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ABSTRACT

Marsaglia and Zaman recently proposed a new class of
random number generators, add-with-carry and subtract-
with-borrow, which are capable of quickly generating very
long period (pseudo)-random number sequences using
very little memory. We show that these sequences are es-
sentially equivalent to linear congruential sequences with
very large prime moduli. As a consequence, the theoret-
ical properties of such generators can be studied in the
same way as for linear congruential generators, namely
via the spectral and lattice tests.

1. THE AWC AND SWB GENERATORS

Marsaglia and Zaman (1991) recently proposed two
new types of random number generators, called add-with-
carry (AWC) and subtract-with-borrow (SWB). The AWC

generator is based on the recursion

(1)
(2)
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(zi—s + Tor + ¢i) mod b,
I(I.—g +Zi-r+0C 2 b))
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where r > g are positive integers called the lags, ci is called
the carry, and I is the indicator function, whose value is 1
if its argument is true, and 0 otherwise. That generator is
extremely fast, since it requires no multiplication, and the
modulo operation can be performed by just subtracting b
if Zi—s + Ti—r + ¢; > b. The maximum possible (or full)
period is " +b° — 2. It is attained when M =b"+b°—11is
prime and b is a primitive root modulo M. For example,
one can take b around 2°!' and r around 20, yielding a
period of approximately 262° if the full period conditions
are satisfied. This is much beyond what could be required
by any application.

When b is large enough (see James 1990), one can
produce a U(0, 1) variate at each step by

®3)

More generally, one can use L successive values of z,

u; =z,/b.
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to produce one u, as follows:

L-1

-L

u; = E Trig, b’ 7C.
j=0

If b is small, or if more precision is desired, take a larger

(4)

L. Here, it is important to note that the digits of u; are
filled up from the least significant to the most significant
one. The sequence (4) is an analogue of the Tausworthe
sequence (Tausworthe 1965). For the latter, the digits of
u; are filled up by a linear feedback shift register sequence
modulo two (so, b = 2).

The SWB is based on a similar recursion:

= ZTi—r —¢i) mod b,

(5)
(6)
where r > s. Here, ¢ is called the borrow. The maximum
possible period is " — b°, and is achieved when M =

b"—b°+1is prime and b is a primitive root modulo M. The
u;’s can be produced from the z;’s in the same way. For a

I, (II—S -

Ci41 I(Ix—a —Tier — ¢ < 0)»

full period AWC or SWB generator, the z,’s are provably
almost equidistributed in up to r dimensions, i.e., among
all (overlapping) r-dimensional vectors of successive values
of z,’s, over the whole period, every r-dimensional vector
with components in {0,...,b — 1} appears exactly once,
except for a tiny percentage of exceptions (Marsaglia and
Zaman 1991).

The AWC and SWB methods can be viewed as vari-
ants of the so-called additive or subtractive methods rec-
ommended in Knuth (1981). Marsaglia and Zaman (1991)
have given a list of parameter sets for AWC and SWB gen-
erators, for which the order of b modulo M is very large
or near to the maximum. Those generators do not have
full period, but a large period anyway. Finding full pe-
riod generators with a very large period is hard, because
checking the primitivity with a very large prime modulo
is a difficult task in practice.

In this paper, we analyze the structure of the sequence
ui, 1 =1,2,..., produced by an AWC or an SWB genera-
tor. That sequence turns out to be essentially the same as
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the sequence produced by a linear congruential generator
(LCG). More precisely, we have the following. Let M =
b"+b°—1for AWC,and M = b" —b°+1 for SWB. Suppose
that M is prime and let * be the multiplicative inverse
of b modulo M, i.e., such that *b mod M = 1. That in-
verse can be computed easily as b* = =2 mod M. Con-
sider the following (LCG) with modulo M and multiplier
A= (") mod M = bM-DL mod M:

Xi = AX..y mod M, (7)
w, = Xi/M. (8)

Our main result is:

THEOREM 1. Let {ui, i > 0} be the sequence (4) pro-
duced by an AWC or SWB generator, while {w,, i > 0}
i3 the sequence produced by (8). Then, if Xo is chosen
appropriately, one has

u; = b7 bl w,| (9)
foralli > r.

The condition “X, is chosen appropriately” means
that the two sequences must have corresponding initial
seeds. Otherwise, (9) will hold after an appropriate shift
of one of the two sequences. Equation (9) means that u, is
a truncated version of w;: only the first L fractional digits
in base b are kept, the others are chopped oft. As a con-
sequence, |u, — w,| < b~%. In other words, the sequences
(4) and (8) are the same, if they have corresponding initial
seeds, up to a precision of b~L. For example, it could be
reasonable to take b > 2%° and L = 2, in which case the
first 60 bits of v, and w, will be the same. So, for all prac-
tical purposes, considering the limited precision of floating
point numbers on computers, one can safely assume that
U = w;.

