movement system input parameters. The
3-D animation is an automatic part of model development
and exactly depicts the logic of the model.

AutoMod offers advanced features to allow the simu-
lation of complex movement (kinematics and velocity) of
equipment such as robots, machine tools, transfer lines, and
special machinery. All graphics are represented in three-

Q‘ﬁ

Kenneth D. Farnsworth

AutoSimulations
655 Medical Drive
Bountiful, Utah 84011, U.S.A.

dimensional space with unlimited viewing control, includ-
ing: translation, rotation, scale, light-sourced solids, per-
spective, and continuous motion viewing.

AutoMod consists of two environments. The Model
Development Environmentis for defining the model's logic
and graphics. The model is then compiled into an execut-
able model and run in the Simulation Environment, where
the simulation and animation run concurrently. The ex-
ecutable model is fully interactive; it can be stopped at any
instant in simulated time to examine statistics and model
status and to conduct interactive modeling experiments.

2 MODEL DEVELOPMENT ENVIRONMENT

An AutoMod model consists of one or more systems.
All models require a logical system, which can be either a
Process system or a Simulator system. A Process system is
used to define control logic for material handling applica-
tions using AutoMod syntax. A Simulator system defines
model logic for complicated process flows and routings
using a spreadsheet interface. In addition to a logical
system, a model may contain any number of movement
systems.

C rue D fa JC rormat

; R 5 I Fi_e,,'s., .

F
A2
A B8 D E A

1 atia 3 e O ed g R Pre P alenda

> Shear Shear1 FIFO Yes Shift
3 Shear2 FIFO No shirt1&2 |
4 Tyrret Press | TPressi SameSetup Yes Shift1&sad

3 TPress2 | SameSetup No shirt+oT |
6 Punch Press |PPressi SameSetup No Shft1+4Hr
7 Strike Brakel SamebDie Yes oT
8 Brake?2 UpstreamSetup |No Shift2
9 Deburr Deburri UpstreamSetup |No . Shift1&2
10 Deburr2 FIFO No Shift1 —

o |$-

Figure 1. AutoMod's Spreadsheet Interface

249

250 Norman and Farnsworth

3 SIMULATOR SYSTEM

AutoMod's Simulator system is designed to model
complicated routings of multiple products, showing the
competition for equipment, personnel, tools, and raw ma-
terials. This competition for finite resources is modeled
using the Simulator system's spreadsheet interface to de-
fine all factory resources, products, and routings.

3.1 Factory Resources

Factory resources represent standard elements of a
facility, such as stations (places where work is performed),
operators, and tools. These resources can be grouped into
families based on their ability to perform interchangeable
tasks. Parts travel from family to family to be processed.
Operators can have additional characteristics, such as effi-
ciencies and certifications. The user may also create
custom graphics for both stations and operators.

All types of factory resources may have calendars
attached to them, which can specify shifts, downtimes,
preventative maintenance, holidays, and other calendar-
based events and constraints.

3.2 Products

Products are both the parts that travel through the
system and the routings that define that travel. Parts can be
manufactured or purchased. The user can also represent a
Bill of Material, in which subparts are consumed by other
parts during processing.

A part's routing describes the steps required to pro-
cess the part into a final product. The routing may define
the necessary processing time, machine setup, batching
criteria, and value the part has at each step in its process.
You may also specify alternate routings, which is useful
when modeling rework procedures.

3.3 Demand

The user can define all orders for parts, including
parts that are in-process (WIP) at the simulation start time.
All orders, including WIP lots, can have a start and a due
date. In addition, WIP lots can have a specified starting
value, representing their worth at the beginning of the
simulation.

3.4 Rules and Task Selection

The two decision-making entities in the Simulator
system are stations and operators. These two resources can
decide what lot to work on next by using task selection
rules. There are 16 default task selection rules, with six
versions of each rule. These rules, which are based on

criteria such as First In, First Out (FIFO), same setup,
earliest due date, and many other factors, can help a station
or operator select alot to process. Rules can branch to other
rules or can skip to another part of the same rule. Many
standard rules check for preventative maintenance orders
first, and can also check whether all necessary tools and
resources are available before claiming a lot to process.

