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ABSTRACT

In database systems several transactions are usually
allowed to proceed concurrently to exploit the poten-
tial parallelism. However, such concurrent execution
must be controlled to maintain the consistency and
integrity of the data. This paper studies the perfor-
mance of a concurrency control algorithm based on
locking called the Immediate Restart. Under this pol-
icy a transaction that fails in acquiring a lock is im-
mediately aborted (and replaced by another transac-
tion to maintain the same multiprogramming level).
The aborted transaction is attempted once again af-
ter some delay. We discuss the factors that influence
the algorithm performance, namely data contention
and resource contention. We argue that selecting the
appropriate delay is crucial to the performance of the
policy. If the delay is too short the transaction is
likely to fail again because the locks that caused it
to be aborted are still being held by other transac-
tions. On the other hand, a very long delay, while it
increases the probability of success, it also increases
the transaction response time. In both cases, the
overall performance may not be optimal. We pro-
pose a new method for estimating the optimal delay.
It is based on examing the current state of system
resources. Our results indicate that it performs well
and is better than the traditional algorithm that uses
the “running average” transaction response time as
the restart delay.

1 INTRODUCTION

A database is a collection of data objects that may
be shared by many users who read and update them
through transactions. A transaction is a sequence of
atomic actions, so called actions. An action is the
smallest unit of work (i.e., read or write). When
transactions run concurrently the system must con-
trol the timing of read and write operations of trans-
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actions to maintain the consistency and integrity of
the data. A conflict arises between two transactions if
both attempt to access the same data object and one
of them writes it. The mechanism by which the sys-
tem controls the behavior and timing of transactions
so that it may detect and resolve conflicts is called
the concurrency control mechanism.

Concurrency control has been the focus of much
research that produced many algorithms. Most of
these algorithms uses one of three approaches: lock-
ing, timestamps and optimistic. The various con-
currency control algorithms differ in the time when
they detect a conflict and the way they resolveit. A
commonly used algorithm that is based on locking is
called Immediate Restart. Under this policy, trans-
actions set read locks on objects that they read, and
these locks are later upgraded to write locks for ob-
jects they also write. If a lock request is denied, the
requesting transaction is immediately aborted and
may be replaced by another transaction immediately.
The aborted transaction is restarted after some delay.
This delay is necessary to prevent the same conflict
from occurring repeatedly. The main advantage of
this policy is that it does not cause transaction to
blocks, which can potentially lead to deadlocks that
are expensive to detect and resolve. However, as some
researchers (Agrawal, Carey, and Livny 1982), have
reported the immediate restart policy may not per-
form as well as other policies. In this paper, we focus
on the performance aspects of the immediate restart
policy. First, we study the factors that influence the
algorithm performance and quantify their effect using
a simulation model. Then, we argue that using the
running average response time may not yield optimal
performance. Finally, we propose a new method for
selecting the restart delay that is based on analyzing
the current state of system resources and show that
it consistently performs better than the traditional

method.

The paper is organized as follows. Section 2 de-
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scribes the logical view of the system and the under-
lying queuing model. Section 3 defines and lists the
model parameters. In Section 4 we evaluate system
performance using simulation. Section 5 presents the
new method for selecting the restart delay and shows
how it improves system performance. Finally, Section
6 summarizes the paper.

2 SYSTEM MODEL

Our model is a variation of that proposed by Ries and
Stonebraker (Ries and Stonebraker 1977) that has
been used as a baseline model in a number of stud-
ies, e.g., Agrawal, Carey and Livny (1987). It cap-
tures the basic elements of a database environment,
including both the users who issue transactions, and
the hardware resources that execute them.

The logical view of the model is shown in Figure
1. We assume a fixed number of terminals that gen-
erate transactions. There is a limit to the number of
active transactions allowed in the system determined
by the multiprogramming level (MPL). A transaction
is considered active if it is either receiving or waiting
for service at a resource, but not waiting for locks.
A new transaction is allowed to execute if the num-
ber of currently active transactions is less than the
multiprogramming level, otherwise the transaction is
placed at the end of the ready queue where it waits
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until an active transaction terminates.

A newly issued transaction that becomes active is
placed at the end of the concurrency control gqueue
(CC) where it makes its first request. A concurrency
control request is a request to lock an object. If the
request is granted (i.e., the transaction acquires the
lock) it proceeds to the object queue so that it may
access the data followed by some processing. If the
transaction has further requests it returns to the end
of the concurrency control queue. A transaction that
fails to acquire a lock, because its request has been
denied, is aborted and sent to the ready queue after
a restart delay. Eventually, a transaction will access
all its objects and commit.