We call (7-8) the LCG representation of the corre-
sponding AWC or SWB generator. In Section 2, we sketch
briefly a proof of our main result and show how to obtain
the state of the LCG representation from the state of an
AWC generator, and vice-versa. For a theoretical evalua-
tion of the structural properties of an AWC or SWB gener-
ator, one can study the lattice structure of its LCG repre-
sentation. In Section 3, we do that on some examples, in-
cluding a small family of generators taken from Marsaglia
and Zaman (1991), to which we apply the spectral and
Beyer tests. To apply these tests, we used the software
package described in L’Ecuyer and Couture (1992), which
is still under development, and based in part on the algo-
rithms given in Afflerbach and Grothe (1985) and Fincke
and Pohst (1985). Observe that if the multiplier A in (7)
is replaced by its inverse A* = b* mod M, then it will
produce the same sequence, but in reverse order. Since
the reverse sequence has the same lattice structure as the

original one, applying the spectral or Beyer test with the
multiplier A* or A will yield the same results.

A more detailed version of this paper, with all the
proofs and further results, is currently in preparation. For
a survey of random number generation for simulation, see
L’Ecuyer (1990).

2. SWITCHING BETWEEN THE AWC AND
LCG REPRESENTATIONS

In this section, we sketch the proof of the main result
and show how one can switch from the AWC (or SWB)
sequence to its LCG representation, and vice-versa. For
simplification, we will assume here that L = 1 and will
consider the AWC generator. The more general case (L >
1) and the SWB generator can be analyzed in a similar
way. Consider the LCG (7). Since b* is the multiplicative
inverse of b, one also has X;,_1 = X, mod M. From that,
X, is now defined for all integers : € Z. Now, let

wi =X, /M= .zizi-1zi2..., (10)

where the right-hand-side denotes the digital expansion of
Xi/M in base b. For each ¢, define

Z b—J(—Iu—] +Zi—j4r + zi—]+3))

j=1
r s
r— s—
E V'l + E bz,
=1 1=1

Then, one can show that

Ci

A

Xi = Ait1 + cigr, (11)

that c,41 must be 0 or 1, and that the sequence {(zi, ¢i+1),
i € Z} satisfies the recursion (1-2). Further, u; = z;/b =
[bwi|/b, which is (9).

From (11), one can transform the state (z.—r41,..-,
z,,ci41) of the AWC generator into the state X; of its
LCG representation. Reciprocally, by expanding wi =
X./m in base b, one recovers z;,z,_1,...,Z:—r, and then
compute c; using the fact that ¢, = 1 if and only if (zi—r +
Ti—s+1—12,) mod b = 0.

It is important to note that the transformation from
the LCG state to the AWC state is not onto. Indeed, if the
LCG has full period, it has M — 1 (non trivial) possible
states. On the other hand, the AWC generator has 2}’
possible states, which is more than twice M — 1. So, many
different AWC states can be mapped to the same X;. It
turns out, however, that for all initial states of the AWC
except (0,...,0,0) and (b—1,...,b—1,1) (which must be
avoided), the period is equal to the order of b modulo M
(which is M — 1 if the LCG has full period). Further, the
length of the initial transient is at most r. This explains
the “4 > r” at the end of the statement of Theorem 1.
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Figure 1: All Pairs of Successive Points for the SWB Generator of Example 1

3. EXAMPLES, LATTICE STRUCTURE, AND
SPECTRAL TEST

3.1. Example 1

As a first example, we consider the a SWB generator
with (b,s,7,L) = (2,2,9,9). Here, z, = (z.—2 — T.—9 —

¢i) mod 2,
8

T— 2L9 ZIQ|+121,
7=0
and the period is 2° — 2% = 508. Figure 1 shows a two-
dimensional plot of the pairs of successive points (ui, i41)
produced by this generator over its entire period. The
starting values were (zi,...,%9,c10) = (1,0,...,0). This
looks like a typical lattice structure of a (bad) LCG.
The LCG representation of that SWB generator is

X =170X,-1 mod 509; wi = X,/509.

Note that 170 is the inverse of 2° (= 3) modulo 509. Since
u; is just the truncated version of w;, the points produced
by the SWB generator do not form exactly a lattice: those

with sharp eyes can see that the points in Figure 1 are not
exactly aligned on the three lines. However, everybody
will agree that the approximation is quite good.

If the multiplier 170 was replaced by 3, we would get
the same graphic, but reflected with respect to the diag-
onal u; = u,4;. Hence, the points of the LCG represen-
tation will be on three lines of slope 3 instead of slope
1/3.