3.5 Customization

The Simulator's spreadsheets have over 200 standard
fields that allow you to define your factory. In addition,
there are over 90 custom fields and over 70 User Exits,
which allow you unlimited flexibility when building a
model. The User Exits are located at decision points
throughout the simulation and allow users to tailor the
default behavior of the Simulator to match the real world.
These custom fields and User Exits help the Simulator to be
easy-to-use, yet powerful.

4 PROCESS SYSTEM

The process system provides the general purpose
simulation features required for simulation. Even if you
use the Simulator system to model your control logic, there
are entities in the Process system that you may use, such as
resources, queues, variables, and order lists.

AutoMod’s process system is both powerful and easy
to use. Process logic is defined in process procedures.
Process procedures can contain complex logic that controls
the flow of manufacturing materials, contends for re-
sources, or waits for user-specified times. AutoMod’s
process procedures use an easy-to-use, English-like lan-
guage that contains:

 if-then-else logic

* while loops

¢ access to global and load-specific variables

* actions to use, take down, or bring up resources

* actions to multiply loads

* actions to choose processes, resources, or queues

based on their state

begin
move into FixQ
if FixedYet = 1 then send to die
else
begin
choose a resource from among Picker(1)
Picker(2)
whose current loads is minimum
save as ReclIdle
use RecIdle for uniform 10, S min
set FixedYet to 1
send to SizeWay
end
end

Figure 2. Sample Procedure Logic

AutoMod 251

There are virtually no limits to the size and complex-
ity of the logic that can be developed. And there is rarely
a need to use a lower-level programming language, be-
cause AutoMod provides the flexibility required to simu-
late any task.

4.1 Loads

Loads are the active elements in AutoMod's Process sys-
tem. They are created in three ways: from a creation
specification using one of the standard statistical distribu-
tions, deterministically from reading data from a file, or
based on user-defined distributions. Loads are named and
may have user-defined attributes. These attributes are
variables which are unique to the load. For example, aload
that represents a car might have load attributes that indicate
what color it is, what level of trim it has, or whether it
receives air conditioning. These attributes change as a
result of the model logic in the process procedures. Like
most entities in AutoMod, loads can have 3-D graphics.

Loads that flow through the process logic have the
ability to claim and release resources, enter and leave
queues, be added and removed from order lists, change the
value of variables, counters, and load attributes, create a
new load or kill an existing load, read from and write to
external files, and determine the next process. All
interarrival and event times can be represented by deter-
ministic values or be derived randomly from one of several
statistical distributions.

4.2 Resources

A resource is a general and flexible entity that can be used
to represent a machine, an operator, a fixture, a container,
etc. Often several resources are used in a process in a
similar fashion.

There are two levels in which the resource state is
categorized. The first level is whether the resource is Busy
or Idle (its state with respect to a load). The second level is
the resource’s availability, whether it is Up or Down.

Loads use resources for specified processing times,
which are based on a standard time. Users can create
variations of this standard time using either the random
number distributions that are built-into AutoMod or using
custom distributions. The processing times can be general
for all loads or specific to each product type.

Resources can have downtimes. During the down-
time period, the resource accumulates statistics in the down
state. When the resource becomes available, it continues to
work on the preempted load for the remaining processing
time. Mean-Time-Between-Failure (MTBF) and Mean-
Time-To-Repair (MTTR) are included and can be based on
the same built-in statistical functions or on custom curves.
The standard MTBF is based on model simulated time.

AutoMod can easily accommodate MTBF based on ma-
chine run-time or machine cycles.

4.3 Queues and Order Lists

When loads are modeled, they must always reside in a
physical space. AutoMod uses two types of physical space:
movement systems and queues. Queues have capacities
which can range from 1 to infinity. If a queue is full (it has
reached its capacity), the next load must wait until there is
room. Loads within queues can be sorted and sequenced
using order lists. The queue contents can be shown dynami-
cally during the animation.

Loads may be sorted and delayed at a process or
queue until they are explicitly ordered to leave. A load can
be directed to place itself on an order list. An order list is
not a physical element; rather, it is a way of sorting loads
that are delayed for some reason. Once on an order list, the
load still remains in the process and physical territory it was
in prior to being put on the order list.

The load can be ordered from that list by another load
or from an order action in another part of the model. The
load that has been ordered may continue onits way, oritcan
be sent to another process by the ordering action.

