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ABSTRACT

An approach to simulation response optimization is
presented where a simulation experiment is run in such
a manner as to generate optimal solutions. Once the
stochastic sample path of a simulation run has been
generated, it is sometimes possible to retrospectively
solve a deterministic optimization problem or a closely
related problem. As demonstrated with some examples
from communications and manufacturing, this approach
can greatly simplify both the simulation experiment and
the simulation model.

1 BASIC APPROACH AND NOTATION
1.1 Conventional Response Surface Experiments

The objective of a conventional simulation response
surface experiment might be to find the values for a set
of controllable factors such that some function of the
(random) simulation response is optimized.
Specifically, let P(0) be a scalar sample performance
measure of a system where 0 € 8 is a vector of decision
factors selected from the set of feasible designs, J.
Z[P(0)] is some characteristic of the performance which
is called the system response at 8. For example,
Z[P(0)] might be the expected long-run cost of
operating the system with factors, 6. One experimental

goal might be to find 8" such that

0" = argopt Z[P(6)] (1)
0ed

Conventional simulation response optimization
experiments typically involve

1. selecting successive values of 0 from the set §

according to some design or algorithm,
2. replicating the simulation at each selected value of 6

to estimate the distribution of P(8) and Z[P(6)], and
finally,
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3. deciding to quit and select the best factor as an
estimate of 8™

In designing such an experiment, many decisions must
be made such as

1. what values of 0 to run,

2. how many replications to run at each of these values
of 0,

3. how to initialize each run,

4. how long to make each of the replications,

S. what data to collect, and

6. when to stop the experiment.

The design of simulation optimization experiments is
an active area of research . However, there has yet to
be developed a method that works well for a broad class
of simulation optimization problems; techniques may
be spectacular for some problems while failing in others
(see Jacobson and Schruben 1989). The approach
presented here, as presently developed, is no exception.
We will give some examples where it works well and
also illustrate where it can give poor results.

Structuring the approach into an algorithm and
discovering its appropriate domain of application is a
focus of current research.

1.2 A Retrospective Approach

"Monday morning quarterbacks” always look smart.
Correct decisions are easy after the fact, but hindsight is
not possible in the real world. However, for some
important engineering design decisions, 20/20 hindsight
is possible - in a simulated environment. In
management education, retrospective analysis of case
studies and management decision games are often used
to develop qualitative principles and guidelines for
problem solving. The focus here is on quantitative
engineering decisions such as setting production
schedules, inventory levels, capacity planning, etc.

The notion is to look at the output from simulation runs
retrospectively in order to generate only optimal
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answers. That is, we try to solve a deterministic
optimization problem with respect to an observed
sample path as if the outcomes of all uncertainties were
known in advance. Of course, the sample path we
record is different than that obtained by merely
recording system performance. Once a sample path is
determined though, it may be possible to reconsider
various decisions and design factors without changing
the sample path.

Specifically, we define the random variable

8 = argopt P(6)
0ed

with the intent of estimating 0" by some function of 9.
In fact, the problem we will be solving is going to be
different from (1). The retrospective optimization
experiments proposed here result in an estimate of

6 = argopt Z[P(0)] @)
0ed

which is generally different from (1) but often trivial to
compute. While (1) might be regarded as "the
problem", (2) has some virtues beyond the fact that it is
sometimes easier solve. In recurring situations, (1)
might be more appropriate for evaluating long-term
performance (although it might involve unrealistic risk
taking - playing the lottery might make sense if you can
afford to keep playing until you win).

On the other hand, if Z[-] is the mode, then (2) can be
interpreted as the solution with the maximum likelihood
of being optimal for the next experiment or realization.
The "next" experiment we are referring to is the real
one, and it may only occur once. From this
perspective, a solution to (2) perhaps makes more sense
than a solution to (1). It also may be that the set of
possible scenarios is very large. The approach proposed
to solve (2) would let the simulation choose the
scenarios naturally and find what would be best for
these scenarios. Thus sampling would be concentrated
in those scenarios that are most likely to occur.