Underlying the logical view in Figure 1 are two
types of hardware resources: processing units and I/O
devices. The corresponding queuing model is shown
in Figure 2. It consists of a collection of terminals,
CPUs, and I/O disks.

When a transaction needs CPU service it is as-
signed a free server if one exists, otherwise the trans-
action joins the CPU queue and waits until one be-
comes available. In other words, the CPU may be
thought of as being a pool of identical servers that
serve a single queue, All service disciplines are as-
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sumed to be FCFS.

3 MODEL PARAMETERS

We assume that performing an I/O operation to read
or write a data object has an average service time
tdisk while data processing at the CPU has an aver-
age service time tcpu. Having completed a transac-
tion, a user waits on the average an amount of time
equal to think_time before issuing the next one. All
service times as well as the think time are assumed
to be exponentially distributed. A transaction has a
length tran_size determined by the number of data
objects it accesses. The objects are chosen randomly
(without replacement) from among all the objects in
the database. The “without replacement” method is
required since it does not make sense for a transaction
to request a lock which it already holds. The percent-
age of I/O operations that are write requests is given
by wr_pr. Unless otherwise mentioned, a transaction
accesses all the objects of a database with ihe same
probability. A summary of the model parameters and
their definitions is shown in Table 1.

To evaluate system performance it is desirable to
use an analytic approach based on queuing network
models (Lazowska et al. 1985). Unfortunately, the
underlying queuing model doesn’t have a product-
form solution due to locking. Because of the in-
tractability of solving general queuing network mod-
els, simulation was deemed necessary to study the
performance. As such, a simulation model based on
the event-driven approach was coded in C on top of
a special package called SMPL (MacDougall 1987)
modified properly to handle concurrency control.

In the simulation model, each transaction issued
from a terminal comes with a list of object indices
in the database that it accesses. This list is called
a script. Associated with each object index in the
script list is a type that distinguishes the lock re-
quested: shared (read) or exclusive (write). All ac-
quired locks are released together at the transaction
completion or abortion time. While a transaction is
active a backup copy of the original objects accessed
by the transaction is saved. If a lock request is de-
nied the transaction is aborted and the original ob-
jects that have been updated by this transaction are
restored to their original values in the database from
the backup copy. On the other hand, if the trans-
action commits, the backup copy is discarded. This
recovery scheme is based on the write-ahead policy
that has been shown to preserve the database consis-
tency in both single and multiple user environments
(Elmasri and Navathe 1989).
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Table 2: Simulation Parameter Settings

Parameter Value

db_size 1000 or 10,000 pages
tran_size 8 pages

wr_pr 25%

think_time 1 second
num_terms 200

MPL 2 to 200

tepu 18 millisecond
tdisk 35 millisecond
num_cpus 1, 5, 10, 50, oo
num_disks 2, 10, 20, 100, oo
num_units 2

gran_size 1 page

4 SIMULATION RESULTS

In this section we study the performance of the im-
mediate restart policy that uses the running average
service time as the restart delay. The effect of data
contention and resource contention individually and
together on performance is studied.

Performance Metrics

The primary performance metric used in this study
is system throughput, which is directly related to re-
source utilizations. In some cases, the conflict ratio is
also reported. The conflict ratio is defined as the av-
erage number a transaction is aborted. For example,
a conflict ratio of 0.16 can be interpreted as follows:
each 6 transactions 1 is aborted once while the others
commit in the first run.

Parameter Setting

Some model parameters have fixed values during all
simulation experiments. These values are listed in
Table 2.

Hardware resources are assumed to come in units.
Each unit consists of a CPU server and num_units
disks. The parameter num_units is set to 2. In other
words, for each CPU server in the system, there are
2 disks. The disk service time was chosen to be
close to typical values provided by the manufacturer.
The CPU service time was chosen so that both the
CPU and disks have more or less the same utilization.
Thus, these values result in a balanced system so that
no device becomes a bottleneck. The restart delay
has an exponential distribution with mean equal to
the running average transaction response time.
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Table 1: Model Parameters

Parameter Definition

db_size number of objects in database

tran_size size of transaction

wr_pr proportion of write operations to transaction size
delay mean transaction restart delay

think_time mean time between transactions

num_terms

MPL

number of terminals
multiprogramming level

tepu mean CPU time for processing a data object
tdisk mean I/O time for accessing a data object
num_cpus number of CPU servers

num_disks number of I/O disks

num_unils number of disks in each unit

gran_size size of a granule

In general, database systems performance is af-
fected by two types of contention: data contention
and resource contention. Data contention arises when
transactions attempt to access a data object whose
lock cannot be shared. In this case, the youngest
transaction is usually aborted. Resource contention
arises when there are more transactions ready to ex-
ecute than hardware resource (e.g., memory, CPU or
I/O disks). Four different cases can be identified:

e low data contention and low resource contention
¢ low data contention and high resource contention
e high data contention and low resource contention
e high data and high resource contention

These cases are discussed below.