3.2. Example 2: A “Classroom” AWC Generator

We now examine the “classroom” AWC generator
given in Section 7 of Marsaglia and Zaman (1991), for
which (b,9,7,L) = (6,2,21,L). The sequence is defined

by
L-1

1
=T Z TLit;67,

where z; is generated by zi = (zi_21 + z:—2 + ¢;) mod 6.
We will look at different values of L. Since M = 62! +
62 — 1 = 21,936,950,640, 377,891 is prime and b = 6
is a primitive root modulo M, the sequence of z,’s have
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Table 1: Beyer and Spectral Tests for Example 2

L 7 9 11 17 19
A 3760617870802950 | 3760620047585286 | 3760620108051462 | 3760620109779030 | 3760620109779066
q2 3.572E-6 4.630E-3 0.167 7.662E-11 1.149E-13
q3 1.000 2.171E-5 3.473E-6 9.926E-8 4.329E-12
q4 1.251E-4 2.200E-5 1.216E-4 1.286E-4 1.673E-10
gs 1.251E-4 4.692E-3 7.293E-4 0.167 6.434E-9
qs 4.380E-3 4.440E-3 2.552E-2 0.205 2.453E-7
q7 4.372E-3 0.959 6.143E-2 0.669 9.282E-6
qs 4.372E-3 0.103 0.473 0.567 3.490E-4
qo 0.153 0.103 0.550 0.750 1.30SE-2
q10 7.088E-2 0.222 0.740 0.477 0.476
q11 7.070E-2 0.229 0.589 0.634 0.562
q12 0.627 0.521 0.861 0.703 0.653
Q13 0.358 0.513 0.646 0.870 0.639
q14 0.358 0.536 0.658 0.778 0.729
Q15 0.551 0.844 0.613 0.724 0.697
q16 0.439 0.733 0.777 0.663 0.867
Q7 0.533 0.761 0.769 0.645 0.800
qis | 0.777 0.772 0.854 0.737 0.819
q19 0.700 0.853 0.835 0.778 0.909
g20 0.847 0.816 0.864 0.797 0.829
1/m
d2 3.572E-6 9.923E-8 1.654E-8 7.713E-4 1.992E-2
ds 3.572E-6 4.570E-3 4.762E-3 7.713E-4 1.992E-2
ds 2.856E-2 4.570E-3 4.762E-3 7.713E-4 1.992E-2
ds 2.856E-2 4.570E-3 4.762E-3 7.713E-4 1.992E-2
de 2.856E-2 4.570E-3 4.762E-3 3.532E-3 1.992E-2
d? 2.856E-2 4.570E-3 1.182E-2 4.998E-3 1.992E-2
ds 2.856E-2 4.486E-2 1.182E-2 1.342E-2 1.992E-2
dgy 2.856E-2 4 .486E-2 1.839E-2 1.526E-2 1.992E-2
dio 5.573E-2 4.486E-2 2.243E-2 3.542E-2 1.992E-2
d1 5.573E-2 4.486E-2 3.742E-2 3.542E-2 3.475E-2
d12 5.573E-2 4.486E-2 3.904E-2 4.657E-2 4.608E-2
dis 9.713E-2 6.428E-2 7.715E-2 5.185E-2 5.463E-2
dig | 9.713E-2 6.496E-2 7.71SE-2 7.727E-2 6.441E-2
dis 9.713E-2 6.652E-2 7.715E-2 7.981E-2 7.125E-2
die 0.100 9.129E-2 8.220E-2 0.104 8.138E-2
di7 0.100 9.853E-2 9.245E-2 0.104 0.103
dis | 0.100 9.853E-2 0.102 0.106 0.103
die | 0.120 0.104 0.109 0.114 0.105
d2o 0.120 0.114 0.115 0.123 0.117
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period M — 1. When L is relatively prime to M — 1, the

u,’s also have that same period. According to Marsaglia

and Zaman (1991), the z,’s, if used directly, could provide

and excellent simulation of independent throws of a dice.
The LCG representation is given by

X, = (6")YXi—1 mod M; w, = Xi/M.

The following values of L are relatively prime to M —
1: L =1,3,7,9,11,17,19. For small L, like 1 or 3, the
resolution is much too low and as a result, the LCG is not
a good approximation of the AWC sequence. We have
applied the spectral and Beyer tests to the corresponding
LCG’s for the other values of L. The results are given in
Table 1. The values d: and q; are respectively the distance
between hyperplanes in the unit hypercube, and the Beyer
quotient, in dimension t. For more details on the Beyer
and spectral tests, see L’Ecuyer (1990).

It turns out that for all values of L, the lattice struc-
ture is bad in low dimensions. In fact, it is amazing to see
how terrible are some of those multipliers in lower dimen-
sions (e.g., for L = 17 and L = 19).
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