While it may appear to be quite different, each run of
the experiment we are proposing can be viewed as a so-
called "trace driven" simulation. In a trace driven
simulation, actual operating data is fed into the model.
The best answer is found, retrospectively, for the
particular sample path being studied. Most of the
shortcomings and advantages of trace driven
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simulations apply to this method with the exception that
we are going to be able to run independently seeded
replications. A conventional trace driven simulation
would be like running only one replicate of the
optimum generating simulations proposed here.

2 SOME EXAMPLES
2.1 Production Lot Sizing

The approach can be illustrated with a very simple
example: a manufacturing process consisting of only
one operation. There is a demand for D good finished
parts in a production run and we need to determine how
many parts to schedule. The answer would simply be
D, except for fact that the operation has a variable yield
of good product. We assume that this shrinkage is well
documented but cannot be controlled exactly or
predicted with certainty. It will be necessary to
schedule more than ten parts in order to have a
reasonable probability of producing at least ten
acceptable finished parts. How many? The problem is
pictured below,

X=? —> —> Y (Target=D)

Figure 1: Yield Management Problem

Retrospectively, if the shrinkage, (X - Y), were known
the answer is easy; simply set X equal to the shrinkage
plus D. What good is this answer? Clearly, this
answer, by itself, is not particularly valuable. However,
it would be trivial to simulate this system thousands of
times and estimate the empirical probability distribution
of the optimal production lot size, X. The question is
then: what do we do with this sample of optimal
values?

The problem is that we have made exactly hitting the
production target our only concern; close is no better
than "missing by a mile". Models of this sort typically
assign costs or penalties to missing the target value of D
good finished parts. If having ten parts is critical to
some down-stream production process, there will be a
large cost to a shortage; if the parts are expensive to
produce, there will be a significant cost to any excess
production. Let Cg denote the per unit cost of a

shortage and C,, be the per unit cost of excess
production. Then the cost of a production lot size of X
is

C(X) = Cg max(0,(X - D)) + Cg max(0,(D - Y))



Retrospective Simulation Optimization

We will run the simulation and observe the function
C(X). The function will have its minimum at some
value of X>D since for X<D the first term is zero and
the second term is non-increasing. Also the function
increases linearly once Y=D so we know that we can
stop the run once Y=D. The experiment is simply to
replicate starting with X=D and run until Y=D,
recording the value of X where C(X) is minimized.
Pick the value of X that occurs most often.

Determining an appropriate number of replications to
run might involve using some of the well-developed
machinery of statistical selection and ranking
procedures (see Goldsman 1988). The sample size
problem is complicated by the fact that the upper limit
on X is unknown and random. Otherwise, it would be
easy to use a multinomial statistical selection and
ranking procedure. If U were an upper bound on X,
then the outcome of each independent replicate follows
amultinomial distribution with U-X possible classes.
The selection objective might be to select the value of
X with the greatest likelihood with a bound on the
probably of making an incorrect choice.

For a specific example, assume that the target demand,
D, is 10, the probability of a particular part being good
is .7 (independent of the quality of the other parts),

Cg=5,and Ce=2. The simulation described above was

run giving us (after 2000 replicates) the marginal
histograms for the optimal values of X and
corresponding minimum costs shown in Figures 2, and
3.
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Figure 2: Optimal Lot Size
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Figure 3: Min Cost

It is not at this time exactly clear what to do with this
information. The most likely optimum value was

X =13 and the nearest integer to the average optimal
solution is 14.

We are not ready to suggest that the solution to (2)
generated by the above experiment be used without
further study. There is the obvious danger mentioned
above that we do not consider the "down side" to each
possible solution; that is, how bad is the solution when
it is not optimal. To illustrate: assume the cost structure
was such that there was a very large penalty for a
shortage and a very small cost of overproduction (not
an unrealistic situation). The conventional experiment
would report the largest value of X seen as the solution
to (1) whereas the retrospective experiment would
report a distribution of answers not unlike that in Figure
3. A more appropriate model for this highly
asymmetric costs situation would be to try and
minimize the lot size constrained by the probability of a
shortage not being higher than a specified risk level.