4.1 Data Contention

As was stated earlier, data contention arises when
transactions attempt to acquire locks that cannot be
shared. Let reg_lock be the maximum number of locks
that can be held concurrently by all transactions.
reg_lock is related to the multiprogramming level and
the transaction size as follows:

reqlock(MPL) = MPL * tran_size.

The data contention can be estimated as the aver-
age number of locks per object, that is:

data_con(MPL) = req_lock(MPL)/num_gran

where num_gran = db_size/gran_size.
A database system performs best when both data
contention and resource contention are low. Data
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Figure 3: Throughput of a Large Database with Infinite Resources

contention is low at large systems, i.e., systems with
large number of objects compared to the multipro-
gramming level. Resource contention can be elim-
inated by providing enough hardware resources so
that no transaction needs to wait for service. Fig-
ures 3 and 4 present the results of simulating a large
database system with an infinite number of resources
so that both types of contention are low. The system
has 10,000 data objects. Figure 3 shows the through-
put vs. MPL, while Figure 4 shows the corresponding
conflict ratio. Note that the throughput curve levels
off after certain MPL (~ 80) is reached. This is due
to the fact that beyond 80, all issued (ready) trans-
actions are already active and the rest are waiting for
users’ input.

The effect of data contention can be isolated by ex-
amining the performance of a database with a smaller
number of objects. Figure 5 shows the result of sim-
ulating a system with only 1000 pages, while keeping
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Figure 4: Conflict Ratio of a Large Database with Infinite Resources
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Figure 5: Thioughput of a Small Database with Infinite Resources

the number of hardware resources infinite. The cor- 10
responding conflict ratio is shown in Figure 6. Com-
pared with Figure 4, high data contention yields a 8

large conflict ratio that reduces system throughput

substantially. 6 /_\_’_,\_____‘/_,———
Throughput

4
4.2 Resource Contention "
The previous results were obtained under the assump- o : : :
tion of infinite resources which eliminates resource 0 50 100 150 200
contention entirely. The effect of resource contention MPL
on performance can be isolated by studying a sys- Figure 7: Throughput of a Large Database with 1 Resource Unit

tem with a large number of data objects, and a small
number of hardware resources. Figure 7 shows the
throughput as a function of MPL in a system with
only 1 unit of hardware resources. We observe that
while the throughput is still a non-decreasing func-
tion of MPL, it levels off at a much smaller value of

MPL.
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Figure 9: Conflict Ratio of a Small Database with 1 Resource Unit

4.3 Resource Contention And Data Con-
tention

To study the effect of both types of contention on
system performance we assume a database of 1000
objects and allow 1 unit of hardware resources. The
simulation results of this case are shown in Figures 8
and 9.

In this case, the observed system throughput first
increases as MPL increases until certain value, af-
ter which it decreases for a while then it becomes
flat. This behavior can be explained as follows. Ini-
tially, both data and resource contention are low so
the throughput increases with MPL until data con-
tention reaches a level in which conflicts becomes so
high that a form of thrashing takes place. As MPL
increases further, resource contention stabilizes the
throughput by making transaction wait longer at re-
source queues instead of being aborted and resched-
uled.
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Multiple Resource Case

Clearly, to eliminate resource contention the system
does not have to have an infinite number of resources.
Indeed, it is possible to eliminate resource contention
by providing enough resources so that no transaction
has to wait for service. Since the maximum number
of active transactions cannot exceed MPL, provid-
ing MPL units of resources should eliminate resource
contention. The question becomes whether we can
eliminate resource contention by fewer number of re-
sources. In other words, adding one resource unit at a
time, what is the smallest number of resources needed
so that the system exhibits performance similar to
one with infinite resources, where no resource con-
tention exists. To answer this question, we simulated
a system with 5, 10 and 50 resources units. It was
found that the maximum throughput achievable with
50 units is the same as with 10 units, which means
that resource contention can be eliminated with only
10 units. This is true because data contention limits
the number of concurrently active transaction regard-
less of MPL.