Order lists are not attached to specific processes.
Many processes may place loads on the same order list.
Likewise, when a load is ordered to a process, that process
has no control of where it is coming from.

4.4 Variables and Counters

AutoMod provides a number of ways of storing values
during the simulation period. Variables are data structures
that can change as aresult of a load executing the appropri-
ate statement in a process procedure. Variables can be used
in calculations or can be logically compared to other
variables. In addition to integer and real numeric values,
variables can also represent:

* Process Names

e Queue Names

* Resource Names

¢ Order List Names

* Counter Names

* Load Names

By storing the name of an AutoMod entity into a
variable, extensive if-then-else logic can be avoided. One
example of this would be sending a load to a variable that
has the process name stored into it.

Counters are similar to variables, but are positive
integers only and have a maximurmn capacity. A load trying
toincrementacounter already at its maximurm capacity will
be stopped until it can successfully perform the increment.
Statistics are kept on counters throughout the simulated
period.

252 Norman and Farnsworth

4.5 Blocks and Traffic Limits

AutoMod is capable of controlling the number of loads that
are either in processes or within physical space in the
facility. Traffic limits prevent too many loads from being
in a process, while blocks provide the same utility for
physical space.

Blocks are like counters in that they use a set limit—
they cannot be incremented beyond the limit. Normally the
limit is one, so only one entity can occupy the physical
space at a time. Blocks are commonly used at AGV

X1 HR XN KR X
SIRRX KX KX X
XXX XK XXX
X

X X XXX

X
X
X¥ XK K
X
X'

AutoStat also allows you to make multiple runs using
different data factors, and to compare those runs to find the
most significant factors. This helps make model analysis
easier.

s PICTURE CONSTRUCTION IN 3-D

Both dynamic and static objects can be displayed in
the model. Dynamic objects are things such as loads,
resources, queues, and statistics.

The static layout is the background graphics of the

Figure 3. An AutoMod Model at Runtime

intersections to prevent vehicles from colliding.

AGVs automatically increment/decrement blocks
when entering/leaving blocks. Blocks can also be
incremented and decremented from process procedures.
This is useful, forexample, to prevent having abridge crane
and an AGV collide.

4.6 Run Control

By using run control features, various experimental
runs can be compared. Run control defines the length of the
simulation (in simulated time units), when reports are
printed to a file, and when statistics are reset. Resetting the
statistics allows the model to run for an initialization, or
“priming”, period prior to running the model in a “steady
state” period.

AutoMod's statistical package, AutoStat, helps you
determine warmup periods, allowing “warm-up statistics”
to be disregarded and “steady state” statistics to be used.

plant. It may contain column lines, aisle markings, and
walls. Labels can identify specific areas in the facility.

There are several ways to create a layout of the
system that is being modeled. AutoMod comes with a
three-dimensional graphics editor that allows the user to
construct objects from standard graphics primitives suchas
Cone, Box, Hemisphere, etc. These primitives can be
selected, placed, and scaled to create any entity.

AutoMod also has an optional utility called IGES/
Sim. The acronym “IGES" stands for the Initial Graphics
Exchange Standard. IGES is an industry standard ex-
change format for translating the graphic data from one
CAD system to another. Any IGES file of a plant layout
that was created from a CAD system can be easily imported
into AutoMod using IGES/Sim. IGES/Sim can also export
AutoMod graphics files to the IGES format.

AutoMod 253

6 SIMULATION ENVIRONMENT

As in AutoMod’s Model Development Environ-
ment, the user has complete control of the model in the
Simulation Environment. AutoMod uses concurrent ani-
mation—the simulation progresses as the animation pic-
ture is being updated. The model can be viewed with the
animation on, or run with the animation off. With anima-
tion off, the simulation doesn’t draw the picture but still
performs all simulation calculations. The user can suspend
the simulation at any instant and review statistics through
pop-up windows, take resources down, set break points or
alarms, and control the view of the animation without
constraint.

6.1 View Control

AutoMod provides a comprehensive, flexible, and
easy-to-use method of interacting with a model during
model execution. Figure 2 shows the View Control win-
dow. This window provides the ability to position the
graphics of the model in any orientation. The View Control
allows rotation, translation, and scale to be dynamically
changed with respect to all three axes (X, Y, and Z). The
animation picture can be shown in solid mode with all the
correct Z sorting, so that hidden lines and surfaces are
accurately represented. The animation picture can be
shown in either perspective mode or orthographic mode.