Of course, for small problems with simple
(independent) yields direct analysis is possible without
resorting to simulation. However, any serious
manufacturing problem is more likely to involve many
operations in large complex branching flows, reworking
of bad parts, and dependent yields. An analytical
treatment of these events in all but the most elementary
real problem is impossible or requires unreasonable
assumptions. For real problems with realistic
assumptions, direct analysis becomes intractable while
the experiment described above remains essentially the
same. There are several approaches to this problem,
some of which are addressed by Schruben (1991).

2.2 Buffer Space Allocation

A problem frequently encountered in the design of
manufacturing, communications, and computer systems
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is how to allocate a fixed number of buffers spaces
amongst the stations or nodes in the process to avoid
frequent buffer overflows. Anantharam (1989)
considers as a mode! an open Jackson network of
exponential servers, Poisson arrivals and Bernoulli
routing. The objective is to optimize some
performance measure associated with the time to buffer
overflow. He uses pathwise probabilistic arguments to
reason that for any such performance criterion, the
allocation should be made roughly in inverse proportion
to the logarithms of the effective service rates.

The simple tandem arrangement of queues given below
is an example of such a network where A is the arrival
rate and the W's are service rates. If there are 10 buffer
spaces in all, this method allocates 6 spaces to the first
station and 2 spaces each to the remaining 2 stations;
we denote this allocation as (6,2,2).

A=1
—| #=2 D #y=4 A u3=6 —>

Figure 4: Tandem Queueing Network

A retrospective approach to such resource allocation
problems might be as follows. The general idea is to
run the simulation unconstrained by a resource until the
total availability of the resource is exhausted. In this
case, a simulation of the network is run with unlimited
work-in-process buffer capacities while keeping track
of the running maximum buffer contents at each
operation. When the sum of these running maxima
reaches the total buffer space available, the run is
stopped. For a given run, the final values of the
running maxima are necessarily the allocation that
maximizes the time until blocking occurs since buffers
were allocated whenever needed to keep constraints on
total buffer availability from becoming binding for as
long as possible. By repeating the experiment we
generate samples from the probability distribution of
the "optimal" allocation from which an empirical
distribution can be estimated.

For the 10 buffer, tandem queue problem described
above, 1000 (retrospectively) optimal allocations were
generated using the simulation just outlined.
Histograms of the marginal allocations for the three
positions are shown in Figures 5, 6, and 7.
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Figure 5: Buffer 1
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Figure 7: Buffer 3

The most frequent (run-wise) optimal allocation
generated was (8,2,0), the closest feasible allocation to
the optimal mean marginal allocations was (6,3,1). The
expected time to buffer overflow for both these
allocations as well as the allocation prescribed by the
heuristic was estimated from 1000 simulated
realizations. Common random numbers were employed
in each set of runs. The sample means, T, and standard
deviations, S, of the times until blocking are given in
the table below.

Allocation T N
6,2,2) 823 340
8,2,0) 755 299
6,3,1) 8.84 3.34

Like the previous example, the assumptions on which
the analytically-based solution depend are very
restrictive whereas the method of generating optimal
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solutions presented here should be the same for almost
any capacitated queueing network.

2.3 Inventory Management

An extensive theory has been developed to help
establish policies for business decisions involving
inventory and it continues to be an area of active
investigation. An inventory policy is essentially a
prescription for "when" and "how much" to order based
on the fundamental tradeoff between the cost of
managing inventory versus customer service
requirements.

Here we consider a relatively simple infinite horizon,
discrete time, periodic review model. That is, all
activity (orders, demands, decisions, costs, etc.) occur
at an indefinite number of fixed, equally spaced time
points. The components of cost are ¢, the per unit cost
of ordering, h, the per unit cost of storage per unit
time, and =, the per unit cost of unmet demand per unit
time. There is no fixed purchase cost or lead time
associated with an order and full backlogging of
shortages is assumed. The period demands are assumed
to be continuous and identically distributed random
variables with known distribution F. The goal is to
minimize the long run expected cost per period.