5 DYNAMIC RESTART DELAY

In the immediate restart algorithm, when a transac-
tion is aborted due to a lock conflict, it is resched-
uled after some delay. Selecting the right value to
delay an aborted transaction before its next attempt
for execution is very critical to the performance of
restart-oriented concurrency control algorithms. On
the one hand, an unreasonably large value of delay
will put some transactions in the waiting state while
they could execute, which wastes system resources
and degrades performance. On the other hand, an ex-
tremely short delay will cause a transaction to restart
before its lock requests can be granted so it has to be
aborted again. This also wastes system resources and
degrades performance.

In the traditional immediate restart algorithm, the
delay is usually set equal to the observed average re-
sponse time. The rationale behind this choice is that
during that time an active transaction is likely to
commit and release the locks that are needed by the
aborted transaction. Note that this delay increases
the average response time of transaction which, in
turn, causes an additional increase to the restart de-
lay. Consequently, this approach to calculating the
restart delay may not yield optimal performance as
it limits the potential parallelism unnecessarily. This
explains the inferior performance of the algorithm
compared with blocking as reported in some previ-
ous studies (Agrawal, Carey and Livny 1987).
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In this section we propose a new method for calcu-
lating the value of the restart delay that dynamically
sets this value according to the system workload and
resource contention. It differs from the traditional
method in that instead of using the average transac-
tion response time, the time until next completion is
determined from examining the system state. This
time depends on system load, transaction size, re-
source contention and service demands at hardware
resources. It is used as the current value of the restart
delay.

To understand the new method, let us assume that
transaction A has just been aborted because of a con-
flict with transaction B that is currently holding locks
needed by transaction A. If we can determine the
time required for transaction B to terminate, then
this time would be the ezact time that transaction A
should be delayed before restarting it once again.

Recall that a transaction consists of a sequence of
I/O operations, called actions, interleaved with CPU
processing. Furthermore, the resource residence time,
that is the time to receive service at a resource, de-
pends on the number of transactions currently queued
for that resource and their service demands. Assum-
ing that the system can be approximated by a sep-
arable queuing network (Lazowska et al. 1984), the
residence time at resource k can be calculated using
the formula:

Rk(MPL) = Dy * [1 + Ak(MPL)]

where R, is the residence time, D, is the average
service demand at resource k, and A is the num-
ber of transactions seen at resource k when a new
transaction arrives. It follows that the CPU and disk
residence times can be estimated as follows:

ch,,(MPL) =tcpux[l+ Acpu(MPL)]
and
Rdi,k(MPL) = tdisk * [1 + Ad",k(MPL)]

Now the total execution time of a transaction,
eze_time, at multiprogramming level MPL can be
calculated using the formula:

eze_time(MPL) = [chu(MPL)-i-Rd.'.k(MPL)]*tran_size

This value is used as the delay to reschedule the
aborted transaction. The advantage of this method
for calculating the restart delay is that it takes into
account the “current” state of different resources in
the system, not just the “long term” average response
time.

Throughput Y S~ o
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Figures 10 and 11 show the throughput and re-
sponse time of the new algorithm (shown as dashed-
lines) and compare them with those of the old al-
gorithm (shown as solid lines). The new algorithm
consistently perform better over the entire range of
multiprogramming level.

Non-Uniform Access To Database

Up to this point, database access was assumed to be
uniform, which means that all objects are accessed
with equal probabilities. To study system perfor-
mance under non-uniform access we simulated a sys-
tem under the 80-20 access pattern (Lin and Notle
1982). In this case, 80% of the transactions access a
small region of the database, called the kot spot. The
other 20% access objects in the remaining large part.
Therefore, data contention becomes very high for the
hot spot and very low for the rest of the database.
The high level of data contention causes an increase in
the number of restarts which degrades performance.
Figure 12 compares system throughput under non-
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uniform access using both the old and new method of
computing the restart delay. Again, the new method
yields higher throughput over the entire range of mul-
tiprogramming.

6 SUMMARY

In this paper, we used a simulation model that cap-
tures most realistic aspects of database systems to
study the performance of a concurrency control pol-
icy that aborts the transactions that fail to acquire
their locks and reschedule them after some delay. The
effect of data contention and resource contention in-
dividually and together on system performance was
presented. A new method for calculating the restart
delay that takes into account the current state of sys-
tem resources was proposed and shown to yield better
performance than the traditional method which uses
the running average of transaction response time un-
der both uniform and non-uniform access.
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