All view control actions have keyboard equivalents,
and there is a friction toggle option which allows the user
to spin or translate the model picture continuously. These
are helpful features when the model’s animation is being
video taped or filmed. AutoMod has a filming package,
AutoView, that allows the user to create a script to perform
“walk-throughs™ of the model, panning, zooming, and
following a load or vehicle through a process. AutoView
can make presenting simulation results easier and more
effective than if the model was simply shown from start to
finish.

6.2 Debugging

AutoMod provides advanced debugging and tracing
abilities. The model can be single-stepped at any time
during the animation. Also, the ability to set breakpoints
and alarms allow the user to suspend the simulation when
a certain event occurs or when a specific clock time is
reached.

6.3 Model Output

AutoMod provides comprehensive reports. The re-
ports can be displayed upon request at any time during the
animation. Printed versions of the reports can also be

specified.

AutoMod automatically keeps track of many statis-
tics, and the reports are linked to specific entity types, such
as:

* movement systems

* processes

* queues

* resources

e order lists, etc.

Reports can be sorted alphabetically or numerically
for easier analysis. The user can also develop and generate
custom reports from within process procedures. User-
defined Business Graphs can be checked and updated as the
simulation progresses.

If model logic is created with the Simulator system,
there are additional reports and Gantt Charts available
while running the model. These Gantt Charts and reports
are useful for both debugging the model and for comparing
results from multiple runs.

AutoStat provides enhanced statistical analysis ca-
pability for AutoMod. AutoStat can determine the model
warmup and compute confidence intervals for model statis-
tics. Its Design of Experiments feature reduces the number
of experiments required to determine which values, from a
set of options, provide the best system performance.

7. SUMMARY

AutoMod is a industrial-oriented simulation system that
allows the user to define the physical elements of a system
using CAD-like graphics and to define the logical portion
of the system using a spreadsheet interface and a powerful
procedural language. The accuracy and degree of detail
with respect to movement systems is unapproached.

AutoMod allows the construction of very large, com-
plex models. In fact, AutoMod’s structured language has
proven that the larger the project, the more benefits AutoMod
has over alternative approaches.

AutoMod provides three-dimensional graphic ani-
mation. There are no limits to the views or the size of the
picture to be shown. The degree of animation realism is
also unmatched, as AutoMod provides light-sourced-solid
graphics with Z depth sorting, so all entities are shown in
the correct relation to one another on the screen.

Enhancing AutoMod's already robust capabilities
are the following extensions and utilities:

» AutoSched - Provides a powerful, fully featured
finite-capacity planning and scheduling system.

* AutoView - AutoMod's post-processed animation
package that allows you to create a directed “walk-
through™ of the model by panning, zooming, and
moving back and forth in time and space,
synchronized to the simulation clock.

» AutoStat - Provides enhanced analysis of the statis-

254 Norman and Farnsworth

tics generated by AutoMod by calculating mini-
mums, maximums, confidence intervals, and steady
state information.

 IGES/Sim - A CAD-transfer utility that
allows graphics to be brought into AutoMod from
aCAD package, and to be written from AutoMod to
a CAD package.

REFERENCES

AutoSimulations, Inc. 1993, AuroMod User's Manual.
AutoSimulations, Inc. 1993, AutoSched User's Manual.

AUTHOR BIOGRAPHY

VAN B. NORMAN, President of AutoSimulations, Inc.,
received a B.S. in mathematics at the University of Utah in
1969. He spent 6 years at Eaton-Kenway, where he
implemented the first simulation animator. In 1982, using
his experience in factory automation and simulation, he co-
founded AutoSimulations, Inc., where he co-authored
AutoMod, AST’s first graphic simulation software. He has
authored papers on the application and the future of simu-
lation in manufacturing. His interests are in world-class
manufacturing operations and simulation research.

KENNETHD.FARNSWORTH, Softwarc Development
Manager of AutoSimulations, Inc., has been with the com-
pany for eleven years. He has been involved with the
development of many products, including AutoMod,
AutoMod II, and AutoView. He is currently managing a
special project team that is developing AutoSimulations'
next generation of simulation development tools.
Farnsworth holds a B.S. in Physics from Brigham Young
University.