It can be shown that the optimal policy can be

characterized by a single "order-up-to" quantity, s*,
satisfying

F(S*) = T
8= n+h

For given F, we can compare this solution with the

retrospective approach to estimating S* in which we
repeatedly solve a fixed n-period problem for given
realizations of the demand. We restrict the form of the
solutions to single order-up-to quantities even though
for known demand we can clearly do better by simply
ordering an amount in each period equal to the demand
for the coming period. If D is the (random) demand in

period i, then the n-period sample path cost function
can (after some algebraic manipulation) be written as
follows:

n
C(S) = (c - nm)S + (h+m) Zmax(S,Di)

i=1
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The cost function is, with probability 1, a continuous,
piecewise linear, convex function of S. This becomes
evident by examining the behavior of C for values of S
in the intervals between successive values of the
ordered demands, D[l] < D[2] <..< D[n].

S CS)

n
(c - nm)$S + (h+m) ZD[i]

i=1

OSS<D[1]

n
D[1)<S<Dpp) (- @-Dm+h)S + (h+m) Y Dyj)
i=2
(c-m+ (n-1)h)S + (h+n)D[n])
(c + nh)S

Dn-1)<S <Dpn
D[n] <S<m

The sample path optimum, S, occurs at the point at
which the slope of the line segments change sign. This

point is just Dik}» the kth largest of the n demands
nm - ¢
n+h’
retrospective simulation experiment simply requires

that we generate the kth largest of n period demands.
As an example, consider the case of uniform demand on

where k is the smallest integer contained in The

T ~
[0,D] in which case S*= — 7D S=D[x) has a beta

~ k
distribution with E[S] = mD . As n, the number of

periods in the simulated finite horizon problem,
increases the effect of the order cost on the solution
diminishes and

T
D

lim E[S]= —

n—=>@

Current work involves the extension of this estimation
technique to classes of inventory problems for which
only limited analytical results are available; in
particular, those for which (s,S) policies are optimal.

3 CLOSING REMARKS

Of course, while retrospective experiments might give
us suggested answers, it is important to evaluate and
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refine these solutions. The solutions to (2) generated by
the simulations might be thought of as starting points
for an optimization algorithm. The spread in the
histograms of the generated optimal solutions (like
Figures 2 through 6) also give us a pretty good idea of
how stable the solution is likely to be. If these
histograms were more peaked, (measured, perhaps, by
the sample kurtosis), then we might not feel that it is
necessary to conduct a conventional optimization study
using these solutions to initiate our search for a better
answer.

Almost all engineering design studies involve
simulation, if only to verify assumptions and predict
performance. In these examples, the simulations are
used to generate solutions, not only for "cut-and-try"
and "what-if?" design and policy evaluation or merely
for function evaluations in an optimization algorithm.
When the solution to (2) is appropriate (which might be
more often than the solution to (1)), the approach
suggested here can be straight forward and robust
changing the assumptions supporting the model.

Research questions include:

1. What is a correct interpretation of the results of these
retrospective optimizations? How different can (1)
and (2) be? When might they be close? When might
(1) or (2) be the more meaningful?

2. What are some good probability models for
analyzing these experiments. Clearly, the discrete
(exclusive and exhaustive) outcomes of the
experiments described above can be modeled as
multinomial sampling. Guidelines on when to stop
such experiments might be found along the lines of
statistical selection and ranking procedures. There is
a literature on the value of "prophets” in probability
models that also might prove pertinent.

3. Combining retrospective optimization (to get
promising parameter values) with conventional
prospective experiments (to evaluate performance
and sensitivity) seems like a potentially powerful
manufacturing engineering problem solving
approach with simulation models. How should an
algorithm be constructed to do this? Should there be,
say, 10 prospective runs for every retrospective run?
When should the search terminate? How can the
algorithm fail? How might the algorithm perform on
real world problems?

4. What characteristics of a simulation model are
necessary and/or sufficient for the retrospective
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optimization approach suggested here to make sense?
Perhaps a simulation that is not amenable to this
approach can be made so by expanding the state
space - this might make the technique theoretically
feasible but computationally worthless.
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